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Abstract

A set of evolution equations for dislocation density is developed incorporating the combined
evolution of statistically stored and geometrically necessary densities. The statistical density
evolves through Burgers vector-conserving reactions based in dislocation mechanics. The geomet-
ric density evolves due to the divergence of dislocation 4uxes associated with the inhomogeneous
nature of plasticity in crystals. Integration of the density-based model requires additional dislo-
cation density/density-4ux boundary conditions to complement the standard traction/displacement
boundary conditions. The dislocation density evolution equations and the coupling of the disloca-
tion density 4ux to the slip deformation in a continuum crystal plasticity model are incorporated
into a 7nite element model. Simulations of an idealized crystal with a simpli7ed slip geom-
etry are conducted to demonstrate the length scale-dependence of the mechanical behavior of
the constitutive model. The model formulation and simulation results have direct implications
on the ability to explicitly model the interaction of dislocation densities with grain bound-
aries and on the net e9ect of grain boundaries on the macroscopic mechanical response of
polycrystals.
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1. Introduction

Crystal plasticity is an inherently non-homogeneous process. The deformation of
polycrystalline metals may appear macroscopically homogeneous; however, each crystal
in the aggregate undergoes a di9erent mode of deformation that, tensorially averaged
with the rest of the grains, leads to the macroscopic deformation mode observed. Ex-
perimental observations using Orientation Imaging Microscopy (OIM) have shown the
level of inhomogeneity in the plastic deformation between neighboring grains (Sun
et al., 2000). Theoretical investigations of polycrystals have attempted to show how the
inhomogeneity of the plastic deformation between neighboring grains may be respon-
sible for the grain-size dependence (i.e. Hall–Petch) of 4ow stress (Smyshlyaev and
Fleck, 1996; Dai and Parks, 1997; Acharya and Beaudoin, 2000).
Non-homogeneous plastic deformation is not limited to polycrystals, but is also found

within single crystals at smaller length scales. Slip trace analysis of plastically deformed
single crystals shows regions of “patchy” slip forming when the loading direction co-
incides with a high-symmetry axis of the crystal. In these highly symmetric orienta-
tions, multiple slip-systems are potentially active; however, all of the slip-systems with
equally large resolved shear stresses do not contribute equally to the plastic deforma-
tion at microscopic length scales (Kocks, 1959). More recently, OIM measurements of
a Ta single crystal deformed with the [1 1 0]-crystallographic direction parallel to the
tensile loading axis have shown that the orientation of the crystal oscillates, locally, and
that the wavelength of orientation oscillation is proportional to the total macroscopic
deformation (Schwartz et al., 1999).
Transmission electron microscopy of grain interiors of both polycrystals and single

crystals in orientations exhibiting multi-slip activity has shown that dislocations form
cellular patterns with a stable wavelength inversely proportional to the accumulated
plastic deformation. High-density bundles of dislocations form the cell walls, while the
cell interiors remain mostly dislocation-free (Godfrey and Hughes, 2000). The majority
of the dislocation content in cell walls is statistical in nature, meaning that it does not
lead to any local lattice rotation; however, a small fraction (≈ 1%) of the dislocation
content in the walls is geometric in nature, leading to small lattice rotations of the type
measured by Schwartz et al. (1999)
The length-scale dependence observed in crystal plasticity has been associated with

the level of inhomogeneity in the plastic deformation. The classic examples of the Hall–
Petch e9ect in polycrystals and the dislocation patterning in grain interiors have been
established for decades. More recently, experiments have been conducted to further
illuminate this length-scale dependence. Micro-indentation experiments of both single
crystals and polycrystals have shown that the hardness decreases as the depth of in-
dentation increases (Stelmashenko et al., 1993; Ma and Clarke, 1995; Nix and Gao,
1998). Experiments on the torsion of thin wires and on the bending of thin beams have
shown similar behavior in which the torsional and bending 4ow strengths increased as
specimen dimensions decreased (Fleck et al., 1994; StMolken and Evans, 1998).
Modeling such length-scale-dependent material behavior is not possible within the

framework of classical continuum crystal plasticity (Follansbee and Kocks, 1988;
Bronkhorst et al., 1992; Marin and Dawson, 1998; Nemat-Nasser et al., 1998). This
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class of constitutive models contains no intrinsic (material) length scale within its
formulation. Since the increase in strength with decreasing scale can be related to pro-
portional increases in the gradients of the overall strain 7eld in each of the experiments,
a class of models has been developed that incorporate a length scale dependence in
the constitutive response of the material through functional dependencies on the plastic
strain gradient (MMulhaus and Aifantis, 1991; Fleck and Hutchinson, 1997; Shu and
Fleck, 1999; Gao et al., 1999; Acharya and Bassani, 2000). The physical basis for
these models has been founded in dislocation mechanics; speci7cally, on theoretical
developments concerning geometrically necessary dislocations (GNDs).
One can consider partitioning a density of crystallographic dislocations into a set

having a net geometric consequence, and a complementary one lacking geometric
consequence. Following Ashby (1970), the former have been labeled geometrically
necessary dislocations and are related to the curvature of the crystal lattice and to
the incompatibility of the plastic strain 7eld (Nye, 1953; Bilby et al., 1955; KrMoner,
1962; Cermelli and Gurtin, 2001), while the latter have been labeled statistically stored
dislocations (SSDs) and are believed to result from random trapping processes that oc-
cur during “homogeneous” deformation of crystals. Therefore, a portion of the dis-
location density in a crystal may be related to the plastic strain gradient 7eld of
a crystal.
At the di9erential volume element level, all dislocations are “geometrically neces-

sary”. Dislocation Dynamics (DD) simulation techniques have been developed that
describe the plastic deformation of crystals at this level by tracking the motion and
interaction of discrete dislocation line segments through the crystal (Kubin et al., 1992;
Schwarz, 1999; Zbib et al., 1998). At the much larger volume element level typically
used in continuum calculations of polycrystals, the dislocation density within the ele-
ment is primarily composed of SSD density, and the GND density is ignored. However,
for volume elements between these two extremes, particularly at the subgranular level,
GND density cannot, in general, be ignored, yet the total dislocation content is too
high for dislocations to be treated discretely. A continuum formulation incorporating
the e9ects of SSD and GND densities should be considered to accurately describe the
plasticity of crystals at this intermediate length scale.
In principle, the evolution of GND density is tractable because it is described by

kinematic relationships related to the divergence of dislocation density 4ux. The level
of detail with which the GND state is characterized in the aforementioned length-scale
dependent models ranges from a strict interpretation of the dislocation tensor resolved
crystallographically (Acharya and Bassani, 2000) to a loose interpretation of the GND
state as a scalar invariant of all of the plastic strain gradients (Fleck and Hutchinson,
1997; Shu and Fleck, 1999), including gradient components not directly associated
with the Nye dislocation tensor (Nye, 1953). Treatments of the evolution of the SSD
population have been phenomenological in nature in all of the aforementioned models.
Statistical dislocation densities have not been treated explicitly; instead, their e9ects
on mechanical behavior have been described by strength evolution equations. The co-
evolution of the SSD and GND densities must be prescribed, and an interaction between
the two densities must be assumed a priori because they are quantitatively measured
using di9erent metrics.
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Dislocation density-based state variable models have been developed for continuum
crystal plasticity (Walgraef and Aifantis, 1985a, b; Cuitiño and Ortiz, 1992; Stainier
et al., 2002), and have been successfully used to describe the large (length) scale
deformation behavior of various metallic single crystals. The dislocation density state
variables in these models represent SSD densities with limited geometric information.
These densities are characterized by their Burgers vector, but their line senses, while
being restricted, are unde7ned. To complement the evolution of the GND density,
which is de7ned by both its Burgers vector and line sense, the evolution equations for
SSD density must be extended to include information about their line sense, allowing
them to be combined with the GND evolution equations to form general dislocation
density evolution equations applicable over a range of length scales.
In this article, we develop a set of evolution equations for crystallographic dislocation

densities that incorporates both polar (GND) and dipolar (SSD) dislocation densities.
The evolution equations are based on basic principles in dislocation mechanics, gen-
eralized for a density basis. The polar portion of the evolution equations includes the
accumulation or loss of geometric dislocation density due to both a non-zero diver-
gence of dislocation 4ux and to geometric reactions that are accurate to the discrete
dislocation level. The dipolar portion of the evolution equations includes the genera-
tion of dislocation density, based on the principle of dislocation line continuity, and
the annihilation of dislocation density, based on the frequency of dipole encounters.
The dislocation evolution equations couple to the 7eld equations and traction/

displacement boundary conditions of traditional elastic–plastic initial boundary value
problems, and introduce novel dislocation density/density-4ux boundary conditions. A
7nite element implementation of the coupled system will be described and used to
conduct a series of simple simulations. The simulations will be used to demonstrate
the behavior of the model in incorporating material length scale-dependent behavior,
and a discussion will follow on the physical nature of grain boundaries in light of the
behavior of proposed model.

2. Continuum model description

We are interested in solving the mechanical equilibrium boundary value problem in
a volume containing a single crystal with a network of dislocations, and the surface
of the volume being subject to externally imposed tractions and displacements. The
question arises: Is the boundary value problem well-posed? In general, the problem is
not well-posed because there are additional degrees of freedom associated with mo-
tion of the dislocations that need to be speci7ed; however, for large crystal volumes
in which all of the dislocation density may be considered statistical in nature (i.e.,
having no geometric consequence), then the above boundary value problem is a valid
approximation of the system.
In the following sections, a micro-mechanical theory of single-crystal plasticity will

be developed that demonstrates the necessity of generalizing the above boundary value
problem to accurately describe the nature of plastic deformation of crystals at mi-
cron length scales. The validity of the approximation for large crystal volumes will
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become evident in a selected illustrative example demonstrating essential features of
the theory.

2.1. Crystal kinematics

The kinematics of the crystal plasticity formulation described below is based on
the developments of Asaro and Rice (1977). The deformation gradient, F = 9x=9X,
mapping a reference con7guration of the material to the deformed con7guration, is
multiplicatively decomposed into elastic (Fe) and plastic (Fp) factors, such that

F= FeFp; (1)

where Fp, describing the e9ects of plastic deformation on an unrotated and unde-
formed crystal lattice, maps neighborhoods of the original con7guration to intermediate
‘relaxed’ neighborhoods, and Fe maps these intermediate neighborhoods to neighbor-
hoods in the deformed con7guration. Typically, Fe involves small elastic stretches and
arbitrary rigid-body rotations. With plastic deformation, Fp evolves according to the
4ow rule

Ḟp = LpFp; (2)

where Lp is the plastic 4ow rate. In crystals, Lp is comprised of the superposition of
the resolved crystallographic plastic shear rates, �̇�, such that

Lp =
∑
�

�̇�m�
0 ⊗ n�0 ; (3)

where m�
0 and n�0 are unit lattice vectors in the reference con7guration corresponding

to the slip direction and the slip plane normal direction, respectively, for a given
slip-system �.
An elastic strain measure, Ee, corresponding to the Cauchy–Green strain with respect

to the intermediate con7guration, is de7ned as

Ee ≡ 1
2 {FeTFe − I2}; (4)

where I2 is the second-order identity tensor. The work-conjugate stress measure, VT,
is related to the Cauchy stress, T, through the transformation VT = det(Fe)Fe−1TFe−T.
Stress is related to elastic strain by

VT=L[Ee]; (5)

where L is the fourth-order tensor of crystallographic elastic moduli.
Connections between the single-crystal plasticity framework and the dislocation den-

sity state are made by (i) relating the motion and interaction of the crystallographic
densities to the plastic shear rates in Eq. (3), and by (ii) quantifying the e9ects of the
stress on the motion of the dislocation densities, and thus their evolution.

2.2. Crystallographic dislocation density basis

Crystallographic dislocation densities are de7ned by their magnitude, �, measured in
line length per unit volume, Burgers vector, b, and tangent line direction, t. The Burgers
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vector space that a dislocation density may occupy is 7nite; however, the tangent line
space is in7nite, in general. To make the problem more computationally tractable, a
dislocation density basis having a 7nite set of tangent line directions will be chosen
to represent the general dislocation density state of the crystal. The choice of the
dislocation density basis is in no way unique, but it should re4ect the prevalence and
importance of certain dislocation geometries in the real crystal yet be limited enough
to make computations tractable.
The dislocation density basis used in this work will be: ��e+, �

�
e−, �

�
s+, �

�
s−, where

subscripts e and s denote either pure edge or pure screw density, respectively; the sign
of the subscript, (+) or (−), indicates the polarity of the dislocation density, and the
superscript, �, denotes the slip-system. The superscripts and subscripts will also be
used to associate various density-related quantities such as average dislocation segment
lengths and velocities with each of the four dislocation densities comprising a given
slip-system. This particular dislocation density basis was chosen here to include glissile
dislocation densities and to keep the development of the evolution equations as simple
as possible.
With the density basis chosen, the crystallographic plastic shear rates can be deter-

mined from the conservative glide of the densities on that slip-system by

�̇� = (��e+ Vv�e+ + ��e− Vv�e− + ��s+ Vv�s+ + ��s− Vv�s−)|b�|; (6)

where Vv is the average velocity of the associated density, and the product � Vv is the
dislocation 4ux of the associated density. The sign convention on the sense of positive
velocities is such that each (positive) dislocation 4ux increases the plastic shear rate
of the slip-system.
Evolution equations must be developed for each of the dislocation densities included

in the model, and constitutive functions for the average velocities for each of the
densities must be speci7ed. The evolution of the dislocation density in our sub-grain
representative volume element is the cumulative result of three processes: generation,
annihilation, and accumulation/loss associated with the dislocation 4ux divergence such
that

�̇� = �̇�gen + �̇�ann + �̇�4ux (7)

for each dislocation density � in the model. 1 The generation and annihilation of dislo-
cation density is statistical and does not change the overall geometric character of the
dislocation density within the volume element. The 4ux divergence term leads to the
evolution of GND density, and it is responsible for changes in the dislocation tensor of
the volume element. Expressions for each of the three terms will be developed based
on core concepts in dislocation mechanics.

2.3. Evolution of statistical dislocation density

The continuity of dislocation lines must be maintained as a crystal plastically deforms
by the conservative glide of dislocations. Dislocation line segments must terminate

1 Here, the superscript ‘�’ is shorthand indicating that Eq. (7) applies for each slip-system, and both
dislocation characters and polarities.
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Fig. 1. Schematic depicting the generation of dislocation density by the motion of dislocation line segments
as the crystal plastically deforms by dislocation glide.

only on other dislocation segments, free surfaces, grain boundaries, or other crystalline
defects. As dislocation line segments glide, new dislocation line length must be gen-
erated to maintain the continuity of the lines. Consider Fig. 1 of a density of gliding
dislocation segments. If the gliding segments represent edge dislocations, then dipole
pairs of screw dislocations are left in their wake, connecting the segments back to
the defect structures from which they originated. Likewise, gliding screw dislocation
segments must leave pairs of edge dislocation dipoles in their wake. The length of
the dislocation dipoles created is directly proportional to the distance traversed by the
gliding segments and to the number density of the segments in the volume. In our
discrete dislocation density basis, evolution equations of the form

�̇�e+(gen) = �̇�e−(gen) =
��s+| Vv�s+|

Vl�s+
+
��s−| Vv�s−|

Vl�s−
; (8)

�̇�s+(gen) = �̇�s−(gen) =
��e+| Vv�e+|

Vl�e+
+
��e−| Vv�e−|

Vl�e−
; (9)

where Vl is the average mobile segment length of the associated dislocation density,
capture this growth mechanism of dislocation lines with plastic deformation. Within
this context, the source of new density is the current density, and discrete dislocation
con7gurations that lead to dislocation sources are assumed to exist within the volume
element.
The key microstructural material parameter that quanti7es the activity of dislocation

sources and relates the amount of dislocation density generated per unit of shear is the
average segment length. From detailed investigations of source activity in dislocation
dynamics results (Arsenlis and Tang, 2003), the average segment lengths are observed
to evolve during the course of plastic deformation. An evolution law for the average
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dislocation segment lengths of the form

V̇l�e+ = Vl�e+
�̇�e+
��e+

− ( Vl�e+)
3[H�


ee (�̇


e+ + �̇
e−) + H�


es (�̇


s+ + �̇
s−)]; (10)

V̇l�e− = Vl�e−
�̇�e−
��e−

− ( Vl�e−)
3[H�


ee (�̇


e+ + �̇
e−) + H�


es (�̇


s+ + �̇
s−)]; (11)

V̇l�s+ = Vl�s+
�̇�s+
��s+

− ( Vl�s+)
3[H�


se (�̇


e+ + �̇
e−) + H�


ss (�̇


s+ + �̇
s−)]; (12)

V̇l�s− = Vl�s−
�̇�s−
��s−

− ( Vl�s−)
3[H�


se (�̇


e+ + �̇
e−) + H�


ss (�̇


s+ + �̇
s−)]; (13)

where the H�
’s are segment-length interaction matrices, has been proposed based
on observations of dislocation density growth in these detailed discrete dislocation
simulations. The 7rst terms on the right-hand sides of Eqs. (10)–(13) account for the
lengthening of existing dislocation segments due to the aforementioned density growth
mechanism, while the second term accounts for the introduction of nascent dislocation
segments from dislocation sources within the crystal, acting to decrease the average
segment length of the density within the volume. The 7rst term keeps the number
of dislocation segments in the volume, �= Vl, constant, while the second term acts to
increase the number of dislocation segments per unit volume due to multiplication
processes.
The evolution equations for the statistical annihilation of dislocation density are

based on dislocation interactions that act to reduce the total density of the system. All
dislocation junction interactions can be considered as general dislocation annihilation
reactions. Line lengths of the two junction-forming dislocations are eliminated, and a
new junction dislocation is created, decreasing the internal energy of the dislocated
crystal. The process can be considered statistical in two ways. There is a stochastic
nature as to the frequency that such interactions occur in a plastically deforming crystal,
and, in any event, the changes in the crystallographic dislocation densities do not a9ect
the overall dislocation tensor of the volume because Burgers vectors are conserved at
junction nodes.
The dislocation reaction most e9ective in reducing the total density of the system

is the dipole-reaction, in which two equal-length dislocation line segments having the
same tangent direction but opposite Burgers vectors react to eliminate their line lengths
without creating a product junction dislocation. Consider Fig. 2 depicting a density of
right-handed edge dislocations gliding past a density of left-handed edge dislocations
moving in the opposite direction. Suppose that when two dislocations of opposite po-
larity come within a critical distance of one another, they mutually annihilate. If the
dislocations are randomly distributed in the plane, the frequency with which a disloca-
tion from the right-handed density comes within a critical distance of a dislocation of
opposite polarity can be determined. A rate of dislocation density annihilation by this
dipole-reaction may be approximated by

�̇�e+(ann) = �̇�e−(ann) =−��e+��e−Re(| Vv�e+|+ | Vv�e−|); (14)

�̇�s+(ann) = �̇�s−(ann) =−��s+��s−Rs(| Vv�s+|+ | Vv�s−|); (15)
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Fig. 2. Schematic depicting the reduction of dislocation density by the mutual annihilation of dislocation
dipoles as the crystal plastically deforms by dislocation glide.

where Re and Rs are the critical capture radii for the edge and screw dislocation
densities, respectively. For simplicity, other dislocation reactions that can reduce the
total dislocation density, albeit less e9ectively, will be ignored in this formulation.
Neglect of other density-reducing mechanisms may lead to larger values of the critical
capture radii within the simpli7ed model than have been experimentally measured.
The generation and annihilation equations combine to describe the statistical evo-

lution of dislocation density in a given volume. The generation terms dominate the
evolution of the dislocation density at the low dislocation density levels typical of an-
nealed crystals at low strains. The annihilation terms become proportionally larger
as the dislocation density statistically accumulates, and they control the saturation
level of the dislocation density. If there is a large disparity in the mobility of the
edge and screw dislocation densities, as in BCC crystals, the less-mobile species will
accumulate faster than the more mobile species (Arsenlis and Tang, 2003). If the
4ux-divergence part of the general dislocation density evolution is neglected, the two
polar densities for each dislocation character may be consolidated into a single dipolar
density without a loss of information, due to the symmetry in their evolution. The
4ux-divergence part of the dislocation density evolution equations, however, breaks
that symmetry, so that densities of a given character, but of opposite sign, must be
evolved separately.

2.4. Geometrically necessary dislocation density evolution

The evolution equations for the GND density are simpler to develop than those for
the statistical density because they are closely connected to the inhomogeneous nature
of plastic deformation in crystals. The GND density is related to the incompatibility of
the plastic deformation and to the curvature of the underlying crystal lattice. In fact,
it is that portion of the total density speci7cally needed to maintain the continuity of
the crystal lattice.
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The aggregate geometric properties of a dislocation density may be quanti7ed by a
dislocation density tensor, A, often termed Nye’s tensor after Nye (1953). The tensor
quanti7es the net Burgers vector, bnet, of a dislocation density piercing a unit surface
area with normal, ns, through the expression

bnet = Ans: (16)

The dislocation tensor of a volume can be determined by performing line integrals
along all of the dislocation line segments contained in the volume (Arsenlis and Parks,
1999). In a discrete dislocation basis, the line integrals become tensorial sums of the
densities in the basis given by

A ≡
∑
�

(��e+ − ��e−)b
�
0 ⊗ p�0 + (��s+ − ��s−)b

�
0 ⊗m�

0 ; (17)

where p�0 = m�
0 × n�0 is the tangent line direction of edge dislocation density on slip-

system �. The dislocation tensor is a measure of the net polarity of the dislocation
density contained in a volume element; therefore, dipole and other statistical densities
do not contribute to the tensor.
Polarity develops in the dislocation density due to the inhomogeneous nature of

plastic deformation and the discrete nature of dislocations. Dislocations originating
from Frank–Read sources contained fully within a volume element add to the statistical
density at their inception, but may later contribute to the polarity of the dislocation
density elsewhere in the crystal. Polar dislocation density cannot be spontaneously
created or annihilated in a volume, as can statistical dislocation density, because it
would violate the conservation of Burgers vector law. Instead, polar dislocation density
must be transported to/from some other region of the crystal, or result from local
geometric reactions of existing polarity with dislocation 4ux.
Any discussion of the polarity in the dislocation density must also include a discus-

sion of the volume over which that polarity is measured. If the representative volume
element is smaller than the spacing between dislocations, every dislocation is polar and
each is required to exist due to local lattice-geometric constraints. Dislocation dynamics
simulations concern this length scale of simulation and trace the motion of individual
dislocation lines through the crystal (Kubin et al., 1992; Zbib et al., 1998; Schwarz,
1999). Phase-7eld-based continuum models also treat this length scale of simulation
(Ortiz, 1999; Wang et al., 2001) by restricting all of the dislocation density within
their volume elements to be polar. Smaller representative volume elements have been
treated with molecular dynamics and with preliminary work based on the theory of
continuously distributed dislocations, in which a single dislocation may be represented
by a distribution of density (Acharya, 2001) spanning multiple volume elements.
In our treatment, the representative volume element is assumed suWciently large such

that the polar/net-geometric part of the dislocation density is only a subset of the total
density within the volume, necessitating the explicit consideration of dislocation dipoles
and other statistical density. Furthermore, we assume that the defect structure can be
represented adequately by a density of dislocations, and that each individual dislocation
segment comprising the density need not be distinguished from the population. How-
ever, the evolution equations developed at this length scale for the polar dislocation
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density should remain valid when considering the behavior of a single dislocation, as in
the treatment of Acharya (2001). At nanometer length scales, the evolution equations
for the polarity in the dislocation density should be equivalent to rewriting the discrete
dislocation dynamics formalism in a continuum control volume methodology.
Evolution of the dislocation tensor de7ned in Eq. (17) can be related to the plastic

deformation history of the material. KrMoner (1962) showed that certain gradients in the
plastic deformation could be related to the dislocation tensor, leading Ashby (1970) to
label this subset of the dislocation density as GND density. Within the 7nite deforma-
tion kinematics formalism using the multiplicative elastic–plastic decomposition of the
total deformation gradient, several di9erent expressions have been proposed for relat-
ing the dislocation tensor to referential derivatives of the plastic deformation or spatial
derivatives of the inverse elastic deformation gradient. Dai and Parks (1997) have pro-
posed A(DP)=Curl (Fp). Acharya and Bassani (2000) have proposed A(AB)=curl (Fe−1),
while Cermelli and Gurtin (2001) have proposed A(CG)=Curl (Fp) FpT, where the Curl
of a tensor is de7ned via cartesian components as Ciq= eqjk9Bij=9Xk , and the curl of a
tensor is de7ned as Ciq = eqjk9Bij=9xk . Furthermore, Steinmann (1996) has shown that
all of these measures of the dislocation tensor are related through appropriate con7g-
urational mappings. However, the question remains: which of these measures is most
appropriately identi7ed with the crystallographic dislocation density basis adopted in
this formulation?
The plastic deformation in the multiplicative decomposition of the total deformation

evolves in the intermediate con7guration where Lp is de7ned. In this con7guration,
the crystal is plastically deformed but elastically relaxed, and the lattice remains unro-
tated. Of the three measures mentioned above, only A(CG) is de7ned in this material
con7guration. The time rate of change of A(CG) can be decomposed into three parts,
and each part may analyzed and directly related to geometric considerations found in
simple discrete dislocation mechanics. The rate form of the adopted measure is

Ȧ(CG)
iq = epjk

9Lpil
9Xk

Fp
ljF

p
qp + LpilA

(CG)
lq + A(CG)

il Lpql: (18)

The 7rst term on the right-hand side of Eq. (18) is related to the accumulation or
loss of dislocation density of speci7c character and sign, due to divergence of that
density’s dislocation 4ux. The next two terms are geometric reactions that take place
during plastic deformation by dislocation glide in a material element containing pre-
existing polar dislocation content, and the physical signi7cance of these reactions can
be understood by investigating the underlying dislocation mechanisms they describe.
The tensors LpA and ALpT may be rewritten in terms of the dislocation density

expressions in Eqs. (6) and (17), yielding

LpA =
∑
�

∑
�

���� Vv�(n�0 · b�0)b�0 ⊗ t�0; (19)

ALpT =
∑
�

∑
�

���� Vv�(t�0 · n�0)b�0 ⊗ b�0; (20)

where t�0 is the tangent line direction of the dislocation density of index �, and � span
the discrete space of crystallographic dislocation densities in the formulation. In our
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Fig. 3. Schematic depicting the forest reaction between two screw dislocations producing two jogged screw
dislocations.

sign convention, t�0(e+) = −t�0(e−) = p�0, t�0(s+) = −t�0(s−) = m�
0, and b�0(e+) = b�0(e−) =

b�0(s+) = b�0(s−) = |b�0|m�
0 for the four dislocation densities on every slip-system �. The

dimensional similarity between Eqs. (19)–(20) and Eqs. (14)–(15) suggests that Eqs.
(19)–(20) quantify the time rate of change in Nye’s tensor due to geometric reactions,
much as the annihilation rate equations quantify the reduction in the statistical density
due to statistical reactions.
The geometric reactions can be further clari7ed through a series of three schemat-

ics, shown in Figs. 3–5, depicting the dislocation mechanisms captured by the two
terms. The 7rst mechanism, given in Fig. 3, depicts the geometric jog production as-
sociated with intersecting screw dislocation densities. The ALpT term captures the rate
of geometric jog/kink production in a geometric forest density due to gliding dislo-
cation density. The LpA term captures the rate of geometric jog production on the
gliding dislocation density due to a forest of stationary geometrically necessary screw
dislocations.
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Fig. 4. Schematic depicting a constant 4ux of edge dislocation density gliding across converging planes
through a geometrically dislocated crystal, leading to the accumulation of GND density in the volume.
Given the amount of density accumulated in the volume, the height is equal to h = 36|b|.
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Fig. 5. Schematic depicting a constant 4ux of edge dislocation density gliding across converging planes
through a geometrically dislocated crystal, leading to the development of screw kinks on the glide density.

The LpA term also captures the e9ect of converging/diverging slip planes which
result from a local accumulation of dislocations of the same character. If the slip
planes converge in the direction of motion of the density, as depicted in Fig. 4, an
equal dislocation density 4ux across both of the faces leads to an accumulation of
density within the volume, due to the di9erence in area of those faces. Similarly, ho-
mogeneous plastic deformation in volumes with slip planes converging in the tangent
line direction of the gliding dislocations, as shown in Fig. 5, leads to the forma-
tion of kinks on the gliding dislocations due to the change in the cross-sectional
area of the volume along the line of the dislocation. The LpA and ALpT terms
are physically justi7ed as geometric reactions occurring in geometrically dislocated
crystals.
The evolution rate for A described in terms of continuum variables above needs to

be tied to dislocation density evolution rates. By taking the time derivative of Eq. (17)
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and combining it with Eq. (18), the following equality may be formed:∑
�

b�0(i)[(�̇
�
e+(4ux) − �̇�e−(4ux))p

�
0(q) + (�̇�s+(4ux) − �̇�s−(4ux))m

�
0(q)]

= epjk
9Lpil
9Xk

Fp
ljF

p
qp + LpilAlq + AilL

p
ql: (21)

However, �̇�e+(4ux), �̇
�
e−(4ux), �̇

�
s+(4ux), and �̇

�
s−(4ux) cannot be uniquely determined from

Eq. (21). While Eq. (21) constrains the evolution of the slip-system dislocation den-
sities to maintain the continuity of the crystal lattice, it does not precisely specify
the crystallographic dislocation con7guration that develops. It is clearly evident from
Eq. (21), for example, that accumulation of a certain amount of ��e+ would have the
same geometric consequence as a loss of the same amount of ��e−, and the right-hand
side of the equation neither requires nor favors one of these kinetic processes over the
other.
By appealing to certain physical considerations, a reasonable set of evolution equa-

tions may be developed by assuming that the polarity of the dislocation density in
a given slip-system results from processes involving dislocation densities within that
slip-system. By rewriting Lp in terms of the crystallographic dislocation 4uxes that
constitute it and separating the contributions of each of the dislocation densities within
each slip-system to Ȧ, the 4ux divergence contribution to the crystallographic disloca-
tion density evolution may take the form

�̇�e+(4ux) =− 9
9X [��e+ Vv�e+ + fe(��s+ Vv�s+ + ��s− Vv�s−)] · (Fp−1m�

0)

+ (n�0 · Ap�0)[��e+ Vv�e+ + fe(��s+ Vv�s+ + ��s− Vv�s−)]

+ ��e+p
�
0 · Lpp�0 + fe(��s+ − ��s−)p

�
0 · Lpm�

0 ; (22)

�̇�e−(4ux) =
9
9X [��e− Vv�e− + (1− fe)(��s+ Vv�s+ + ��s− Vv�s−)] · (Fp−1m�

0)

−(n�0 · Ap�0)[��e− Vv�e− + (1− fe)(��s+ Vv�s+ + ��s− Vv�s−)]

+ ��e−p
�
0 · Lpp�0 − (1− fe)(��s+ − ��s−)p

�
0 · Lpm�

0 ; (23)

�̇�s+(4ux) =
9
9X [��s+ Vv�s+ + fs(��e+ Vv�e+ + ��e− Vv�e−)] · (Fp−1p�0)

+(n�0 · Am�
0)[�

�
s+ Vv�s+ + fs(��e+ Vv�e+ + ��e− Vv�e−)]

+ ��s+m
�
0 · Lpm�

0 + fs(��e+ − ��e−)m
�
0 · Lpp�0; (24)

�̇�s−(4ux) =− 9
9X [��s− Vv�s− + (1− fs)(��e+ Vv�e+ + ��e− Vv�e−)] · (Fp−1p�0)

− (n�0 · Am�
0)[�

�
s− Vv�s− + (1− fs)(��e+ Vv�e+ + ��e− Vv�e−)]

+ ��s−m
�
0 · Lpm�

0 − (1− fs)(��e+ − ��e−)m
�
0 · Lpp�0; (25)
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�̇�j±(4ux) = (n�0 · An�0)[��e+ Vv�e+ + ��e− Vv�e− + ��s+ Vv�s+ + ��s− Vv�s−]

+ (��e+ − ��e−)n
�
0 · Lpp�0 + (��s+ − ��s−)n

�
0 · Lpm�

0 ; (26)

where �̇�j± is the rate of production of geometrically necessary jog density, and fe and
fs are dimensionless functions with the following properties:

06fe[��e+; �
�
e−]6 1; fe[��e+ = 0; ��e−] = 0;

fe[��e+; �
�
e− = 0] = 1; fe[��e+ = ��e−; �

�
e−] =

1
2 ;

06fs[��s+; �
�
s−]6 1; fs[��s+ = 0; ��s−] = 0;

fs[��s+; �
�
s− = 0] = 1; fs[��s+ = ��s−; �

�
s−] =

1
2 :

The functions fe and fs are used to ensure that all of the crystallographic dislocation
densities remain non-negative during the deformation.
The di9erent components of each of the resulting expressions can be analyzed sep-

arately to understand their respective physical signi7cances. Focusing on Eq. (22), the
7rst term in the expression is a measure of the divergence of the dislocation density
4ux. The functional dependence of A on CurlFp translates into a relationship between
�̇�(4ux) and Div [�� Vv�]. Within the brackets of the 7rst line, the 7rst term quanti7es
the di9erence in the right-handed dislocation density entering and exiting the volume
element, and the second term quanti7es the production/removal of edge kink density
resulting from di9erences in the velocity of the screw density along their line lengths.
The fe function is used to apportion the kink accumulation/loss rate between the right-
and left-handed edge densities. The assumption that the kink density always increases
is only valid if the screw dislocations moving through the crystal are kink-free as they
enter the volume.
The next two lines of Eq. (22) quantify the geometric reactions already discussed

in detail in conjunction with Figs. 3–5. The second line of Eq. (22) derives from the
LpA term in Eq. (18). The third line of Eq. (22) derives from the ALpT term in Eq.
(18). The corresponding expressions for �̇�e−, �̇

�
s+, and �̇

�
s− in Eqs. (23)–(25) all follow

from similar physical considerations.
A jog density has not been explicitly incorporated into the model to this point,

mainly because climb of edge dislocations has been ignored, and the density of jogs
formed by statistical interactions of gliding densities is assumed to be much lower than
the edge and screw densities in the slip-system. However, if the jog density evolution
rate is ignored, the equality in Eq. (21) no longer holds. The crystallographic disloca-
tion density space we have employed does not need to be increased in dimension to
account for the geometric jog density in highly symmetric crystals. The jog density on
one slip-system could be alternatively represented by a combination of edge density
on that slip-system and edge density on a cross-slip plane. Fig. 6 shows the geometric
equivalence of a dislocation jog to a combination of edge dislocations on cross-slip
planes. This representation of jog density in highly symmetric crystals maintains the
dimensionality of the crystallographic dislocation density basis while capturing the
geometric evolution of dislocation jogs in the crystal.
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Fig. 6. Reconstruction of a dislocation jog by appropriate lengths of edge dislocations on a pair of slip-systems
sharing a common Burgers vector.

The contribution of the dislocation 4ux divergence to the dislocation density evolu-
tion breaks the symmetry between the polar edge and screw densities, but it’s ambigu-
ous whether the total dislocation density increases as a result. Existing “strain-gradient
plasticity” models used to simulate the material length scale-dependent nature of crys-
tal plasticity either explicitly or implicitly assume that the geometric density augments
the total dislocation density when compared to the dislocation density evolution in a
“homogeneously” deforming crystal. From the evolution Eqs. (22)–(26), the geomet-
ric portion of the dislocation density evolution does not necessarily increase the total
dislocation density. It may also decrease the total density. Whether dislocation den-
sity is accumulated or lost due to the 4ux divergence depends on the participation of
the relative densities to the plastic deformation across the volume and on the sign of
their divergence. If positive edge dislocations are the only species within a volume,
and the plastic deformation 7eld is such that more edge dislocations leave the volume
than enter the volume, the total density in the volume will decrease as a result of
the inhomogeneous plastic deformation. The assumption that GND density “adds” to a
background SSD density is, in general, not justi7ed when viewed from this dislocation
basis.

2.5. Constitutive equations

Along with the constitutive equation relating the stress to the elastic strain in
Eq. (5), the dislocation density evolution equations included several quantities that
need to be constitutively de7ned to complete the model. The average dislocation ve-
locity, the average segment length interaction matrices, and the critical capture radii all
need to be speci7ed. The average dislocation velocity function is most directly related
to the evolution of the stress–strain response of the crystal, while the average segment
length matrices and the critical capture radii determine the statistical evolution of the
dislocation density.
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The dependence of these three quantities may, in general, depend on

Vv� = V̂v�[ VT; �; ��;Fp−T Grad ��;m�
0 ; n

�
0; t

�
0]; (27)

R� = R̂�[ VT; �; ��;Fp−T Grad ��;m�
0 ; n

�
0; t

�
0]; (28)

H�� = Ĥ ��[ VT; �; ��;Fp−T Grad ��;m�
0 ; n

�
0; t

�
0]; (29)

the second Piola–Kirchho9 stress in the intermediate con7guration, VT; temperature, �;
dislocation density state, ��; gradients of the dislocation density in the intermediate
con7guration, Fp−T Grad ��; and the crystal geometry: m�

0 ; n
�
0; t

�
0. The functional de-

pendencies on the stress, temperature, dislocation (material) state, and geometry are
commonplace; however, the dependence of constitutive functions on gradients of the
dislocation density state is not as common and deserves further attention.
Constitutive models have been developed in which the evolution of dislocation den-

sity depends on gradients of the density (Walgraef and Aifantis, 1988; Sluys and
Estrin, 2000). The gradients of the density have been used to introduce di9usion-like
terms into the dislocation density evolution, whereby the 4ux of dislocation density
is proportional to the gradients of the density; however, the evolution of the polarity
of the density is not expressly considered. Dislocation gradient-dependent constitutive
functions have also been proposed within the geometrically necessary dislocation den-
sity framework (Menzel and Steinmann, 2000; Gurtin, 2002). The dislocation gradient-
dependent “con7gurational stresses” in these models arise from proposed free energy
dependencies on the density tensor. Here a stress, dependent in part on the gradi-
ents of the polarity, will be included in the constitutive equations for the average
dislocation velocity in order to incorporate scale-dependent stress–strain response in
the model.

3. Finite element implementation and boundary conditions

The 7nite element implementation of equilibrium 7eld equations is common; there-
fore, it will not be discussed here. However, the dislocation density evolution equa-
tions developed in the previous section involve referential gradients of the dislocation
4ux, and calculating the dislocation density evolution in a 7nite element framework
is non-trivial. Furthermore, the dependence of certain constitutive functions on gradi-
ents of the dislocation density means that each of the dislocation densities must be
treated as temporally evolving and spatially varying 7eld variables. As (nodal) degrees
of freedom within the 7nite element interpolation framework, the dislocation densities
and their gradients would be available to calculate the constitutive response of the
material at the quadrature points within the element.
The discussion here will focus on the implementation of the evolution equation

for ��e+. The evolution equations for the other crystallographic dislocation densities
in the model are similar in nature and would make the discussion redundant. The
total evolution equation for ��e+ from the three di9erent components in the previous
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section is

0 = �̇�e+ − ��s+| Vv�s+|
Vl�s+

− ��s−| Vv�s−|
Vl�s−

+ ��e+�
�
e−Re(| Vv�e+|+ | Vv�e−|)

+
9
9X [��e+ Vv�e+ + fe(��s+ Vv�s+ + ��s− Vv�s−)] · (Fp−1m�

0)

− (n�0 · Ap�0)[��e+ Vv�e+ + fe(��s+ Vv�s+ + ��s− Vv�s−)]

− ��e+p
�
0 · Lpp�0 − fe(��s+ − ��s−)p

�
0 · Lpm�

0 : (30)

The evolution equation may be multiplied by a virtual density, �̃, and integrated over
a volume, V , in the reference con7guration leading to

0 =
∫
V
�̃�̇�e+ dV −

∫
V
�̃
��s+| Vv�s+|

Vl�s+
dV −

∫
V
�̃
��s−| Vv�s−|

Vl�s−
dV

+
∫
V
�̃��e+�

�
e−Re(| Vv�e+|+ | Vv�e−|) dV

+
∫
V
�̃
9
9X [��e+ Vv�e+ + fe(��s+ Vv�s+ + ��s− Vv�s−)] · (Fp−1m�

0) dV

−
∫
V
�̃(n�0 · Ap�0)[��e+ Vv�e+ + fe(��s+ Vv�s+ + ��s− Vv�s−)] dV

−
∫
V
�̃��e+p

�
0 · Lpp�0 dV −

∫
V
�̃fe(��s+ − ��s−)p

�
0 · Lpm�

0 dV: (31)

Eq. (31) cannot be implemented within an FEM framework as it stands because the
average dislocation velocities must be speci7ed in the constitutive functions, and are
not nodal quantities that can be readily interpolated. By using the Divergence Theo-
rem and integrating by parts, the referential space derivatives may removed from the
dislocation density 4uxes and placed on the virtual density. The 7nal weak form of
Eq. (31) becomes

0 =
∫
V
�̃�̇�e+ dV −

∫
V
�̃
��s+| Vv�s+|

Vl�s+
dV −

∫
V
�̃
��s−| Vv�s−|

Vl�s−
dV

+
∫
V
�̃��e+�

�
e−Re(| Vv�e+|+ | Vv�e−|) dV

−
∫
V

9�̃
9X · (Fp−1m�

0)[�
�
e+ Vv�e+ + fe(��s+ Vv�s+ + ��s− Vv�s−)] dV

−
∫
V
�̃(p�0 · An�0)[��e+ Vv�e+ + fe(��s+ Vv�s+ + ��s− Vv�s−)] dV
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−
∫
V
�̃��e+p

�
0 · Lpp�0 dV −

∫
V
�̃fe(��s+ − ��s−)p

�
0 · Lpm�

0 dV

+
∫
S
�̃[��e+ Vv�e+ + fe(��s+ Vv�s+ + ��s− Vv�s−)](F

p−1m�
0) · ns dS; (32)

where S is the surface in the reference con7guration with outward normal, ns, that
encloses the volume, V . Eq. (32) can be implemented within a FEM framework, and
the constitutive functions speci7ed in the previous section can be evaluated at the
volume integration points. In this form, the GND-related terms of the evolution equation
are integrated without calculating any directional derivatives of the dislocation density
4ux, or any gradients of the plastic strain rate. Furthermore, integration of the system
of equations shows that additional boundary conditions are needed to complete the
boundary value problem when a polarity in the dislocation density is considered.
Dislocation density/density-4ux boundary conditions must be speci7ed to solve the

dislocation density evolution equations. The additional boundary conditions in the
continuum model can be related to the type of dislocation boundary conditions that
are applied to discrete dislocation dynamics simulations (Nicola et al., 2003). The
density-4ux boundary conditions may be placed only on densities whose velocity vec-
tor pierces the surface. A dislocation density-4ux across a surface may be prescribed to
set the rate of plastic deformation associated with that dislocation density on the surface
of the deforming volume. A zero dislocation density-4ux boundary condition, with a
non-zero density at the boundary, is equivalent to bounding the plastically deforming
volume by an impenetrable obstacle to dislocation glide.
Conversely, the surface may be prescribed to act as a dislocation density surface

source or sink. If a crystal on one side of the boundary surface deforms more easily
than the other, it may act as a source of one dislocation density and a sink for other
types of dislocation densities in the less deforming grain. Dislocations pile up at grain
boundaries as a result of such processes in which one dislocation density becomes
abundantly available at the grain boundary while its polar counterpart is absent. The
behavior of free surfaces is the extreme limit of this type of behavior in which the
vacuum may be considered as a medium with an in7nite dislocation mobility such
that it acts as a sink for density but not as a source. In the limit, a free surface
with such properties would lead to a “zero” dislocation density boundary condition
as any dislocation incident on the boundary would be quickly absorbed. The “zero
density” and “zero density-4ux” boundary conditions are two extremes that internal
grain boundaries may exhibit. The behavior of more realistic grain boundaries could
be incorporated through mixed dislocation density/density-4ux boundary conditions.
The formulation presented here applies to single crystals only. If the deformation be-

havior of polycrystals is to be modeled using this framework, the essential physics of
grain-boundary dislocation density interactions must be incorporated. Grain-boundaries
may absorb or transmit incoming dislocations and may emit density, acting as po-
tential sources as well. These processes have been studied numerically using molec-
ular dynamics techniques (de Koning et al., 2002), but not with continuum models.
Grain-boundaries in continuum crystal plasticity models have been treated as surfaces
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of lattice discontinuity, but their interaction with dislocation 4uxes crossing them has
not been explicitly considered. The 7nite element implementation of the dislocation
density evolution equations allows the interaction of dislocation densities and grain
boundaries to be explicitly modeled through dislocation density/density-4ux boundary
conditions.
If the representative volume element is taken to be large, such that the statistical

terms dominate the total evolution of the dislocation density, a valid approximation
would be to ignore the components of the evolution equations related to the disloca-
tion 4ux divergence. Eliminating the 4ux divergence components from the evolution
equations removes the surface term in Eq. (32) and leaves the volumetric terms in
the 7rst two lines of the equation. With the removal of the surface term, boundary
conditions on the dislocation density/density-4ux can no longer be applied. Further-
more, the traction/displacement boundary conditions are the only boundary conditions
needed to solve the boundary value problem uniquely, given the approximation of an
“all-statistical” dislocation density state within the volume.

4. Example: simple shear of constrained and unconstrained layers

To illustrate the behavior of the model, a series of 7nite element simulations on a
simpli7ed crystal geometry will be conducted. The purpose of the simulations is to
demonstrate how the system of equations behaves for a simple system and to evaluate
the ability of the model to capture scale-dependent featgres of crystal plasticity resulting
from slip inhomogeneity and from di9erent dislocation density/density-4ux boundary
conditions. The simulations are not intended to represent any real crystalline material,
but rather are intended to provide insight as to how the model could re4ect the behavior
of such materials.

4.1. Example geometry and constitutive equations

A two-dimensional plane-strain idealization of a single crystal will be employed.
The idealized crystal geometry is depicted in Fig. 7; it consists of a single slip-system
with three dislocation densities: a right-handed edge density, �e+; a left-handed edge
density, �e−; and a screw dipole density, �s. The screw density is quanti7ed only in
dipole (non-polar) form because the initial polar screw densities were set equal and
the slip-system geometry in the plane-strain idealization restricts the screw density to
remain non-polar. The evolution equations in this system of reduced dimensionality
become

�̇e+ =
�s| Vvs|
Vls

− �e+�e−Re(| Vve+|+ | Vve−|)

− 9
9X (�e+ Vve+ + fe�s Vvs) · (Fp−1m0); (33)
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Fig. 7. Dislocation geometry in the reference con7guration of the two-dimensional idealized crystal with
one-slip-system. The edge dislocations move in the plane of deformation creating screw dislocation dipoles
that move in and out of the plane in turn creating edge dislocation dipoles.

�̇e− =
�s| Vvs|
Vls

− �e+�e−Re(| Vve+|+ | Vve−|)

+
9
9X (�e− Vve− + (1− fe)�s Vvs) · (Fp−1m0); (34)

�̇s =
2�e+| Vve+|

Vle+
+

2�e−| Vve−|
Vle−

− (�s)2Rs| Vvs|: (35)

The Burgers vector and the slip plane normal are both in the plane of deformation, and
the orientation of the slip-system relative to the global coordinate system is given by
the angle ’0 in the reference con7guration. While the edge density glides in the plane
of deformation, the screw density glides in and out of the plane. Screw dislocation
density has been ignored in other idealized two-dimensional crystal models (Nicola
et al., 2003), but in this model, the screw dislocation density is needed to account
for the continuing generation of statistical (dipole) edge density, and thus cannot be
neglected.
The constitutive functions adopted for the idealized crystal are

Vve+ = Vve+ = Vvs = v0

( |m0 · VTn0 − B|
c$|b|√�e+ + �e− + �s

)1=m

sign(m0 · VTn0 − B); (36)
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B= a$|b| (F
p−T Grad[�e+ − �e−]) ·m0

�e+ + �e−
; (37)

Hee = &

[
1 1

1 1

]
; (38)

Hes = HT
se = &

[
1

1

]
; (39)

Hss = &; (40)

Re = Rs = '|b|; (41)

fe = 3
(

�e+
�e+ + �e−

)2

− 2
(

�e+
�e+ + �e−

)3

; (42)

where v0 is a reference velocity, m is the strain rate sensitivity, $ is the isotropic
shear modulus, c is the strength associated with dislocation forest interactions, B is the
con7gurational stress, a is the strength coeWcient associated with the con7gurational
stress, & is a constant detailing the amount of loop nucleation occurring during the
course of plastic deformation, and ' is scaling factor for the capture radii. The values
of the material parameters for this idealized crystal may be found in Table 1.
The constitutive form of the stress, B, resolved on the slip plane in Eq. (37) employs

a proportional relationship between the stress and the gradient of the dislocation polar-
ity in the slip direction and an inversely proportional relationship with the total edge
density. The constitutive form is taken from the work Groma et al. (2003) in which a
gradient dependent stress contribution is derived from analysis of dislocation pair corre-
lations in simple two-dimensional discrete dislocation dynamics simulations. The result
of their derivation is an internal stress with the same dislocation density dependence as
used in Eq. (37). More general forms for these gradient dependent stresses have been

Table 1
Material parameters used for the idealized two-dimensional crystal with a single slip-system

C11 = 108 GPa
C12 = 61:3 GPa
C44 = 28:5 GPa
$ = 25:0 GPa
v0 = 1× 10−9 m=s
m = 0:01
c = 0:3
a = 0:5
& = 0:001
' = 40
|b| = 2:863 YA
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proposed through the framework of Menzel and Steinmann (2000). By associating a
free energy of the crystal with tr (ATA), Menzel and Steinmann derive a con7gura-
tional stress tensor that is a function of Curl (A), and work-conjugate to the rate of
plastic deformation. The Curl of Nye’s tensor is composed of the gradients of polar
dislocation densities in directions perpendicular to their tangent line directions, such as
the one used in this treatment. A general form of these con7gurational stresses with
the dipolar dislocation density in the denominator has not been proposed, but rather
additional material constants with units of length have been considered (Bittencourt
et al., 2003).
The system of equations was implemented in ABAQUS/Standard using the user-

element interface (ABAQUS, 2003). A generalized bi-linear plane strain element was
implemented with 7ve nodal degrees of freedom: two displacement and three density
degrees of freedom. A streamline upwinding technique was used to stabilize the con-
vection part of the density evolution equations. As the size of these 7nite elements
decreases, the convective part begins to dominate the dipolar reaction part of the dis-
location density evolution equations, and convection-dominated 4ows are known to
be numerically unstable in central di9erence schemes, as is common in 7nite element
methods. The elements were fully streamline upwinded using the anisotropic di9usion
technique described by Brooks and Hughes (1982).
Two di9erent boundary value problems were considered using this idealized crys-

talline geometry: simple shear of a constrained thin 7lm and simple shear of a thin 7lm
with quasi-free surface boundary conditions. A summary of the traction/displacement
and dislocation density/density-4ux boundary conditions for both of the boundary value
problems may be found in Table 2. As discussed in the previous section, the zero sur-
face density boundary condition may be applied to model the limiting behavior of a
free surface; however, in the quasi-free surface boundary condition applied here, the
dislocation density on the surface is kept constant during the course of the simulation.
The boundary condition was applied in this manner so as to not introduce any gradi-
ents in the initial dislocation density 7eld. As the simulation proceeded, the constant
surface density boundary condition became an increasingly better approximation to the
free surface boundary condition as the dislocation density in the interior of the 7lms
multiplied by several orders of magnitude.
In both sets of simulations, the slip system was oriented with ’0 =−90◦ such that

the edge dislocation densities move vertically in the unrotated lattice, and a constant
shear rate of �̇=10−3=s was applied to the layers for 50 s of simulation time, reaching
a 7nal shear strain level of 5%. The initial dislocation density distribution in the thin
7lms was homogeneously distributed with �e+=�e−=1011 m−2 and �s=2×1011 m−2,
and a common average segment length of Vl� = 1 �m was assigned to all the initial
dislocation densities. Five di9erent thin-7lm thicknesses were simulated: 3, 10, 30,
100, and 300 �m thick 7lms were considered for each boundary condition case. The
element size in each of the simulations was held constant at 100 nm in order to cap-
ture any boundary layers that developed in all of the di9erent 7lm thicknesses. The
stress/strain behavior of the thin 7lms, the accumulated plastic slip, and the dislocation
polarity pro7les are investigated to show the overall behavior of the model for these
two boundary value problems.
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Table 2
A summary of the traction/dislplacement ((=u) and dislocation density/density-4ux (��=�� Vv�) boundary con-
ditions imposed on the thin 7lms for the simple shear simulations with 7xed surfaces and quasi-free surfaces

Fixed surface boundary conditions

u1[X1 = w; X2; t] = u1[X1 = 0; X2; t]
u2[X1 = w; X2; t] = u2[X1 = 0; X2; t]
u1[X1; X2 = h; t] = u1[X1; X2 = 0; t] + �̇t
(2[X1; X2 = h; t] = (2[X1; X2 = 0; t] = 0
u1[X1 = 0; X2 = 0; t] = 0
u2[X1 = 0; X2 = 0; t] = 0
�e+[X1 = w; X2; t] = �e+[X1 = 0; X2; t]
(�e+ Vve+)[X1; X2 = h; t] = (�e+ Vve+)[X1; X2 = 0; t] = 0
�e−[X1 = w; X2; t] = �e−[X1 = 0; X2; t]
(�e− Vve−)[X1; X2 = h; t] = (�e− Vve−)[X1; X2 = 0; t] = 0
�s[X1 = w; X2; t] = �s[X1 = 0; X2; t]

Quasi-free surface boundary conditions
(1[X1 = w; X2; t] = (1[X1 = 0; X2; t] = 0
u2[X1 = w; X2; t] = u2[X1 = 0; X2; t]
u1[X1; X2 = h; t] = u1[X1; X2 = 0; t] + �̇t
(2[X1; X2 = h; t] = (2[X1; X2 = 0; t] = 0
u1[X1 = 0; X2 = 0; t] = 0
u2[X1 = 0; X2 = 0; t] = 0
�e+[X1 = w; X2; t] = �e+[X1 = 0; X2; t]
�e+[X1; X2 = h; t] = �e+[X1; X2 = 0; t] = �e+[X1; X2 = 0; t = 0]
�e−[X1 = w; X2; t] = �e−[X1 = 0; X2; t]
�e−[X1; X2 = h; t] = �e−[X1; X2 = 0; t] = �e−[X1; X2 = 0; t = 0]
�s[X1 = w; X2; t] = �s[X1 = 0; X2; t]

4.2. Results of thin =lm simulations

The stress/strain behavior for the constrained thin 7lm with the zero density 4ux
boundary conditions, depicted in Fig. 8, shows a signi7cant length-scale dependence
in material response. As the thickness of the 7lm decreases, the strength of the 7lm
increases. This is similar to the behavior experimentally observed in thin-wire torsion
(Fleck et al., 1994) and micro-beam bending (StMolken and Evans, 1998) in which the
normalized strength increases with decreasing specimen size; however, in this mode of
deformation, there is no net geometric dislocation content within the layer, in contrast
to those deformation modes. The thin 7lm does not deform homogeneously; however,
Burgers circuits taken around subsections of the 7lm do yield di9erent net Burgers
vectors.
The inhomogeneity of the deformation is depicted in the contour plot of the accu-

mulated plastic slip on the single slip-system found in Fig. 9. In the 3 and 10 �m thick
7lms, the region of the 7lm away from the boundaries plastically deforms more than
the regions near the boundary of the 7lm. In the thicker 7lms, the plastic deformation
forms a distinct pattern, with a spacing between the shear concentrations on the order
of 7:5 �m that remains constant as the thickness of the 7lms increases. In the case of
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Fig. 8. Thickness-averaged shear stress vs. shear strain curves for simple shear of constrained thin 7lms of
an idealized two-dimensional single crystal with one-slip-system for 7ve di9erent 7lm thicknesses.

the 30 �m 7lm, the shear concentration is strongest in the center, and the concentration
is strongest in the band closest to the boundary for the thicker 7lms. Di9erences in the
relative position of the strongest shear concentration may be due to the superposition
of the heterogeneous boundary layers in the thinner section.
Since the gradients in the plastic deformation occur in the slip direction, a polarity in

the dislocation density develops on either side of the shear concentrations. The polarity
of the dislocation density for the constrained thin 7lm is given in Fig. 10. The polarity
of the density in this simpli7ed one-slip-system model is just the di9erence between
the positive and negative edge densities. With the application of stress and orientation
of the slip-system with ’0 = −90◦, the positive edge dislocation density moves from
bottom to top, while the negative edge density moves from top to bottom. As a re-
sult, positive edge density piles up against the constrained top surface, while negative
edge density piles up against the bottom, in both cases due to the zero dislocation
density-4ux boundary conditions imposed. The pile-ups are clearly evident in the 3
and 10 �m 7lms, and also appear near the boundaries in the thicker 7lms as well. The
thicker sections also develop polarities in the edge density on either side of the plastic
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Fig. 9. Contour plots of the accumulated plastic slip for in the constrained thin 7lms for each 7lm thickness,
at an average shear strain of 5%.

concentrations, consistent with the 4ux divergence of the gliding densities. The spacing
of the shear concentrations changes during the simulations due to the evolving dislo-
cation density 7eld, and the dependence of the continuing growth of the density and
of the con7guration stress on that 7eld. Had the single slip-system been oriented with
’0 = 0, the gradients of the plastic deformation would have been in the direction of
the slip plane normal, and no polarity in the dislocation density would have developed,
due to the plastic slip gradients shown in Fig. 9.
The stress/strain behavior of the thin 7lms with the quasi-free surface boundary con-

ditions is shown in Fig. 11 for the 7ve di9erent 7lm thicknesses considered. Unlike the
behavior for the constrained 7lm, the stress/strain response for the di9erent thicknesses
does not show an appreciable length-scale dependence. Although the di9erent curves
do not overlap, the di9erence in the response is small when compared to the di9erences
observed in the simulations with the constrained surfaces.
The accumulated plastic slip pro7le for the thin 7lms with quasi-free surfaces on

top and bottom, depicted in Fig. 12, shows that deformation is again inhomogeneous.
In the 3 �m 7lm, the regions near the surfaces of the thin 7lm plastically deform
more than the interior, and in each of the thicker sections, the 7lms have a region of
increased slip near the surface. In the thicker 7lms, the deformation in the interior of
7lms shows inhomogeneity in the plastic slip. The shear concentrations again show the
same regular spacing of 7:5 �m that was observed in the simulations with constrained
boundaries.
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Fig. 10. Contour plots of the polarity of the dislocation density 7eld in the constrained thin 7lms for each
7lm thickness, at an average shear strain of 5%.

The gradients of the plastic slip led to the development of polarity in the dislocation
density, as in the previous case. Fig. 13 shows the distribution of the dislocation
polarity in the 7lms for each thickness. Unlike the previous case, there are no pileups
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Fig. 11. Thickness-averaged shear stress vs. shear strain curves for simple shear of thin 7lms of an idealized
two-dimensional single crystal with one-slip-system and with quasi-free surface boundaries, for 7ve di9erent
7lm thicknesses.

of edge dislocation density at the boundaries. In fact, the polarity of the edge dislocation
density at the surfaces is required to be zero, due to the imposed initial boundary and
density conditions. Similar to the previous case, a net dislocation polarity was observed
on either side of the shear concentrations, consistent with the 4ux divergence of the
dislocation densities. The symmetry of the dislocation polarity contour plots shown in
both Figs. 10 and 13 results in no net geometric content in the thin 7lms.

4.3. Discussion

The two sets of simulations have implications as to the net in4uence of grain bound-
aries on the strength of deforming polycrystals. The two dislocation density/density-4ux
boundary conditions applied to the thin 7lms are extremes for the behavior of grain
boundaries within a polycrystal. The zero 4ux boundary condition corresponds to the
case when a neighboring grain does not plastically deform, and the quasi-free surface
boundary condition corresponds to the case when a neighboring grain deforms to such
an extent as to draw dislocation density from its neighbors. The behavior of real grain
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Fig. 12. Contour plots of the accumulated plastic slip in the thin 7lms with quasi-free surface boundaries
for each 7lm thickness, at an average shear strain of 5%.

boundaries in a polycrystal will lie somewhere between these two extremes. The con-
strained thin 7lm was observed to signi7cantly strengthen as the thickness of the 7lm
decreased, while the quasi-free surface bounded thin 7lm did not soften, but rather
showed very little length scale-dependence in its mechanical response. As a result, the
net e9ect of grain boundaries in a polycrystalline simulation would be to strengthen
the response as the grain dimension is decreased.
The strengthening with decreased layer size observed in the simulations results de-

spite the symmetry in the material model and in the simulation geometry because the
symmetry is broken by the boundary conditions applied. The scale-dependent material
behavior of the model is captured with the evolution of the dislocation polarity and the
con7gurational stress in Eq. (37). Eliminating these two elements from the material
model would render the formulation scale independent. The treatment of the evolution
of the dislocation polarity is symmetric in that the polar density may either increase
or decrease the local total density, depending on the 4ux divergence of each mobile
dislocation species. The con7gurational stress is also perfectly symmetric and may
both augment or decrement the elastic stress, depending on the direction of the density
gradients. While other boundary conditions may break the symmetry of the model,
leading to a net softening response with decreasing dimension, the symmetry-breaking
associated with grain boundaries should strengthen with decreasing dimension, as ev-
idenced in the simple simulations conducted in this example. The magnitude of the
change in the material strength with decreasing length scale is proportional to the
a-parameter in Eq. (37) that scales the resistance due to gradients in the polarity of
the dislocation density.
The simulations conducted were of a geometrically unrealistic crystal, and despite the

simplicity of the simulation geometry, interesting heterogeneities developed. Essential
elements of the constitutive model should lead to similar behavior for more complex
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Fig. 13. Contour plots of the polarity of the dislocation density 7eld in the thin 7lms with quasi-free surface
boundaries for each 7lm thickness, at an average shear strain of 5%.

two- and three-dimensional polycrystals with multiple slip-systems. The simplicity of
this system introduced only three dislocation density nodal degrees of freedom in the
7nite element implementation. Similar implementation of an fcc crystal would require
at least 48 dislocation density nodal degrees of freedom evolving simultaneously. The
7nite element size could be larger than the 100 nm employed in this example because
the boundary layers anticipated from such simulations would be less sharp. Nonetheless,
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the computational cost of such a simulation would be too great to justify using a model
of this complexity and detail in macroscopic calculations. However, the model would
be advantageous within a multi-scale modeling framework in bridging the gap between
dislocation dynamics simulations and continuum polycrystal plasticity simulations with
volume elements containing tens of grains.

5. Conclusion

A dislocation density-based model for continuum crystal plasticity has been formu-
lated that incorporates a material length-scale dependence in its framework. The model
is developed such that it can be applied to simulate the behavior of crystals at di9er-
ent length scales by incorporating the spatio-temporal evolution of both statistical and
geometric density. The statistical density evolves through generation and annihilation
mechanisms. As dislocation line segments glide, new dislocation line segments must
be generated to maintain continuity of the dislocation line structure. The rate of growth
of the density is proportional to the number density of mobile segments and their to
average velocity. The annihilation of density occurs in a net Burgers vector-conserving
manner by considering the recombination of polar opposite dislocation densities leaving
behind perfect crystal. The rate of density removal is proportional to the two reacting
densities, their relative velocity, and a critical distance of self-capture.
The generation and annihilation portions of the general density evolution equations

conserve the net Burgers vector of the volume in which they occur; however, the
divergence of dislocation density 4ux leads to a net change in the Burgers vector
of the volume. Inhomogeneous plastic deformation may lead to an accumulation or
loss of density within the volume, depending on the direction of the gradients of
the plastic deformation and the dislocation densities involved. Further homogeneous
plastic deformation in a volume that has a non-zero dislocation density tensor may
change the value of the density tensor through reactions between the glide density and
the geometric forest density.
The integration of the system of equations demonstrated that, in addition to the trac-

tion/displacement boundary conditions needed to solve stress equilibrium, dislocation
density/density-4ux boundary conditions had to be included to solve the dislocation
density evolution equations. The additional boundary conditions arose from the 4ux
divergence component of the dislocation density evolution equations, and if the dis-
location density was assumed to be completely statistical in nature, approximating
the condition in large representative volumes, then the additional dislocation density/
density-4ux boundary conditions could be ignored.
An idealized two-dimensional crystal with a single slip-system was implemented

into a commercial 7nite element package and used to simulate the mechanical behav-
ior of thin 7lms under conditions of simple shear, with rigid and quasi-free surface
boundaries. The simulations showed that the strength of the 7lms with rigid boundaries
increased as the thickness of the 7lm decreased while the strength of the 7lms with
the quasi-free surface boundary conditions on density did not vary signi7cantly with
thickness. The plastic deformation in both sets of simulations was inhomogeneous for
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all of the di9erent thicknesses, and a regular of spacing of 7:5 �m developed between
internal regions of increased slip.
The formulation and the simulations provide guidance as to the explicit modeling of

grain boundaries in polycrystalline materials and as to their net e9ect on the mechanical
behavior of the aggregate. The volume integration of the dislocation density evolution
equations suggests that grain boundaries could be modeled using surface elements with
traction-displacement, dislocation density/density-4ux constitutive equations. The in4u-
ence of grain boundaries on the mechanical response of the aggregate will lie between
the two extreme boundary conditions simulated in the simple shear examples. The net
e9ect of the grain boundaries will be to strengthen the polycrystal, and the strength will
increase as the grain dimension decreases. Future work will focus on the development
of constitutive equations for the interaction of gliding dislocation densities incident on
grain boundaries, and on the development of more robust numerical techniques for
solving the dislocation density evolution equations.
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