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Abstract

Dislocations are the most important material defects in crystal plasticity, and although disloca-
tion mechanics has long been understood as the underlying physical basis for continuum crystal
plasticity formulations, explicit consideration of crystallographic dislocation mechanics has been
largely absent in working constitutive models. Here, dislocation density state variables evolve
from initial conditions according to equations based on fundamental concepts in dislocation me-
chanics such as the conservation of Burgers vector in multiplication and annihilation processes.
The model is implemented to investigate the polyslip behavior of single-crystal aluminum. The
results not only capture the mechanical stress=strain response, but also detail the development
of underlying dislocation structure responsible for the plastic behavior. ? 2002 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Dislocations, through their conservative motion on slip planes, provide a mechanism
for plastic deformation in crystals, and interactions between dislocations account for
much of the strength of crystalline materials. Yet dislocation mechanics has played a
relatively small role in continuum crystal plasticity models. Although the physical basis
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for all crystal plasticity formulations is rooted in dislocation mechanics, dislocations,
in the form of densities, rarely appear explicitly in working models.
Internal state variables provide a powerful continuum constitutive modeling frame-

work. In continuum crystal plasticity, the material state is most often described by
a set of parameters representing slip-system-based deformation resistance (strength),
rather than by dislocation density (structure). The strengths evolve with plastic slip
according to a prescribed hardening rule. Much of crystal plasticity research has fo-
cused on developing phenomenological hardening rules to describe the plastic behav-
ior of crystals (Franciosi and Zaoui, 1982; Follansbee and Kocks, 1988; Bassani and
Wu, 1991; Qin and Bassani, 1992; Kothari and Anand, 1998; Marin and Dawson,
1998; Nemat-Nasser et al. 1998a,b; Balasubramanian and Anand, 2000). Given the
complex relations between dislocation structure and deformation resistance, it is not
surprising that the successes of traditional approaches to the development of phe-
nomenological relations describing the evolution of deformation resistances have been
circumscribed.
Strength-based crystal plasticity models have successfully predicted stress=strain

response and texture evolution of polycrystals for a wide range of strain rates and tem-
peratures (Mathur and Dawson, 1989; Bronkhorst et al., 1992; Beaudoin et al., 1994;
Nemat-Nasser et al., 1998a,b; Kumar and Dawson, 1998). However, in detailed inspec-
tions of simulation results, the predictions of strength-based crystal plasticity models
have failed to capture the local plastic response (Becker and Panchanadeeswaran, 1995),
and they have been mostly unsuccessful in capturing the orientation dependence of the
stress=strain behavior of single crystals (Kumar and Yang, 1999). Also, crystallographic
strengths cannot be directly observed, and validation of hardening proposals requires
experimental data that is diHcult to obtain (Kocks and Brown, 1966; Bassani and Wu,
1991).
Underlying the phenomenology of strength-based models are dislocation processes

governing the evolution of the strength variables. The crystallographic strengths quan-
tify the resistance that gliding dislocations encounter due to their local and non-local
interactions with the rest of the dislocation density and other barriers as they move
across slip planes. The evolution of this resistance is determined mainly by the
generation and annihilation of dislocation density during plastic deformation. A few
constitutive models use dislocation densities as internal state variables (Cuitiño and
Ortiz, 1992, 1993). These models have successfully captured the orientation depen-
dence of the stress=strain behavior in copper and L12 intermetallic single crystals;
however, the evolution of the dislocation state variables again follows phenomeno-
logical constitutive laws similar to those developed for strength-based internal vari-
able formulations. Furthermore, only one scalar density is quantiLed for each slip
system, and geometric aspects of the dislocation density on that system are not
captured.
There are many advantages in adopting an internal state variable formulation for con-

tinuum crystal plasticity based on dislocation density. Transmission electron microscopy
allows for direct observation of dislocation lines and structures in thin foils, and newer
techniques such as orientation imaging microscopy can probe geometric properties of
dislocation densities and the resulting lattice curvature (Adams et al., 1993; Sun et al.,
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2000). In contrast, direct observation of slip-system strength is not possible, so strength
must be inferred from diHcult latent hardening experiments.
Dislocation mechanics provides physical laws and conservation equations on which

to base density evolution equations, directly. The strength of the state can be thought of
as a projection of the dislocation (structural) state of the material in stress space. With
suHcient information concerning details of such structure=strength projections, along
with the underlying dislocation-mechanics-based models of structural evolution, the
phenomenological hardening relationships most often used in continuum formulations
can be supplanted. Furthermore, recent experiments have demonstrated that many as-
pects of the length-scale dependence of plastic behavior in crystalline materials (Fleck
et al., 1994; StMolken and Evans, 1998; Nix and Gao, 1998) relate to geometrically
necessary dislocations, polar dislocation densities needed to maintain lattice compati-
bility and impose lattice curvature (Ashby, 1970). Incorporation of geometrically nec-
essary dislocation density into working plasticity models has been accomplished using
hybrid strength-density models (Dai et al., 2000; Arsenlis and Parks, 2000) or phe-
nomenological extensions of pre-existing strength-based models (Fleck et al., 1994;
Shu and Fleck, 1999; Acharya and Beaudoin, 2000). Construction of a general [dipo-
lar] dislocation-density-based state variable model for scale-independent (macroscopic)
crystal plasticity, as proposed here, has the advantage of seamless generalization to
encompass scale-dependent material behavior by accounting for the evolution of polar
dislocation populations (Arsenlis and Parks, 1999).
A compelling argument for a continuum crystal plasticity formulation based on dis-

location density internal variables is the potential to incorporate it within a multi-scale
modeling framework. Recently, dislocation dynamics has emerged as an important
tool in modeling the motion, evolution, and interaction of discrete dislocations (Kubin
et al., 1992; Van der Giessen and Needleman, 1995; Kubin et al., 1998; Zbib et al.,
1998; Schwarz, 1999; Shenoy et al., 2000; Groma and BakQo, 2000); however, to date
dislocation dynamics has been limited to extremely small plastic strains, � ≈ 10−3, and
relatively small total densities, � ≈ 1014 m−2. Yet virtually none of the progress in dis-
location dynamics has translated into continuum crystal plasticity formulations. The sta-
tistical results available from many-body dislocation dynamics simulations have largely
been under-exploited in terms of the evolution of the dislocation density, the mean
mobility of the density, and the mean properties of the dislocation population over the
history of deformation. While it is unclear how such information could be incorporated
into strength-based constitutive models of continuum crystal plasticity, a dislocation
density-based model has the potential to connect discrete dislocation simulations to
continuum plasticity by capturing the evolution of the density and its mean properties.
Here we develop a continuum constitutive model based on internal variables charac-

terizing crystallographic dislocation density. The dislocation densities evolve in
accordance with simple laws in dislocation mechanics, such as the continuity of dis-
location line and conservation of Burgers vector. With evolution laws for the struc-
tural state variables introduced, the slip-system deformation resistances are taken to
be functions of the current dislocation state, obviating the need for phenomenological
hardening equations. The model is applied to the orientation-dependent tensile behavior
of single-crystal aluminum at room temperature.
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2. Constitutive model

The dislocation density internal variable formulation may conceptually be separated
into two parts: the kinematics and kinetics of crystallographic slip, resulting plastic
deformation, and lattice reorientation; and the kinematics and kinetics associated with
evolution of the dislocation density state in the crystal. The two parts are intimately
related. The dislocation state aRects the plastic response of the crystal, and the plastic
response of the crystal drives the evolution of the dislocation state. In this section,
basic relationships for crystallographic slip and dislocation density evolution, as well
as links between them, are developed.

2.1. Single-crystal plasticity

The constitutive formulation of crystal plasticity described below is based on the
developments of Asaro and Rice (1977). The deformation gradient, F, mapping a
reference conLguration of the material to the deformed conLguration, is multiplicatively
decomposed into elastic (Fe) and plastic (Fp) factors, such that

F= F
e
F
p
; (1)

where Fp, describing the eRects of plastic deformation on an unrotated and undeformed
crystal lattice, maps neighborhoods of the original conLguration to an intermediate
conLguration, and Fe maps neighborhoods of the intermediate conLguration to the
deformed conLguration. Typically, Fe involves small elastic stretches and arbitrary
rigid-body rotations. With plastic deformation, Fp evolves according to the Tow rule

Ḟ
p
= L

p
F
p
; (2)

where Lp is the plastic Tow rate. In crystals, Lp is comprised of the superposition of
the resolved crystallographic plastic shear rates, �̇�, such that

L
p
=
∑
�

�̇�m�
0 ⊗ n�0 ; (3)

where m�
0 and n

�
0 are unit lattice vectors in the reference conLguration corresponding

to the slip direction and the slip plane normal direction, respectively, for a given slip
system �.
An elastic strain measure, Ee, corresponding to the Cauchy–Green strain with respect

to the intermediate conLguration, is deLned as

E
e ≡ 1

2{C
e − I2}; (4)

where Ce = FeTFe, and I2 is the second-order identity tensor. The stress measure VT
is related to the Cauchy stress, T, through the transformation VT = det(Fe)Fe−1TFe−T.
Stress is related to elastic strain by

VT=L[E
e
]; (5)

where L is the fourth-order tensor of crystallographic elastic moduli.
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Connections between the single-crystal plasticity framework and dislocation-density
state variables are made by (i) quantifying the eRects of stress and density on the
mobility of the densities, (ii) relating the conservative glide motion of the crystallo-
graphic densities to the shear rates in Eq. (3), and (iii) describing the evolution of
dislocation density arising from the mobility of density.

2.2. Dislocation density mechanics

With the exception of Eq. (5), the relationships of the previous section were funda-
mentally based on the conLgurational geometry of a plastically deforming crystalline
body. These considerations focused constitutive modeling to a simple linear relationship
between stress and elastic strain measures. The remaining complexity lies in predict-
ing the crystallographically resolved plastic strain rates, �̇�, for representative values of
stress and material state, as well as deLning the evolution of the state. The intrinsic
geometry of dislocation density mechanics provides a framework for development of
simple constitutive equations for density evolution and crystal plasticity.
The essential geometry of a dislocation line is its Burgers vector, b, and unit tangent

vector, t. The Burgers vector gives the slip displacement in the lattice due to the
line defect. Together, the two vectors give the polarity, right- or left-handed, of the
dislocation line as well as its character (screw, edge, or mixed). The Burgers vector
takes only discrete values related to the crystal lattice, whereas t may take any direction.
The arrangement of dislocation lines in a crystal is not arbitrary: conservation of

Burgers vector and continuity of dislocation line must be maintained. Dislocation lines
cannot terminate within an otherwise perfect crystal. Rather, they must end on a free
surface, a grain boundary, another set of dislocations, or some other type of defect.
If a dislocation ends on another set of dislocations at a node, the combined Burgers
vector of the set, be it one line or many, must have the same Burgers vector as the
Lrst dislocation, thereby conserving the total Burgers vector.
A density of dislocation lines, deLned as the total length of dislocation line (of

speciLed Burgers and tangent vectors) within a unit volume, must follow the same
physical laws governing individual lines. In representing a group of dislocation lines
as a density, information about the spatial correlation of lines within the volume is lost.
However, conservation of Burgers vector can be extended to a density of dislocations
(Arsenlis and Parks, 1999), restricting the spatial correlation of dislocation densities.
Within the current internal variable framework, this conservation principle forms a basis
for the density evolution equations.
On a macroscopic scale, and at ambient temperatures, the evolution of dislocation

density is controlled by two physical processes: the generation of new density, and
the annihilation of existing density. Both processes rely on conservative motion of
dislocations through the crystal. Generation of density can be considered in two parts:
nucleation and growth. Nucleation of density is controlled by the presence of discrete
sources such as the famous Frank–Read source, and other such conLgurations whereby
planar dislocation loops are nucleated. Since dislocation density does not capture the
spatial correlation of dislocation lines within a reference volume, it also does not
correlate with the existence (or not!) of the various source conLgurations within the
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volume. We assume that such sources do exist if non-zero dislocation density is found
within the volume. Expansion of these (pre-)nucleated loops by dislocation glide will
be primarily responsible for the increase of dislocation line length within the volume
(“growth” of density) and for the corresponding crystallographic shear resulting from
their collective motion. The annihilation of density will be primarily controlled by close
encounters of dislocation line segments of the same character but opposite polarity.
The line segments are eliminated, reducing the total density. This density recovery
mechanism forms the basis for annihilation of density in the model.

2.2.1. Generation of dislocation density
During crystallographic slip, dislocations move across the slip planes to accomplish

the plastic deformation, but in doing so, they must increase the total dislocation line
length in order to maintain line continuity and conserve Burgers vector. The simplest
illustration of these concepts is the expansion of a planar dislocation loop of area As,
embedded within representative volume V . The plastic shearing rate �̇ due to expansion
of the loop is

�̇=
Ȧs|b|
V

; (6)

where Ȧs is the rate of change in the slipped area within the loop (Argon, 1996).
Along with the increase in slipped area, the perimeter also increases, generating more
dislocation density within the volume. Changes in dislocation line length cannot be
expressed in terms of the change in the slipped area because diRerent conLgurations
of the boundary can contain equal areas (and therefore equal shears), but unequal
perimeters (and therefore unequal dislocation densities). However, if the outward dis-
placement of the dislocation line were known as a function of its Burgers vector
and tangent, then not only would the change in the slipped area be known, but so
would the increase of the dislocation length, as a function of Burgers vector and
tangent.
The continuous space of dislocation tangents makes such a general description dif-

Lcult. If the tangent space is restricted to a discrete set of values, the topology of
dislocation loops within the crystal becomes Lxed, and expressions for rates of increase
of discrete dislocation density become tractable. Consider the idealized expanding dis-
location loop in Fig. 1. This discretization of tangent space is by no means the only
possible discretization of a planar loop, but it is the simplest discrete loop geometry
able to motivate equations for dislocation generation. The loop is composed of posi-
tive and negative edge dislocation segments of equal length, and positive and negative
screw dislocation segments, also of equal length, arranged to form a closed loop. This
loop discretization has been previously described (Lardner, 1974); however, previously
developed density evolution equations diRer signiLcantly from those presented here.
From the simple schematic in Fig. 1, it is evident that outward motion of the screw
dislocation segments increases the length of both edge dislocation segments, and out-
ward motion of the edge dislocations increases the length of the both screw dislocation
segments. For this simple case, the time rate of change of the dislocation line lengths,
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Fig. 1. Schematic of an expanding dislocation loop idealized as a composition of discrete edge and screw
line segments forming a closed loop.

l, becomes

l̇e+ = l̇e− = vs+ + vs−; (7)

l̇s+ = l̇s− = ve+ + ve−; (8)

where v is the outward velocity of the dislocation loop relative to the lattice, the
subscripts e and s denote dislocation character (edge, screw), and the “+” and “−”
denote dislocation polarity, (right-, left-handed). Note that the generation of dislocation
lines conserves Burgers vector because equal line lengths of positive and negative
dislocations are created, and the rate of generation is independent of the length of the
moving dislocation lines. The time rate of change of the slipped area As is

Ȧs = le+ve+ + le−ve− + ls+vs+ + ls−vs− (9)

and is related to the plastic shearing rate through Eq. (6).
Results of this simple model may be generalized and applied to populations of

discrete dislocation segments. If dislocation density � is deLned as the dislocation
line length per unit volume of the crystal, the kinematic evolution equations for the
generation of dislocation density become

�̇�s+ = �̇
�
s− =

��e− Vv�e−
Vl
�
e−

+
��e+ Vv

�
e+

Vl�e+
; (10)

�̇�e+ = �̇
�
e− =

��s− Vv�s−
Vl�s−

+
��s+ Vv

�
s+

Vl�s+
; (11)

where Vv is the average velocity of the dislocation population, Vl is the average segment
length of the dislocation density, and the superscript � denotes the crystal slip sys-
tem. The sign convention implied in the equations requires that all densities, average
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velocities, and average lengths be positive. The ratio �= Vl yields the number density
of dislocation segments per unit volume, and, as in the simple example, the rate of
generation of dislocation density is independent of the total dislocation length. Burgers
vector is again conserved, with equal densities of positive and negative sign being
created. The conLguration used to introduce the dislocation generation equations was a
planar loop, but the geometry need not be so simple. The essential assumption is that
the mobile segments terminate within the crystal at dislocation nodes. Motion of the
dislocation segment away from those nodes would again require the moving segment
to leave a dislocation dipole trail extending to the nodes.
The current tangent discretization motivates the density generation equations pre-

sented here. A diRerent discretization of the dislocation tangent space would lead to
similar, although diRerent, evolution equations. The main requirement in choosing an
appropriate discretization is that closed planar loops can be described by the discrete
space of tangents. Density generation equations for other tangent sets could again be
motivated by expansion of a single loop.

2.2.2. Shearing and dislocation density 5ux
The dependence of plastic shear rate on the dislocation density Tux can be easily

found by combining Eqs. (9) and (6), providing

�̇� = (��e+ Vv
�
e+ + �

�
e− Vv�e− + �

�
s+ Vv

�
s+ + �

�
s− Vv�s−)|b|sign(��); (12)

where �� is the resolved shear stress on slip system �. Eq. (12) generalizes the classical
result obtained by Orowan (1940). Even in this simple case, it is impossible to deter-
mine the rates of dislocation generation from the plastic strain rate alone because the
shearing rate does not contain enough information to determine uniquely the velocities
of each of the participating densities. The sign of shearing, and of segment velocity,
is chosen to match that of the resolved shear stress.

2.2.3. Annihilation of dislocation density
Along with the generation of new density in the crystal, the annihilation of dislo-

cation density occurs simultaneously. At relatively low densities, the generation of
density dominates dislocation density evolution, but as density increases, annihila-
tion processes become more prevalent. Many dislocation reaction processes can re-
duce dislocation density. In modeling dislocation annihilation within the discrete dis-
location density basis considered, annihilation of each discrete density must be
considered.
The simplest annihilation reaction is the meeting of two equal-length dislocation seg-

ments having the same tangent direction and opposite Burgers vectors; their (vanishing)
reaction product gives no resultant contribution to either of the respective densities. A
more general annihilation reaction occurs when, for example, two dislocation segments
with diRerent Burgers vector and tangent line combine to form a third dislocation seg-
ment of lower total energy than that contained in the two initial segments. All such
possible reactions could be considered, but just as in the evolution equations for den-
sity generation, Burgers vector must again be conserved at both the dislocation line
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and density scales. This restriction is most generally enforced by using the dislocation
tensor. The dislocation density tensor � may be deLned in the lattice conLguration as:

� ≡
∑
�

b�0 ⊗
∫
l
t�0 d�

�; (13)

where d� is a diRerential length per unit volume of a dislocation line with Burgers
vector b0 and unit tangent t0, for all dislocation segments � in the volume. For a
discrete tangent basis, the line integral becomes a simple summation of the form:

�=
∑
�

��b�0 ⊗ t�0: (14)

Any set of density generation and annihilation evolution equations is constrained to
conserve �. The generation equations previously discussed satisLed this condition im-
plicitly by creating dipole density that does not alter �. Self-annihilation likewise
removes dipole segments, leaving � unchanged. All allowable annihilation reactions
conserve the dislocation tensor and decrease the lattice defect energy. In the current
formulation, we assume that self-annihilation is the dislocation reaction responsible for
the majority of density reduction.
Consider a single negative dislocation moving with a velocity, vrel, relative to a Leld

of positive dislocations of density �+. If the positive Leld is randomly distributed, then
the negative dislocation passes within a certain distance, R, of a positive dislocation at
a frequency f given by

f = �+Rvrel: (15)

If there are N−=V negative dislocations per unit volume moving through the positive
Leld, and an average segment length of Vl− is eliminated every time one of the dislo-
cations passes within the distance above, then the rate of annihilation of the negative
density becomes

�̇− =−N− Vl−
V

�+Rvrel: (16)

In Eq. (16), N− Vl−=V is equivalent to the density of negative dislocations, �−. Also, the
annihilation rate of the negative density equals the corresponding positive annihilation
rate. The annihilation rates must be applied to all of the dislocation indices introduced
in the generation evolution equations. For the pure edge and pure screw dislocation
density discretization considered, the annihilation rates become

�̇�e+ = �̇
�
e− =−��e+��e−Re( Vv�e+ + Vv�e−); (17)

�̇�s+ = �̇
�
s− =−��s+��s−Rs( Vv�s+ + Vv�s−): (18)

Without screw cross-slip or edge climb, the annihilating dislocations would have to
lie in the same slip plane. Although cross-slip and climb are not addressed explicitly
within the present model, the relative magnitudes of the capture radii, Rs and Re,
account for both processes implicitly. From Eqs. (10), (11), (17), and (18), generation
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depends linearly on the density, while annihilation depends quadratically on the density.
Furthermore, if there is no net polarity of the dislocation density in the initial state,
polar densities of the same character will be equal for all time as determined through the
generation and annihilation processes; the internal variable space may then be reduced
by deLning

��e = �
�
e+ + �

�
e− = 2�

�
e+ = 2�

�
e− (19)

��s = �
�
s+ + �

�
s− = 2�

�
s+ = 2�

�
s− (20)

and

Vl�e = Vl
�
e+ = Vl

�
e−; (21)

Vl�s = Vl
�
s+ = Vl

�
s−: (22)

2.2.4. Evolution of dislocation polarity
The generation and annihilation contributions to the density evolution equations alter

neither the net polar dislocation density of any dislocation species, nor the resulting
dislocation tensor. Additional density evolution equations that do modify polarity can be
considered, based on (i) the divergence of dislocation density Tux and (ii) plastic Tow
in the presence of non-vanishing net dislocation tensor (i.e., non-vanishing dislocation
polarity).
At macroscopic length scales, the (non-polar) generation and annihilation equations

dominate, and the polarity-changing contributions can be ignored. As the length-scale
of observation (the representative material volume) becomes microscopic, of linear
dimension a few microns or less, the accumulation=loss of polar density has been
shown to be important in describing material behavior (Dai et al., 2000; Fleck et al.,
1994; StMolken and Evans, 1998; Nix and Gao, 1998). In the current application of the
model to the orientation-dependent behavior of single-crystal aluminum, the polarity of
density is expected to be small compared to total density, and thus to have small eRect
on mechanical behavior; therefore, its contribution will be ignored. The inclusion of
evolution equations that follow changing polarities of crystallographic density will be
the focus of an upcoming study.

2.2.5. Summary of density evolution equations
The generation and annihilation evolution equations described are based mainly on

density kinematics, and few constitutive assumptions have been introduced. The struc-
ture of the evolution equations introduced three internal modeling functions: the average
dislocation velocity Vv�, the average dislocation length Vl

�
, and the capture radius R�, for

a dislocation density of index �. Material-speciLc behavior is introduced through spe-
ciLc functional forms for these three internal variables. In general, we assume that they
depend on the dislocation density state, applied stress, crystal geometry, and absolute
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temperature � such that

Vv� = V̂v�(��; VT; b�0; t
�
0; n

�
0; �); (23)

Vl
�
= V̂l

�
(��; VT; b�0; t

�
0; n

�
0; �); (24)

R� = R̂
�
(��; VT; b�0; t

�
0; n

�
0; �): (25)

Along with the dislocation geometry contained in b�0 and t�0, another direction, n
�
0,

which speciLes the unit normal of the area swept by a moving dislocation, is included
as part of the dislocation geometry.
Possible functional forms for the internal variables will be introduced in the next

section as the model is applied to the orientation-dependent behavior of single-crystal
aluminum in simple tension. The discrete dislocation density basis used to derive the
evolution equations in this section will be used to capture the behavior of density in
the crystal.

3. Application to single-crystal aluminum

Single-crystal aluminum was chosen as an application on which to test the density-
based internal state variable model. Aluminum was chosen because its highly-symmetric
crystal structure (FCC) leads to geometrically similar dislocation densities, and because
aluminum and its alloys are widely used in engineering applications. Continuum sim-
ulations of FCC single crystals have dealt mainly with the plastic response of copper
(Cuitiño and Ortiz, 1992; Bassani and Wu, 1991), and to our knowledge, there has
been no successful continuum simulation of aluminum single-crystal plasticity. The
mechanical behavior of single-crystal aluminum is quite diRerent from that of copper.
For reasons to be discussed in Section 4, mechanical behavior of single-crystal copper
seems to be “easier” to simulate, but aluminum is much more diHcult.
The Lrst modeling step within the dislocation density framework is choosing a dis-

cretization of dislocation density. Since the model will be applied to single-crystal
aluminum at room temperature, where aluminum cross-slips readily due to its high
stacking fault energy, a total of 18 distinct dislocation (dipole) densities are used in
the reduced basis. The Burgers vectors, as well as the tangent directions, are given in
Table 1, relative to the cube directions. Of the 18 dislocations, 12 are pure edge, one
for each 〈1 1 0〉{1 1 1} slip system, and 6 are pure screw, one for each 〈1 1 0〉 Burgers
vector. The screw densities are permitted to slip freely on both of the glide planes
in which they reside. More generally, the total density may be considered composed
of two populations of dislocations. The screw densities represent the fraction of the
population that may cross-slip, while the edge densities represent the fraction of the
population that cannot cross-slip.

3.1. Constitutive functions

Each crystallographically similar dislocation density has the same functional form
and material constants for dislocation mobility, average length, and capture radius.



1990 A. Arsenlis, D.M. Parks / J. Mech. Phys. Solids 50 (2002) 1979–2009

Table 1
Geometry of dislocation density discretization used to model aluminum single crystals.
( b̂ ≡ b=|b|)

� Index b̂ t Slip system

1 1√
2
[1 V1 0] 1√

6
[1 1 V2] B6

2 1√
2
[1 0 V1] 1√

6
[1 V2 1] B4

3 1√
2
[0 1 V1] 1√

6
[V2 1 1] B2

4 1√
2
[1 1 0] 1√

6
[1 V1 2] A5

5 1√
2
[1 0 1] 1√

6
[1 2 V1] A3

6 1√
2
[0 1 V1] 1√

6
[2 1 1] A2

7 1√
2
[1 1 0] 1√

6
[V1 1 2] D5

8 1√
2
[1 0 V1] 1√

6
[1 2 1] D4

9 1√
2
[0 1 1] 1√

6
[2 1 V1] D1

10 1√
2
[1 V1 0] 1√

6
[1 1 2] C6

11 1√
2
[1 0 1] 1√

6
[V1 2 1] C3

12 1√
2
[0 1 1] 1√

6
[2 V1 1] C1

13 1√
2
[1 V1 0] 1√

2
[1 V1 0] B6 & C6

14 1√
2
[1 0 V1] 1√

2
[1 0 V1] B4 & D4

15 1√
2
[0 1 V1] 1√

2
[0 1 V1] A2 & B2

16 1√
2
[1 1 0] 1√

2
[1 1 0] A5 & D5

17 1√
2
[1 0 1] 1√

2
[1 0 1] A3 & C3

18 1√
2
[0 1 1] 1√

2
[0 1 1] C1 & D1

Here we elaborate the speciLc functional forms chosen for these functions in
Eqs. (23)–(25).

3.1.1. Average mobility of density: Eq. (23)
The motion of individual dislocations during plastic deformation may be viewed as

a percolation process in which dislocation segments follow a path of least resistance,
subject to the local stresses applied to the line. For most of the time the segments are
immobile, pinned by forest dislocations. With suHcient activation, such an obstacle
can be overcome, thereby allowing the dislocation to move rapidly to the next set of
obstacles. Assuming that the average dislocation velocity can be written for the density
of line segments in an explicit form, the dislocation density mobility will be described
by an activated glide model Lrst proposed by Kocks et al. (1975). The average density
mobility takes the following functional form:

Vv�e = ve0 exp
[
−\Fe
k�

(
1−

( |��|
sep + sed

)pe)qe]
; (26)

Vv�s = vs0 exp
[
−\Fs
k�

(
1−

( |��|
ssp + ssd

)ps)qs]
; (27)
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where the subscripts e and s denote edge and screw, respectively. In Eqs. (26) and
(27), v0 is a reference velocity, \F is the activation energy required to overcome
the obstacles to dislocation motion, k is Boltzmann’s constant, � is the resolved shear
stress on the dislocation density glide plane, sp is the intrinsic lattice resistance, sd
is the resistance due to interactions with forest dislocations, and the parameters p
and q determine the inTuence of the applied stress on the activation energy. The
resolved shear stress �� is a function of the applied stress and crystal geometry. For
dislocation densities in slip-system �, and small elastic strains, the resolved shear stress
is well-approximated by

�� := ( VT) · (m�
0 ⊗ n�0); (28)

accounting for elastic strain requires replacing VT with Ce VT in Eq. (28) (Bronkhorst
et al., 1992).
The dislocation resistance sd is taken to be a function of the dislocation density

state. Dislocation resistance is modeled as primarily due to forest dislocation density
interactions; however, reactions between the glide dislocations and dislocations in par-
allel glide planes are taken into account. Although the latter dislocations do not pierce
the glide plane, statistical densities of dislocations parallel to the glide planes increase
the resistance to slip (Argon, 1969). The dislocation resistance takes the following
functional form:

s�d = �|b|
√∑

�

G����; (29)

where s�d is the resistance encountered by dislocation density of index �, � is the shear
modulus, and G�� is a matrix detailing the strength of interactions between dislocations
of index � and �. By considering the symmetry of the FCC crystal, and the types of
junctions formed between diRerent dislocations, G�� can be Llled with 6 independent
coeHcients, G0–G5 (Lomer, 1951; Kocks, 1959; Franciosi and Zaoui, 1982).
The Lrst two coeHcients, G0 and G1, account for in-plane interactions, and the

other four coeHcients, G2–G5, account for out-of-plane interactions. The G0-coeHcient
describes the interaction between dislocations with the same Burgers vector and parallel
slip planes (self-interaction); however, there is no resistance between edge and screw
dislocations with the same Burgers vector on parallel slip planes. The G1-coeHcient
describes the interaction between dislocations on parallel slip planes, but with diRerent
Burgers vectors. The other four interaction coeHcients contain dislocation densities that
pierce the planes of the gliding density.
Crystallographic dislocation densities have been deLned as line length per unit vol-

ume, but an equivalent deLnition is the number density piercing a unit area whose
normal parallels the dislocation tangent. The piercing density of dislocation density
�� with tangent line direction t�0 on a plane with unit normal n

�
0 is |n�0 · t�0|��. The

four coeHcients describing interaction between the out-of-plane forest density and the
glide dislocations must account for not only the strength of the interaction, but also
the piercing density on the glide plane.
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Table 2
Strength-interaction sub-matrix, G��, for the edge dislocation interactions. The average
segment length-interaction matrix, H�� takes the same form, but with diRerent values.
The values used to model single-crystal aluminum are given below

[G��]
�=1;12
�=1;12

=




G0 G1 G1 G4 G5 G3 G4 G3 G5 G2 G3 G3
G1 G0 G1 G5 G4 G3 G3 G2 G3 G3 G4 G5
G1 G1 G0 G3 G3 G2 G5 G3 G4 G3 G5 G4
G4 G5 G3 G0 G1 G1 G2 G3 G3 G4 G3 G5
G5 G4 G3 G1 G0 G1 G3 G4 G5 G3 G2 G3
G3 G3 G2 G1 G1 G0 G3 G5 G4 G5 G3 G4
G4 G3 G5 G2 G3 G3 G0 G1 G1 G4 G5 G3
G3 G2 G3 G3 G4 G5 G1 G0 G1 G5 G4 G3
G5 G3 G4 G3 G5 G4 G1 G1 G0 G3 G3 G2
G2 G3 G3 G4 G3 G5 G4 G5 G3 G0 G1 G1
G3 G4 G5 G3 G2 G3 G5 G4 G3 G1 G0 G1
G3 G5 G4 G5 G3 G4 G3 G3 G2 G1 G1 G0




Strength-interaction coeHcients: G0 = 0:10, G1 = 0:22, Gi=2;5 = gi|n� · t�|,
where g2 = 0:30, g3 = 0:38, g4 = 0:16, g5 = 0:45.

Length-interaction coeHcients: H0 = 0:00, H1 = 0:00, Hi=2;5 = hi|n� · t�|,
where h2 = 0:05, h3 = 0:12, h4 = 0:03, h5 = 0:25.

The interaction coeHcient G2 describes the interaction between dislocation densities
with the same Burgers vector, but on a diRerent slip plane (cross-slip interaction) given
by G2 = g2|n�0 · t�0|, where g2 accounts for the strength of this interaction and |n�0 · t�0|
accounts for the piercing density. Likewise, G3 = g3|n�0 · t�0| describes the interaction
between dislocation densities resulting in a junction with a 〈1 1 0〉 Burgers vector in
the slip planes of both of the dislocations involved (glissile junction). The remaining
two coeHcients represent dislocation interactions forming sessile junctions. The weaker
of the two, the Hirth lock, is described by G4 = g4|n�0 · t�0|, and the stronger of the two,
the Lomer–Cottrell lock, is described by G5 = g5|n�0 · t�0|. The six coeHcients Lll the
strength interaction matrix according to the types of interactions anticipated between
the gliding density and the forest density. Table 2 shows the arrangement of the six
interaction coeHcients in the strength sub-matrix for the edge dislocation interactions.

3.1.2. Capture radii: Eq. (25)
The dislocation capture radii R� are simply chosen as two constant lengths, Re and

Rs; they describe the critical approach distance for annihilation between edge and screw
dislocations, respectively. Two lengths are required because cross-slip of screw dislo-
cations indicates that the screw density should have a larger capture radius than edge
dislocations, which cannot cross-slip. The small edge capture radius is based on an
assumed ability of edge dislocation segments on parallel planes to climb short dis-
tances toward one another.
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3.1.3. Average segment length: Eq. (24)
Perhaps the average dislocation segment length is the most diHcult constitutive func-

tion to understand and physically motivate. Considering again the “generation” evolu-
tion equations and their relationship with the plastic strain rate, the average dislocation
segment length relates an increment of the plastic strain associated with a particular
density species to an increment in density due to its glide motion. The functional form
of the average segment length could in theory be directly determined by analyzing
dislocation dynamics simulations from the viewpoint of this kinematic framework. The
simulations conducted by Kubin and co-workers (Kubin et al., 1992, 1998) are prob-
ably the most applicable. In their simulations, the dislocation lines are discretized as
a series of small edge and screw dislocation segments. Since the same discretization
is used here, analysis of the dislocation evolution in their discrete simulations could
lead to a functional form for the “average segment length”. To our knowledge, disloca-
tion dynamics researchers have not published such an analysis of dislocation evolution;
therefore a simple functional form of the average segment length will be used.
The average dislocation segment length Vl� is assumed to be solely a function of the

dislocation density state. Dislocation segments may become trapped in sections of the
crystal where the forest density is considerably greater than in the majority of the crys-
tal. As the forest density increases, more sections of the dislocation loops may become
trapped, and the average length of a dislocation segment decreases. Accordingly, the
following functional form will be used to model Vl�:

Vl� =


∑

�

H����




−1=2

; (30)

where H�� is the average segment length interaction matrix. The H��-matrix is assumed
to be composed of six coeHcients, H0–H5, that follow the same convention as those
of the G��-matrix, and are based on the type of interactions anticipated between the
gliding dislocation and the forest density. Because the H0 and H1 coeHcients detail
interactions between dislocations in parallel planes, we set H0=H1=0. The coeHcients
H2–H5 detail “segmenting” interactions with dislocations piercing the slip plane. These
coeHcients are determined by Hi=2;5 = hi|n�0 · t�0|, where hi quantiLes the strength of
segmentation interaction and |n�0 · t�0| quantiLes the piercing dislocation density on the
slip plane. Values of H�� are, in principle, independent of the values in the strength
interaction matrix, G��, but the H��-matrix takes the same form.
For concise reference, the complete set of equations used is summarized in the

appendix.

3.2. Selection of material constants

The parameter space of the constitutive functions is large, and is able to provide a
rich description of material behavior.
Most of the material constants may occupy only a limited range of values. Kocks

et al. (1975) suggest that the activation energy \F should lie in the range 0:056
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Table 3
Material parameters used for single-crystal aluminum simulations

Elastic moduli C11 = 108 GPa
C12 = 61:3 GPa
C44 = 28:5 GPa
� = 25:0 GPa

Dislocation mobility ve0 = vs0 = 1 m=s
\Fe = \Fs = 3:0× 10−19 J=atom
sep = ssp = 2 MPa
pe = ps = 1:1
qe = qs = 0:141

Capture radii Re = 18:6 nm
Rs = 93:0 nm

Burgers vector |b| = 2:863 Â

\F=�b36 2. Likewise, the exponents p and q typically lie in the following ranges:
06p6 1, and 16 q6 2.
The strength-interaction coeHcients G0–G5 relate to forest interactions and the

amount that a dislocation line bows before it can cut through an obstacle; therefore, G0,
G1, and g2–g5 should all be less than unity. Furthermore, latent hardening experiments
show that out-of-plane interactions should be stronger than the in-plane interactions,
and a strength-interaction scale has been suggested by Franciosi and Zaoui (1982). The
non-zero segment length interaction coeHcients H2–H5 should also have a limited range
of numerical values related to the strength-interaction coeHcients. A general guideline
is that 06Hi6Gi for all interactions. The values chosen for the strength-interaction
coeHcients and the average segment length coeHcients are found in Table 2.
To further decrease the parameter space, edge and screw densities were given the

same mobility. In the mobility functions, the values of the activation energy, \F ,
and the exponents controlling the stress dependence, p and q, were based on work
by Balasubramanian and Anand (2000), in which values were determined from the
temperature-dependence of the rate-dependent yield strength of polycrystalline alu-
minum. The remaining coeHcients were determined by Ltting the orientation-dependent
stress=strain data of aluminum single crystals at room temperature, and by maintain-
ing dislocation densities of the same magnitude as observed in experiments. Table 3
contains the remaining values of all constants used to model aluminum crystals.

3.3. Implementation and simulation details

The constitutive model for single-crystal aluminum described above was implemented
into the commercially available FEM package ABAQUS=Standard as a user-deLned
material (Hibbitt et al., 1998), and was used with Lrst-order brick (C3D8) elements
to simulate the orientation dependence of the stress=strain behavior of aluminum sin-
gle crystals subject to uniaxial tension at ambient temperature. The simulations were
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Table 4
Euler angles used to simulate single crystals with 1

◦
misorientation

Orientation �(
◦
)  (

◦
) !(

◦
)

〈1 1 1〉 55:6430 135:5119 0:0000
〈1 0 0〉 89:5774 90:9063 45:0000
〈1 1 2〉 34:4494 −43:9860 90:0000
〈1 2 3〉 36:6992 153:4349 180:0000

conducted with four diRerent crystallographic orientations (〈1 1 1〉, 〈1 0 0〉, 〈1 1 2〉, and
〈1 2 3〉) parallel to the tensile axis, and were compared to the experiments conducted
by Kocks (1959) and Hosford et al. (1960). Both sets of experimenters documented
slight misorientations (within two degrees) in the test crystals; therefore, slight ini-
tial misorientations were included in the simulations for those (nominal) orientations
having more than one potentially active slip system. The crystals were misoriented by
one degree so that one slip system had a higher initial Schmid factor than the others:
Table 4 gives the Euler angles used in the simulations.
The specimen geometry used in the simulation had a square cross-section, similar

to the low-aspect rectangular cross-sections of the experiments, and the ratio of the
specimen length to width was 9. Boundary conditions simulated a Lnite crystal and
corresponded to the loading descriptions of Kocks and Hosford et al. Lateral surfaces
were traction-free, and end surfaces were required to remain perpendicular to the pulling
direction and, on average, to remain aligned with the tensile axis.
The initial dislocation density was set to 4:16× 1010 m−2 for each crystallographic

edge dislocation density and to 8:33× 1010 m−2 for each crystallographic screw dislo-
cation density, such that the total initial density was �0=1012 m−2 (�0b2=8:2×10−8).
Isothermal simulations were conducted at room temperature (298 K) under a constant
nominal tensile strain rate of 10−3 s−1.

4. Simulation results and discussion

4.1. Summary of experimental observations

In three of the orientations considered, two or more slip systems are equally stressed
if the crystal is perfectly aligned with the tensile axis. The 〈1 1 1〉 orientation has 6
equally favored slip systems, while 〈1 0 0〉 has 8 equally stressed systems. The 〈1 1 2〉
orientation has two highly stressed slip systems, and the 〈1 2 3〉 orientation has only
one highly stressed slip system. The orientations of the specimens in the reported
experiments deviated from the ideal orientation by no more than two degrees (Kocks,
1959; Hosford et al., 1960); however, with misalignment, the symmetry of the slip
systems with the tensile axis was broken, leading to variations in the resolved stresses
on the potentially active slip systems.
From X-ray and slip-trace analysis, as well as observations of the macroscopic defor-

mation in the tensile specimens, even slight misorientation can have a pronounced eRect
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Fig. 2. Orientation-dependence of the stress=strain response of single-crystal aluminum observed during tensile
experiments and calculated by Lnite element simulations.

on the deformation mode of the oriented crystals. The 〈1 1 1〉-oriented crystals deform
“uniformly” by activating all six slip systems suHciently to maintain the orientation
of the 〈1 1 1〉 direction substantially parallel to the tensile axis. The 〈1 0 0〉 orientation
follows a more complicated deformation path. Initially, all eight slip systems are active,
but after a small amount of plastic strain (�≈ 0:01), incremental cross-sectional defor-
mation transitions from isotropic area reduction to a plane strain deformation in which
the predominant crystallographic slip occurs on two pairs of cross-slip systems. The
〈1 0 0〉 direction remains aligned with the tensile axis during the deformation; however,
during the plane strain deformation, there is signiLcant asterism in the 〈1 0 0〉 pole that
is not observed during the initial isotropic area reduction. The 〈1 1 2〉-oriented crystals
deform plastically in a single-slip mode, with secondary slip on the other highly stressed
slip system. The dislocations created during tensile deformation of 〈1 1 2〉-oriented crys-
tals form Lomer–Cottrell locks, widely considered as the strongest dislocation junctions
in FCC crystals. As a result, the 〈1 1 2〉-oriented crystals have the greatest plastic re-
sistance among crystal orientations which primarily undergo single slip.
Tensile responses of the diRerent crystallographic orientations of aluminum are

eRectively characterized by contrasting them with the corresponding behaviors of cop-
per, the most widely tested and simulated FCC crystal. Fig. 2 depicts the tensile
behavior of aluminum single crystals as determined by Kocks (1959) and Hosford
et al. (1960), while Fig. 3 shows the tensile behavior of single-crystal copper
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Fig. 3. Stress=strain response of copper single crystals during simple tension, for diRerent orientations relative
to the tensile axis.

specimens as determined by Takeuchi (1975). As in copper, the 〈1 1 1〉 orientation
of aluminum has the highest initial hardening rate and reaches the highest stress levels.
The curvature of the stress=strain curve in aluminum is much greater, and the saturation
level of stress is reached at lower plastic strains. For small plastic strains, the 〈1 0 0〉
orientations of both aluminum and copper have high hardening rates. Copper crystals
continue along that path, ultimately reaching stress levels roughly half of that reached
in 〈1 1 1〉-oriented crystals. The 〈1 0 0〉-oriented aluminum behaves quite diRerently.
As deformation transitions from isotropic area reduction to plane strain, the harden-
ing rate drops dramatically, and the Lnal stress levels reached are between one-fourth
and one-third of those reached by the 〈1 1 1〉-oriented aluminum crystals. The tensile
behavior of 〈1 1 2〉 and 〈1 2 3〉 orientations, both of which predominately deform by
activating a single slip system, also diRers qualitatively between copper and aluminum.
Both of these orientations initially display Stage I hardening, with low hardening rates.
Copper transitions to Stage II, with a high constant hardening rate, and then reaches
Stage III hardening behavior, with falling hardening rates as the net rate of dislocation
density accumulation begins to decrease. Aluminum transitions from Stage I directly
to Stage III behavior at smaller strain levels than copper.
In the simulations conducted, the crystals were misoriented by 1◦ toward a single-slip

orientation for the three multi-slip orientations, in an attempt to capture the initial
conditions of the experiments. The stress=strain evolution in single crystals has been
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Fig. 4. ERect of initial misorientation on the stress=strain behavior of a nominally 〈1 1 1〉-oriented single
crystal.

shown to be very sensitive to the accuracy of the initial orientation, especially for
orientations in which two or more systems are (nominally) equally favored (Davis
et al., 1957). The misorientations used in the simulations are unlikely to match those
of the experiments, but we expect that our choices will permit us to obtain reasonable
agreement with the experiments. The constants in the model were chosen to match the
tensile deformation documented in the experiments, using 1◦ misorientations.

4.2. Comparison of simulations and experiments

Simulation results shown in Fig. 2 compare favorably with the experimentally deter-
mined stress=strain behavior for the diRerent orientations. The sensitivity of the response
to initial misorientation was investigated for the 〈1 1 1〉 and 〈1 0 0〉 multi-slip orienta-
tions. Results are shown in Figs. 4 and 5, respectively, for misorientations ranging from
a perfectly oriented crystal to a maximum of 2◦. The perfectly oriented 〈1 1 1〉 simula-
tion traces the experimental data, and for misorientations of 1◦ or less, the agreement
remains good. The perfectly oriented 〈1 0 0〉 simulation deviates from the experimental
data of aluminum, and qualitatively resembles the behavior of single-crystal copper in
the same orientation. The 〈1 0 0〉 simulation with 0:5◦ misorientation is close to that
of the perfect orientation, but simulations for misorientations of 1◦ and 1:5◦ transition
to lower hardening behavior after initially following the perfectly oriented simulation.
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Fig. 5. ERect of initial misorientation on the stress=strain behavior of a nominally 〈1 0 0〉-oriented single
crystal. Experimental data for 〈1 1 1〉 tension is shown for comparison only.

At 2◦ misorientation, both of these “multi-slip” orientations experience some degree of
single slip.
The deformation modes in the 〈1 1 1〉- and 〈1 0 0〉-oriented crystals are interesting to

compare and contrast because they have the most potentially active slip systems. The
shearing rates on the active slip systems during the history of the deformation of the
〈1 1 1〉- and 〈1 0 0〉-oriented crystals are given in Figs. 6 and 7, respectively. In the
Lgures, the Schmid and Boas notation is used for the 12 slip systems, where the letters
A, B, C, and D denote the (1 V1 V1), (1 1 1), (V1 V1 1), and (V1 1 V1) slip planes, respectively;
and the numbers 1, 2, 3, 4, 5, and 6 denote the Burgers vectors [0 1 1], [0 V1 1], [1 0 1],
[1 0 V1], [1 1 0], and [V1 1 0], respectively.
The 1◦-misoriented 〈1 1 1〉 crystal maintains slip activity on all six slip systems,

and converges toward symmetric activation on all slip systems after initially diverg-
ing. Initially, all 8 potentially active systems contribute to plastic deformation in the
1◦-misoriented 〈1 0 0〉 crystal, but the deformation mode quickly diverges to one in
which 4 slip systems account for the majority of the plastic deformation. The four
active systems comprise two pairs of slip-systems in which the screw dislocations may
cross-slip. As a result, macroscopic incremental deformation appears isotropic in the
early stages, and tends to plane strain after a small amount of tensile elongation.
The evolution of crystallographic dislocation density mirrors the shearing-rate histo-

ries of the crystals. Consider Figs. 8 and 9, which show the accumulation of nor-
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Fig. 6. History of crystallographic plastic shearing rates of the six potentially active slip systems of a
〈1 1 1〉-oriented single crystal. Initial misorientation is 1◦.

malized crystallographic dislocation density during deformation of the 〈1 1 1〉- and
〈1 0 0〉-oriented crystals, respectively. In the 〈1 1 1〉-oriented crystal, the dislocation den-
sities, which initially diverge due to the 1◦-misorientation, converge at larger strains
toward two values: one for the edge densities, and another for the screw densities. In
Fig. 9, the evolution of dislocation density is plotted on a logarithmic scale for the
1◦-misoriented 〈1 0 0〉 crystal. A rapid, near-homogeneous increase in dislocation den-
sity occurs in the Lrst percent of strain; subsequently, the rate of increase in density
drops dramatically. Over 10% tensile strain, dislocation density increases by roughly
four orders of magnitude. Whereas in the 〈1 1 1〉 orientation the distribution of dislo-
cation density was converging, the dislocation density in this orientation diverges. The
most abundant crystallographic densities develop in the two pairs of slip systems ac-
complishing the plane strain deformation described above; the respective edge densities
of these systems tend toward values somewhat greater than their screw densities.
Since both the edge and screw dislocation densities are calculated for each slip sys-

tem, the general character of the dislocation density can be evaluated. Figs. 10 and 11
show the evolving character of the active dislocation densities during deformation of
the 〈1 1 1〉- and 〈1 0 0〉-oriented crystals, respectively. The initial dislocation densities
of each Burgers vector were split equally between edge and screw densities. As defor-
mation progressed, the edge dislocation densities on active slip systems tend towards
roughly 3:5 times the screw densities of the same Burgers vector. In the simulations,
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Fig. 7. History of crystallographic plastic shearing rates of the eight potentially active slip systems of a
〈1 0 0〉-oriented single crystal. Initial misorientation is 1◦.

this asymptotic ratio depends mainly on Re=Rs, the ratio of the edge and screw capture
radii; however, other features within the model framework aRect the character of the
evolving density. For example, the ratio between the reference velocities, Vv0, in the
edge and screw mobility equations, can alter the asymptotic character of the dislo-
cation density. From the dislocation evolution Eqs. (10), (11), (17), and (18), it is
evident that as the mobility ratio changes, the relative density of the “slower” species
will increase, and as the ratio between the capture radii changes, the species with the
larger capture radius will decrease. These results are robust and independent of the
dislocation density proLle set as the initial conditions of the simulation.
The magnitude of the dislocation density, along with its character, translates into the

crystallographic strength of the crystal. Fig. 12 shows the evolution of resistance to dis-
location motion on the potentially active slip systems for the 〈1 1 1〉- and 〈1 0 0〉-oriented
crystals. Resistances in the 〈1 1 1〉 orientation increase smoothly, just as do the disloca-
tion densities. Initially, the tensile stress and the crystallographic resistances are close
in magnitude, while at 10% elongation, the crystallographic resistances are roughly
4:5 times the tensile stress. At 10% strain, the crystallographic strengths of the crystal
are still increasing, even though the stress appears to be saturating. This separation
occurs because as the dislocation density increases, the same plastic strain rate can
be attained with lower average velocities, enabling the ratio of the applied stress to
the crystallographic strength to decrease with increasing density. The history of the
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crystallographic strengths in the 〈1 0 0〉 orientation again reTects the bifurcation (rapid
evolution of a symmetry-breaking initial imperfection) discussed earlier. The weakest
systems are those with the most in-plane density, and the systems with the highest
strengths, which become inactive, have the lowest in-plane (but highest piercing) den-
sities. The spread in the strengths also demonstrates the strong oR-diagonal dominance
of the strength-interaction matrix associated with forest interactions.
The orientation-dependent behavior of single-crystal aluminum is quite diRerent from

the behavior observed in copper, as discussed earlier. The dislocation density model
yields some insight into underlying reasons for the diRering behaviors. The ability of
screw dislocations in aluminum to cross-slip readily, in contrast to the inability of those
in copper to do so, is one major factor in the diRerence. In the model, cross-slipping
screw density motivated a large capture radius for screw dislocation annihilation. The
large capture radius in turn led to a high curvature in the 〈1 1 1〉 stress=strain curve,
and to the disappearance of Stage II hardening in the 〈1 1 2〉 and 〈1 2 3〉 orientations.
Prominent dynamic recovery of dislocation density occurs at much lower density levels
in aluminum than in copper.
The strongly diRerent behavior of the 〈1 0 0〉-oriented aluminum crystal (as com-

pared to copper) is a much more complicated story. As misorientation is applied to a
nominally 〈1 0 0〉-oriented crystal, the transition from the activation of eight slip sys-
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tems as found in copper, to the activation of four slip systems in aluminum, depends
not only on the ability of screw dislocations to cross-slip, but also on the relative
weakness of the Hirth lock as compared to the other out-of-plane dislocation interac-
tions. The eight potentially active slip systems in the 〈1 0 0〉 test comprise four pairs of
cross-slip systems. With initial misorientation, one of the slip systems in each cross-slip
pair has the higher Schmid factor, while the other of the pair has one of the lower
Schmid factors of the eight active systems. The most active systems develop the largest
dislocation densities. Cross-slip of the screw dislocations, however, increases mobile
density on the cross-slip system pair member of lower Schmid factor, and promotes
the increase of edge dislocation density on the latter cross-slip system. The evolution
of dislocation density in Fig. 9 shows this mechanism. Considering the four terminally
active systems, edge dislocation density on the two cross-slip systems of initially lower
Schmid factor is lower than the corresponding screw dislocation density for strain less
than ∼ 2:5%; but as the deformation proceeds, the edge density on these systems even-
tually exceeds their screw density, and ultimately it approaches the value of the edge
density on the systems of higher initial Schmid factor. The transition from the activa-
tion of all eight slip systems to four slip systems would not be possible were it not for
the relative weakness of the strength-interaction coeHcient (g4 = 0:16) associated with
the Hirth lock, compared to the other out-of-plane strength interactions: (g2 = 0:30,
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g3 = 0:38, and g5 = 0:45). The weak Hirth lock interaction coeHcient provides plane
strain deformation with a lower hardening rate than that of isotropic area reduction.
Increasing the value of g4 to 0:30, with all other parameters Lxed, increases 〈1 0 0〉
strain hardening essentially to the perfectly oriented values shown in Fig. 5 and eRec-
tively suppresses the plane strain transition (Arsenlis, 2001). It is not clear how such
physical understanding could be incorporated into a phenomenological hardening form
in a strength-based internal variable model of crystal plasticity.

5. Conclusion

A dislocation-density-based internal state variable model for continuum crystal plas-
ticity was presented. Based on core concepts in dislocation mechanics, such as the
conservation of Burgers vector and the continuity of dislocation line, evolution equa-
tions for dislocation densities were constructed to account for bulk generation and
annihilation processes. Mobility of dislocation density was connected to plastic strain-
ing through Orowan’s relation, and to the evolution of dislocation density. The model
required the inLnite tangent space of dislocation lines to be discretized into a Lnite set.
The density evolution equations introduced three classes of internal functions: namely,
average dislocation mobility, average dislocation segment length, and capture radii for
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each dislocation density in the set. Through these three functions, the constitutive
behavior of the crystalline material could be speciLed.
The orientation-dependence of single-crystal aluminum in tension illustrated features

of the model. A discrete dislocation density set of 18 densities was used, comprising
12 pure edge dislocations and 6 pure screw dislocations. Forms for the three internal
constitutive functions were suggested, yielding a set of material constants to be de-
termined. Ideally, such constants could be determined from the results of dislocation
density evolution emerging from detailed dislocation dynamics simulations, but such in-
vestigations have yet to be conducted. Constants in the example functional forms were
determined from detailed comparisons of model behavior with the orientation-dependent
tensile stress=strain data and deformation behavior of aluminum.
Linkage of the description and behavior of the microstructural state of a material

to its plastic response is an important tool in quantitatively connecting underlying
physics to both the mechanical behavior and the evolution of that microstructural
state. The microstructural state, as captured by dislocation density distributions in crys-
talline materials, shows promise in facilitating such connections. Although dislocation
microstructures have long been observed and known to be the root of the evolving
mechanical properties in crystals, only recently have researchers been able to construct
dislocation models to quantitatively connect microstructure to mechanical behavior.
The dislocation-density-based model presented here retains and utilizes key microstruc-
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tural information to model the mechanical behavior observed at macroscopic length
scales.
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Appendix A. Summary of constitutive equations

Elasto-plastic product decomposition of deformation:

F = F
e
F
p
: (A.1)

Flow rule:

Ḟ
p
= L

p
F
p
; (A.2)
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L
p
=
∑
�

�̇�m�
0 ⊗ n�0 : (A.3)

Constitutive equation for Cauchy stress:

VT=
1
2
L[FeTF

e − I2]; (A.4)

T=
1

det(Fe)
F
e VTFeT: (A.5)

Orowan’s relation:

�̇� = (��e Vv
�
e + ��s Vv

�
s )|b�0|sign(��): (A.6)

Dislocation density evolution equations:

�̇�e =
2��s Vv

�
s

Vl�s
− (��e)2Re Vv�e ; (A.7)

�̇�s =
2��e Vv

�
e
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�
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− (��s )2Rs Vv�s ; (A.8)
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; (A.9)
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�"
ss �

"
s )
: (A.10)

Constitutive equations for mobility of density:

Vv�e = voe exp
[
−\Fe
k�

(
1−

( |�a|
spe + sde

)pe)qe]
; (A.11)

Vv�s = vos exp
[
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; (A.12)

sds = �|b�0|
√∑

"

(G�"
ee �

"
e + G

�"
es �

"
s ); (A.13)

sds = �|b�0|
√∑

"

(G�"
se �

"
e + G

�"
ss �

"
s ); (A.14)
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