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Physical Metallurgy       Fracture mechanics lecture 1 

 

In the next two lectures (Oct.16, Oct.18), we will discuss some basics of fracture 

mechanics using continuum theories. The method of continuum mechanics is to view 

a solid as a continuous distribution of material particles. Each material particle 

consists of many atoms. The material particle represents the collective behavior of 

many atoms. Following topics will be discussed. 

• Trouble with linear elastic theory of strength. 

• The Griffith approach. 

• Fracture energy. Energy release rate. 

• Applications of fracture mechanics. 
 

The problem to be solved in fracture mechanics. A body is subject to a 

load. What is the magnitude of the load that will cause the body to fracture? Let us 

begin with a body of a silica glass, which deforms elastically by small strains. A 

procedure has been taught in strength of materials probably goes as follows. We first 

determine the maximum stress in the body. Then we determine the strength of the 

material. The body is supposed to fracture when the maximum stress in the body 

reaches the strength of the material. 

I will first review this procedure, so that we agree exactly what this procedure is. 

I will then explain why this procedure is difficult to apply in practice.  

 

Theory of linear elasticity.  I assume you have learned the elements of linear 

elasticity. Imagine a body subject to an applied stress, applσ . At each material particle, 

the state of stress is a tensor, with 6 components. In the body, the state of stress 

varies from one material particle to another. Thus, the state of stress in a body is 

described by a field. The field is determined by solving the boundary-value problem. 

A list of notes of solving boundary-value problems in elasticity are following: 

•  Governing equations. Geometric relations. Force balance equations. 
Constitutive law.  

•  Boundary conditions. Traction or displacement boundary conditions. 

•  Approximate solutions. Beams and plates. 

•  Exact analytical solutions. Few problems can be solved exactly.  Theory of 
Elasticity, S. P. Timoshenko and J. N. Goodier, McGraw-Hill, New York.   

•  Numerical solutions. Finite element methods. Commercial software such 
as ABAQUS. 

 

Maximum stress in a body.  Solving boundary-value problem is a big task by 

itself, but is not the subject of this class. Let’s say we already have the solution. That is, 

we know all six components of stress at every material particle in the body, 

( )11 1 2 3, ,x x xσ , ( )12 1 2 3, ,x x xσ … 

What do we do with this massive amount of data? We are interested in 
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predicting the conditions of fracture of the body. For example, if the applied stress is 

small enough, the body will not fracture. How small is small enough?  

Here is the procedure taught in strength of materials. From the field of stress we 

determine the maximum stress in the body, maxσ . The maximum component of stress 

at each material particle is determined by principle stresses, solved by an eigenvalue 

problem. Then we look for the largest value of the principle stress by comparing all 

material particles in the body. Today, all this procedure is embodied in commercial 

finite element software. So you know the maximum component of stress of the body, 

maxσ . 

Stress concentration factor. The equations in elasticity are linear, so that 

the maximum stress in the body is proportional to the applied stress.  

max applCσ σ= , 

where C is a dimensionless number. The basic phenomenon that the stress is higher 

at some material particle in a body than others is known as stress concentration. The 

number C is known as the stress concentration factor.  

 When a circular hole is embedded in a much larger plate, this boundary-value 

problem is solved analytically by Timoshenko and Goodier. The maximum stress 

occurs at the surface of the hole. The stress concentration factor is 

max

appl

3σ
σ

= . 

 Consider an elliptic hole in an infinite plate subject to a remote stress applσ . This 

boundary-value problem can still be solved analytically (Stresses in a plate due to the 

presence of cracks and sharp corners, C. E. Inglis, 1913). The maximum stress maxσ is 

given by 

max

appl

21 a
b

σ
σ

= + , 

where a and b are semi-axes of the ellipse. The stress concentration factor depends 

on the shape of the hole, characterized by the ratio a/b. When a=b, the hole is 

circular, and the stress concentration factor is 3. When the ellipse is very elongated, 

a>>b, the stress concentration factor is very large.   
 Denote the radius of curvature at the tip of the ellipse as ρ , after some math you 

can find 2 /b aρ = . You can express the above formula in terms of a and ρ , namely, 

max

appl

2 aσ
σ ρ

≈ . 

This formula may be used to estimate the stress concentration factor for a flaw of 
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some other shapes, where a is interpreted as the “overall size” of the flaw, and ρ  is 

the radius at the root of the flaw.  

 Strength of a material. Now we have calculated the maximum stress maxσ in 

the body. Will the body sustain this stress? The theory of elasticity will not answer 

this question. You need to find the strength of the material somewhere else. For 

example, you may estimate the theoretical strength of a material by 

10th
ES = .  

For a glass, Young’s modulus is 70 GPa, so that the estimated theoretical strength is 7 

GPa. Prof. Ju Li has told you this value is about two orders of magnitude higher than 

the strength measured in a bulk sample.  

 You can determine the strength of the material experimentally. You pull a 

sample until it breaks, then record the stress that breaks the sample. We call this 

stress as the experimental strength of the material. The experimental values of vlass 

are on the order of S ~100 MPa.  

 Design for strength based on linear elasticity. What is the maximum load 

that can be sustained by a body?   We now summarize the procedure as follows.  

•  Calculate the stress field by solving boundary-value problems. Locate the 

maximum stress maxσ in the body. 

•  Assume the material has a definite strength. That is, the same material has the 
same strength, independent of the shape of the body. Measure the strength S 

using a simple sample of the material, such as a tensile bar.  

•  Make sure the maximum stress in the body is below the strength of the material. 

 

Why is this procedure hard to use in practice? 

• The maximum stress in a body is sensitive to the shape of the flaw. 

• The shape of the flaw is a body is seldom known in practice. 

• The procedure assumes that the body is linearly elastic everywhere, which 
is never true. 

• The procedure assumes that the strength of a material is independent of the 
sample used in experiments. In reality, strengths measured from different 

samples are different, because each sample has different flaws. 

That is, the procedure is hit in both ways: the maximum stress is impossible to 

calculate, and the strength is impossible to measure.  
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Qualitative content of the Griffith paper.  After the atomistic nature of 

matter was confirmed by many experimental observations, it became useful to relate 

macroscopic phenomena to atomic processes. In 1921, the British engineer A. A. 

Griffith published a paper on fracture of a glass. The main puzzle had been that the 

glass breaks under a stress several orders of magnitude below the strength of atomic 

cohesion.  Griffith took up the notion that a piece of a glass is never perfect: small 

cracks pre-exist in a body of the glass. The tip of such a crack concentrates stresses. 

The intense stress at the tip breaks atomic bonds one by one, like opening a zipper. 

The crack advances, leading to the fracture of the body.  

Consider a pre-existing crack in a body subject to an external load. Regard the 

body and the external force together as a thermodynamic system, characterized by 

two thermodynamic variables: the area of the crack and the displacement of the 

loading grips. To focus on the essential ideas, suppose that, after a certain amount of 

displacement, the loading grips are held fixed, but the crack is allowed to advance. 

Because the loading grips are fixed, the external load does no work. The energy of the 

system is the sum of the elastic energy in the body, and the surface energy in the faces 

of the crack. The energy of the system is the sum of the elastic energy in the body, and 

the surface energy in the faces of the crack. The energy of the system is a function of a 

single thermodynamic variable: the area of the crack. When the crack advances, the 

stress in the sample is partially relieved, so that the elastic energy is reduced. At the 

same time, the advancing crack creates more surface area, so that the surface energy 

increases. Thermodynamics dictates that the process should go in the direction that 

reduces the total free energy. If the decrease in elastic energy prevails, the crack 

grows. If the increase in surface energy prevails, the crack heals.  

The nonlinear zone, localized around the tip of the crack, remains invariant as 

the crack advances. Consequently, the presence of the nonlinearity does not affect the 

accounting of energy.   

To sum up, the qualitative content of the Griffith paper is following 

•  In a body of glass cracks pre-exist. 

•  The tip of such a crack concentrates stresses. 

•  The intense stress breaks atomic bonds one by one, like opening a zipper. 

•  As the crack advances, fresh surfaces are created. The surface energy 
increases, but the elastic energy decreases. 

•  The crack advances if the advance reduces the sum of the surface energy 
and elastic energy.  

 
The theory.  A large sheet of a glass is under stress σ . The sheet has unit 

thickness. For the time being, assume that the loading grips are rigidly held, so that 

the displacement is fixed, and the loading device does no additional work after a fixed 

displacement is applied. The state of reference is a stressed sheet with no crack. The 

state that interests us is the sheet with a crack of length 2a. We now calculate the 

difference in energy between the two states. 
The surface energy increases by 4aγ . 
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The elastic energy reduces. To determine the amount of the reduction, one has 

to solve the boundary-value problem. This tough elasticity problem is for professional 

elastitians. Look how complicated the stress field must be near the crack. Griffith 

used the elasticity solution of Inglis, because a crack is just a special case of an ellipse 
when / 0b a → . This part of the Griffith paper is difficult to read, and is not very 

interesting. In the end he made small errors. An alternative approach is to invoke 

linearity and dimensional considerations. For a linearly elastic problem, the stress 

field is linearly proportional to the applied stress. The elastic energy per unit volume 

is proportional to 2 / Eσ  . The elastic energy in an infinite sheet is infinite. However, 
we are interested in the difference in elastic energy between the cracked sheet and the 

uncracked sheet. Note that the crack length a is the only length scale in the boundary-

value problem. Consequently, the difference in elastic energy between the two sheets 

takes the form 
2

2a
E
σβ , where β is a numerical value. Thus, from very basic 

considerations, we get nearly everything except for a pure number. This number must 

be determined by solving the elasticity boundary value problem. The solution turns 
out to be β π=  . You can find the solution of the full problem in Timoshenko and 

Goodier. Relative to the uncracked sheet, in the cracked sheet the combined surface 

energy and elastic energy is 

( )
2

24U a a a
E
σγ π= + − . 

The crack length, 2a, is the thermodynamic variable. The surface energy density γ   　

and the applied stressσ are taken to be constant for the time being. As expected, 

when the crack length increases, the surface energy increases, but the elastic energy 

decreases. 

Critical crack size. Plot the free energy as a function of the crack length. The 

free energy first goes up, reaches a peak, and then goes down. Because there is no 

minimum free energy, the crack cannot reach equilibrium. The free energy reaches 

the peak at the crack length 

2

2* Ea γ
πσ

= . 

 
Let us examine the physical significance of this particular crack length. Let a be the 

length of the crack pre-existing in the sheet. Distinguish two situations. 
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Crack healing. If *a a< , the surface energy prevails over the elastic energy. To 

reduce the free energy, the crack length must decrease. The crack does so by healing, 

i.e., forming atomic bonds one by one, like closing a zipper. In reality crack healing is 

not often observed. This is not because the thermodynamics is wrong, but because 

surfaces are not flat to the atomic dimension, so that atoms cannot meet across the 

gap and form bonds. Several examples show that crack healing happens.  

•  Adhesives. Soft material can heal readily by flows.  

•  Wafer bonding. If the surfaces are indeed made flat, they will join.  

•  Sintering. At elevated temperatures, atoms can diffuse, so that the two 
surfaces change shape and can join.  

Crack growth. If *a a>  , the elastic energy prevails over the surface energy. 

To reduce the free energy, the crack must grow. The crack does so by breaking atomic 

bonds one by one, like opening a zipper. This is the situation studied in this course. 　 

The Griffith experiments. The main prediction of the Griffith theory can be 

written as 

2
c

Ea γσ
π

= . 

He performed several experiments to ascertain various parts of the equation. 

Experiment 1. Confirm that constantc aσ = , independent of the size of the 

crack. Start with several glass sheets (large spherical bulbs actually). Introduce a 

crack in each sheet. Measure the strength of each sheet. Two important points:  　  

(1) The crack introduced is in the mm to cm range, much longer than any 

“natural flaws” in the sheets, so that the natural flaws are negligible. In this 

way Griffith circumvented the uncertainties associated with the natural flaws.  

(2) The introduced cracks in different sheets have different lengths, and the 

measured strengths are also different. 

His data confirmed that constantc aσ = . 

Experiment 2. Confirm that the constant is indeed 2 /Eγ π  . Young’s modulus 

for the glass used by Griffith was E = 62 GPa. The surface energy inferred from the 

measured breaking strength is 21.75 J/mγ = . Griffith needed an independent 

measurement of the surface energy. He did the creeping fiber experiment. The value 

he obtained was 20.54 J/mγ = . The agreement was fair.  

Experiment 3. Measure strengths of glass fibers. For a fixed pre-existing crack 

size a, there is a critical stress:  

2
c

E
a
γσ
π

= .  　  
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This is the stress needed to fracture the sample. This relation shows that the fracture 

strength depends on the crack size. Because different samples have different crack 

sizes, the fracture strength is not a material property. The measured strength has 

large scatter. Take representative values 21 J/mγ = , 11 210  N/mE = , 610  ma −= , the 

strength is 250 MPa. This corresponds to the experimental strength.  

 

 

Since the Griffith paper, the science of fracture was born.　 

 

 
 

 

 

 

  


