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Physical Metallurgy       Fracture mechanics lecture 2 

 

 

Fracture of a steel.  Following Griffith, you are performing the same 

experiment using steel rather than a glass. Let’s say you have several bodies of the 

steel. Using a diamond saw, you cut each body with a crack of length 2a. The lengths 

of the cracks are different in different bodies. You load each body in tension up to 

fracture, and record the applied stress at fracture cσ  . Many people have done such 

experiments and here are the basic experimental facts.  

•  constantc aσ = , independent of the length of the crack. 

•  The constant is orders of magnitude larger than 2 /Eγ π . Note that the surface 

energy of most solids is on the order of 1 J/m2.  

Thus, the Griffith theory agrees with one part of the experimental observation, 

but disagrees with the other. The large discrepancy between the Griffith theory and 

experiments with steels had to do with plastic deformation in the steel accompanying 

fracture. While other people complained about this large discrepancy, George 

Rankine Irwin (1907-1998) and Egon Orowan (1902-1989) did something about it: 

they invented a procedure to apply the Griffith theory to ductile materials such as 

steels.  

Modify the Griffith theory to account for plasticity. Griffith’s picture of 

fracture is  

Fracture = atomic bond breaking. 

Griffith used the surface energy to account for the inelastic process of bond 

breaking, and obtained the condition for fracture:  
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= . 

Irwin’s and Orowan’s picture is  

Fracture = atomic bond breaking + plastic deformation. 

They define the fracture energy as the energy needed to advance a (steady state) crack 

by a unit area.  　  

Fracture energy = surface energy + plastic work. 

2 pwγΓ = + . 

Here pw is the work done to create per unit area of the plastic layers. Irwin and 

Orowan used the fracture energy to account for the inelastic process of bond breaking 

and plastic deformation, and they modified the condition for fracture as 
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A few quick notes about fracture energy: 

• The fracture energy is a material property, independent of the length of the pre-
crack, so long as the small-scale yielding condition applies.  

• The fracture energy is difficult to calculate from first principles, and is 
determined by fracture test, as described above.  

• The fracture energy is much larger than the surface energy. A lot more atoms 
participate in plastic deformation than in bond breaking. Some rough values. 

Glass: 10 J/m2. Ceramics: 50 J/m2. Glassy polymers: 103 J/m2. Aluminum: 104 

J/m2. Steel: 105 J/m2.  

 

The above modification eliminates the discrepancy between the theory and the 

experiments, but is bothersome in two respects. First, the Griffith theory was 

developed for a small crack in a large plate. How about other configurations of 

crack? Second, what do we really mean by the phrase “energy needed to advance a 

crack by a unit area”? We would like to have an operational definition of the 

fracture energy, a definition that will enable theoretical calculation and 

experimental measurement. 

 

Small-scale yielding condition. We will be restricted to the case that the size 

of the plastic zone in the steady state is much smaller than the size of the crack, a 

condition known as the small-scale yielding condition. Under the small-scale yielding 

condition, much of the body deforms elastically. Because the size of the plastic zone is 

much smaller than the size of the crack, the crack can attain the steady state after 

extending by a length small compared to the total length of the crack. 

The small-scale yielding condition involves the comparison of two lengths: the 

size of the plastic zone and the size of the crack. The size of the plastic zone in the 

steady state is a material property. For example, the plastic zone for silica is of atomic 

dimension, so that a crack beyond a few nanometers satisfies the small-scale yield 

condition. By contrast, the plastic zone for steel may be of millimeter in size, so that a 

crack beyond a few centimeters satisfies the small-scale yielding condition. For 

particularly ductile steel, however, the plastic zone can be several centimeters in size. 

To test such ductile steel under the small-scale yielding condition would require a 

body of a size about a file cabinet. Such a test is carried out sometimes, but is 

expensive. 

Energy Release Rate. Let us first consider a pre-cracked body of an arbitrary 

shape. The body is purely elastic: no bond breaking or plastic deformation occurs. 

The body is loaded, say, by hanging a weight P. The elastic energy stored in the body 

U is a function of the displacement of the weight and the area A of the crack, namely,  

( ),U U A= Δ . 

This function can be determined by solving boundary-value problems within the 

theory of elasticity.   

Alternatively, the function can be determined by experimental measurement. 

For each copy of the body, we make sure that the crack is stationary as we load the 
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body. Consequently, the work done by the weight is fully stored as the elastic energy 
in the body, Pd dUΔ = . We write 

( ),U A
P

∂ Δ
=

∂Δ
. 

By measuring the force P as a function of Δ and A, we can integrate and obtain the 

function ( ),U AΔ . 

 
Define energy release rate, G, as the reduction of the elastic energy associated 

with the crack increasing per unit area, when the weight does no work, namely, 

( ),U A
G

A
∂ Δ

= −
∂

. 

The partial derivative signifies that the displacement Δ is held fixed when the area of 

the crack A varies. Once we know the function ( ),U AΔ , the above definition gives the 

energy release rate G. Thus, G is a purely elastic quantity, and you need to know 

nothing about the process of fracture to obtain G. 

When both the displacement of the weight and the area of the crack vary, the 

elastic energy of the body varies according to 
dU Pd GdA= Δ − . 

Just as P is the thermodynamic force conjugate to the displacement Δ , the energy 

release rate G is the thermodynamic force conjugate to the area A.  

Fracture energy. Consider a pre-cracked body loaded by a weight P. Under 

the small scale yielding condition, we can still obtain the function ( ),U AΔ as if the 

entire body were purely elastic, either by solving a boundary-value problem with the 

theory of elasticity, or by the load-displacement curves determined experimentally 

with bodies containing cracks of different sizes. 
When the weight drops by distance dΔ , the weight does work PdΔ . Under the 

small-scale yielding condition, much of the work done by the weight is stored in the 

body as elastic energy, and only a small fraction of the work done by the weight goes 

to inelastic processes such as breaking atomic bonds and plastic deformation. We will 

use this small fraction to define the fracture energy. That is, the fracture energy is 

defined as an excess, according to  　  
Pd dU dAΔ = + Γ .　 

This definition of the fracture energy is independent of microscopic processes, be 

they bond breaking or plasticity. 
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Fracture criterion. Now compare the definitions of the energy release rate 

and the fracture energy. The crack will grow if the energy release rate equals the 

fracture energy: 
G = Γ . 

The energy release rate is the driving force for the extension of the crack. The fracture 

energy is the resistance to the extension of the crack. The relation between G and 　 

is analogous to the relation between stress and strength. 

 

The above discussions complete the modifications of the Griffith theory to deal with  

1. cracked bodies of any configuration, and  

2. materials capable of inelastic deformation.  

 

Below  we collect a few useful mathematical refinements. These refinements often 

confuse students, but contain no new information. 

 

Potential energy. View the body and the weight together as a system, and 

lump their energy together: 
U PΠ = − Δ . 

This quantity is called the potential energy in mechanics, and is called the Gibbs free 
energy in thermodynamics. This definition, in combination with dU Pd GdA= Δ − , 

gives 
d dP GdAΠ = −Δ − . 

Now the potential energy is a function of the load and the crack area, 

( ),P AΠ =Π . 

The displacement Δ and the energy release rate G are the differential coefficients, 

namely, 

( )

( )

,

,

P A
P
P A

G
A

∂Π
Δ = −

∂
∂Π

= −
∂

. 

 
Linear elasticity. When the body is linearly elastic, the applied force P is 

linear in the displacement Δ . Consequently, the elastic energy is 
/ 2U P= Δ , 

and the potential energy is 
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UΠ = − . 

We can write the energy release rate as 

( ),U P A
G

A
∂

= +
∂

. 

The partial derivative signifies that the load P is held fixed when the crack area A 

varies. The opposite signs in the two expressions for the energy release rate reflect a 

simple physical fact. When the area of the crack is larger, the body is more compliant, 

so that the body stores less elastic energy at a fixed displacement, but stores more 

elastic energy at a fixed load.  

Compliance of a linearly elastic body containing a crack. For a linearly 

elastic body, the displacement is linear in the load. Write 
CPΔ = , 

where C is the compliance of the body. For a linearly elastic body containing a crack, 

the compliance is independent of the load, but is a function of the area of the crack, 
namely, ( )C C A= .This function can be determined experimentally or calculated by 

solving boundary-value problems. As we said before, the compliance is an increasing 

function of the area of the crack.  

Using the compliance, we can write the energy release rate as 

( )2

2
dC APG

dA
= . 

　 

Design based on fracture mechanics. Compare design based on fracture 

mechanics with design based on the linear elastic theory. 

 
Ways to determine energy release rate. The energy release rate is a 

quantity defined within the theory of elasticity. The energy release rate is specific to 

the configuration of a cracked body, and can be determined by the following methods. 

• Look it up in handbooks. Elasticity solutions to cracked bodies of many 
configurations can be found in handbooks, e.g., H. Tada, P.C. Paris and G.R. 

Irwin, The Stress Analysis of Cracks Handbook, Del Research, St. Louis, MO., 

1995.  
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• Determine it experimentally. For a body containing a crack of a fixed area A, the 
displacement is linear in the force P, namely, CPΔ = . The compliance C can be 

measured experimentally. Use several bodies, which are identical except for the 

areas of the cracks. Measure the compliance of each body, and obtain the function 

C(A) . The elastic energy stored in a body is U=CP2/2. The energy release rate is 

given by 

( )2

2
dC APG

dA
= . 

• Determine it by solving the elasticity boundary-value problem. For cracked 
bodies of some configurations, the boundary-value problems can be solved 

analytically. For most configurations, the boundary-value problems are solved 

numerically by using finite element programs.  

Historically, the analytical method came first, beginning with Griffith’s (1921) 

use of the solution obtained by Inglis (1913), and followed by Obreimoff’s (1930) 

analysis of a splitting layer. The method of functions of a complex variable was used 

to great effect by Muskhelishvili and others. The method of using the experimentally 

measured compliance to determine energy release rate was probably introduced by 

Irwin (~1950). The method is still occasionally used today.  

For practical purposes, the method of choice today is often the finite element 

method. 

Ways to determine fracture energy. Fracture energy is a material property. 

It can be determined in several ways.  

• Look it up in a material data sheet. Representative values: Glass: 10 J/m2. 
Ceramics: 50 J/m2. Polymers: 103 J/m2. Aluminum: 104 J/m2. Steel: 105 J/m2. 

Warning: The fracture energy is sensitive to the microstructure of materials; heat 

treatment of steel can change the fracture energy by orders of magnitude.  

• Measure it experimentally by doing a fracture test. Of course, the values on the 
data sheet have been determined by experimental measurement.  

• Compute it by a computer simulation of the fracture process. This is an 
emerging field. Exciting but immature. Not a standard engineering practice yet.  

Applications of the fracture mechanics. The application of fracture 

mechanics is based on the equation 
2
c a
E
σ

βΓ = . 

Young’s modulus is usually known. Of the other four quantities, if three are known, 

the equation predicts the fourth. If you just read this equation, fracture mechanics 

sounds like a silly tautology. It is not really so silly if you think through each 

application. Some quantities are easy to measure. Other quantities are easy to 

compute. One can make real predictions. 

Application 1. Measure the fracture energy. Know β , cσ , a. Determine Γ . 

The experiment follows that of Griffith. 

• Start with a body of a material. 

• Cut a crack of a known size a using a saw. 
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• Load the sample with an increasing stress, and record the stress at fracture, cσ . 

• Separately find the elasticity solution for the energy release rate, 2 /cG a Eβσ=  

• Convert the critical stress to the fracture energy, 2 /c a EβσΓ = . 

The measured fracture energy is used to (a) rank materials, (b) study the effect of 

various parameters (e.g., loading rate, temperature, heat treatment) on fracture 

resistance, (c) design a structure to avoid fracture. 

Application 2. Predict critical load. Know β , a, Γ  Determine cσ . 

The body is given. The fracture energy of the material has been measured. The crack 

size a has been measured. Find the elasticity solution for the energy release rate 

2 /cG a Eβσ= . This application requires one to determine the crack size. A large crack 

size is determined by visual inspection. A small crack can be determined by the x-ray 

or acoustic wave (Nondestructive Evaluation, or NDE). If the measurement technique 

cannot find any crack, simply put the smallest crack size can be detected by the 

technique (i.e., the resolution) into the equation, and predict a lower bound of the 

critical load. A crack in a structure may increase slowly over time. Inspect the 

structure periodically to monitor the crack size. Retire or repair the structure before 

the crack is too large. 
Application 3. Estimate flaw size from experimental strength. Know β , 

cσ ,Γ . Determine a. This is the same as Griffith did. 

• Measure the fracture load cσ  . 

• Independently measure the fracture energy of the material. 

• Approximate the energy release rate by that of a Griffith crack, 2 /G a Eπσ= . 

• The flaw size a is estimated by 2/a E πσ= Γ . 
Application 4. Design a structure to avert fracture.  If a material is given, 

and the load level is prescribed, one can design a structure to avoid fracture. One also 

needs to know the possible flaw size. 

 

 

 

 

 

 

 

 

 

 

 


