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Chapter 1

Structures

The connections between structures - properties - processing, as illustrated on the cover of

Acta Materialia, is the basis of materials science and engineering. Because of the relatively

simple atomic structure of metals and the wide applications of metals (Bronze Age, Iron

Age, copper interconnects in microprocessors), these connections were first discovered and

distilled by metallurgists, and such methods and outlook are then extended to other kinds of

materials: ceramics, polymers, semiconductors, biomaterials, etc. Although details vary a lot

across different materials classes, especially in synthesis, the spirit and outlook are preserved

a great deal in most areas of materials science and engineering - including the reliance

on thermodynamic (Josiah Gibbs) and kinetic (Lars Onsager, John Cahn) theories, the

realization of the importance of intervening scales (“microstructure” controls properties),

the respect for processing details (physicists don’t appreciate the detailed recipe- and history-

dependencies of processing as much as materials scientists).

The narrowest definition of Physical Metallurgy was the control of materials properties by

thermo-mechanical processing (“heat and beat”), as distinguished from Chemical Metallurgy

(changing the chemical composition), and Mechanical Metallurgy (“just beat, no heat”).

Such definition is quite arbitrary, however, fundamentally. By “heat”, people mean raising

temperature T significantly above Troom = 300K, as most applications (let’s say ∼ 90% of

where metals are applied in tonnage) are at Troom. But 300K for steel is quite different

from 300K for Sn. And even though kBTroom = 1/40 eV is quite “small” compared to

the primary bond energies in steel (vacancy formation energy in α-Fe is 1.5 eV, which is

about 4 bonds’ worth), it turns out thermal fluctuations still cannot be ignored for most
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processes of interest. 1 Also, physical metallurgists rely a lot on chemical thermodynamics

and phase diagram in treating diffusion and phase transformations, so the boundary between

Physical and Chemical Metallurgy is not sharp. For this reason, I would like to regard

Physical Metallurgy as Physical, Chemical and Mechanical Metallurgy combined, but

with emphasis on thermo-mechanical processing.

The students in this class are expected to have taken 3.022 Microstructural Evolution in Ma-

terials and 3.032 Mechanical Behavior of Materials or their equivalents already. Some topics

of our class may overlap with ealier courses. But because we are 3.14 (upper undergrads) /

3.40J / 22.71J (grad student), this course is expected to be offered at a somewhat higher level,

and also will have an integrative flavor. If all goes well, at end of this course you may agree

that materials science is a very subtle science: one may think one understands something,

until one looks at it once again from another angle, or at a different time/lengthscale.

We begin with the word “structure”. By now you have heard about (a) atomic structure,

(b) molecular structure, as in double-stranded helical DNA, (c) microstructure, as in

the (perhaps somewhat chauvinistic) old-school metallurgical matra “microstructure controls

properties”, (d) nanostructure, as in “One nanometer (one billionth of a meter) is a magical

point on the dimensional scale. Nanostructures are at the confluence of the smallest of

human-made devices and the largest molecules of living systems...” - yes, they did use

the word “magical” - from a call for proposal from the US National Science Foundation
2. You may have also heard the word electronic structure from researchers doing so-

called ab initio or first-principles calculations, in solving Schrodinger equation for many

electrons, to obtain atomic interactions and interatomic forces numerically. So, which of

these “structures” is the most important?

The modern view is that none of the above structures, electronic structure - atomic structure

(molecular structure) - nanostructure - microstructure, and even macro-structures (such as

a trussed roof), could be ignored. In other words, all these structures potentially could be

“equally” important. According to this “multiscale materials” view, there is no need to

be particularly chauvinistic about any particular lengthscale, from the Å to the m. There

are interesting physics and theory about these physics at all these scales, and they cascade

through each other (“handshake”). Like a chain, no link can be missed on this chain of logic.

According to [1], p.1, microstructure is what can be observed under an optical microscope

1If in doubt, some properties of steel at 300K, such as ductility, can be really different from at 0K.
2Nanoscale Science & Engineering Center program, U.S. National Science Foundation, 2001
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(such as grains in a polycrystal), with 100× to 1000× magnification power. However, when

the grain size D shrinks to say, 80nm, optical microscope can’t see the grains (one has to

use electron microscopes), but the dependence of properties such as yield strength σY on D

(so called Hall-Petch relation: σ(D) = σ0 + kD−1/2) is no less sensitive than when D is

10 µm when optical microscope can see them [2]. Thus, putting a hard lengthscale bound

on a concept based on the resolution limit of some observation instrument is convenient but

not very enlightening. In this course, we intentionally smear the concept of microstructure

to make the concept inclusive. We would not separate nanostructure from microstructure.

Dislocations, cracks, grain boundaries, surfaces, phase boundaries, etc. are all

components of the microstructure. In our course, the term microstructure just denotes some

structural order or descriptor, beyond the Angstrom-level atomic structure.

The term “Microstructural Evolution” is one of the most frequently used word in metal-

lurgy. The choice of the word “Evolution” is intriguing. What is common between Darwin’s

Evolution in Earth’s biosphere, and “Microstructural Evolution” inside a piece of metal?

A modern view, mostly coming from physicists, is that biological evolution and microstruc-

tural evolution all belong to so-called emergent phenomena (also called self-organization,

spontaneous order) or emergence in dissipative systems. A dissipative system is a system

out of equilibrium, where free energy is being spent (∆Suniverse > 0) instead of conserved

(∆Suniverse = 0). In thermodynamics, we know that an isolated system at equilibrium,

such as a canister of gas with no energy or mass in or out, will reach the state of max-

imum disorder (homogeneous in density, temperature, no flow), or maximum entropy, for

the given constraints (the adiabatic, mechanically strong and impermeable box that con-

tains the gas molecules). However, Earth is not an isolated system: there is high-quality

sunlight (Tblackbody = 5800K) coming in, and lower-quality light emission going out (think

Tblackbody = 2.7K for cosmic background radiation). So Earth is in effect a giant heat en-

gine, enjoying the great benefits of a huge free-energy influx, even though the raw energy

flux is nearly balanced (energy in = energy out). This free-energy dissipation is what

supports biosphere, from the smallest plankton to whales, and Darwin’s Evolution, where

order emerges - the species - with some highly conserved traits, despite of rich and intricate

interactions between the species.

The same principle is true for a piece of metal. When one “heats and beats” a metal, or

react oxygen or hydrogen or lithium with it, or irradiate it with high-energy neutrons, one

is injecting free energy into the system, or “dissipating good energy”. In exchange for such

wasteful behavior, one gets to see beautiful patterns that emerge spontaneously inside the
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metals, the “microstructures”.

Like “following the money” in All the President’s Men, it is crucial to account for the flows

of free energy

G = E + PV − TS (1.1)

in a metal, because the flow/dissipation of G generates the microstructures. Indeed, without

a large flux of outside free energy, most “microstructures” cannot form. From the Boltzmann

formula

c0 ∝ exp(−Ef/kBT ) (1.2)

where c0 is the equilibrium concentration of some defect, and Ef is its formation energy, one

cannot explain the presence of extended defects like dislocations or grain boudaries since

their Ef → ∞, if based on just equilibrium thermal fluctuations. In other words, most

defects except the point defects (like vacancies) are manifestations of out-of-equilibrium-

ness. And oftentimes even the vacancy concentrations themselves are out-of-equilibrium

(such as quenched-in vacancies in aluminum alloys, or materials under irradiation). One

needs to beat the metal, quench the metal, irradiate the metal with 1MeV neutrons, do

something more “dramatic” like the above, to create the extended defects. Just like plants

tend to cover everywhere there is sunlight, dislocations tend to multiply (there is a word

“dislocation breeding” in the field as if dislocations were animals), and cracks tend to grow,

to take advantage of elastic strain energy density stored in the material. Dislocations or

cracks “feed” on elastic strain energy density: estrain(x) = σ(x)2/2C, where C is the elastic

constant, σ(x) is the stres at location x, and estrain(x) is the elastic strain energy density.

Free energy to a metal is like money to a society, or food/ATP to biosphere.

When one stops heating/quenching, beating on or irradiating the metals, one stops injecting

more “good energy” into the system. But there is often still some free energy stored inside the

system to drive further evolution, for instance in the form of residual stress (due to - surprise

- microstructures!), which induces residual elastic strain energy. Then, the microstructures

would start a game of scavenging and cannibalization. They would eat each other, annihilate,

polygonize, and coarsen. This is called relaxation, or recovery, or repair. In relaxation, one

fixes all the external constraints, so the spigot of external fresh free energy is shut off, and

the system goes from a high-free-energy state to a low-free-energy state for that fixed set

of external constraints. Eventually, after infinitely long time of relaxation, the system

may reach total internal equilibrium, where nothing will change any more (if the external

constraints are kept fixed).

6



Also, just like a whale is a beautiful multi-cellular organism with many levels of organization

(the exterior shape, the organs, the tissues, the cells, the cell organelles, etc.), the entire

microstructure of a piece of metals manefest at many lengthscales, with organization at

multiple levels. One does not ignore a vacancy because it’s small (Ef = 1.27eV in FCC Cu

[3]), just like large mammals like us cannot ignore bacteria or virus. But one also needs to

appreciate that a dislocation tangle or dislocation cell could manifest much richer behavior

than the average property of single dislocations, as there could be new physics at every

level of organization that is worth a scientist’s attention, which is the central tenet of the

Complexity Theory and Emergence.

NOW INTRODUCE the instructor’s own research and relation to Microstructural Evolution.

With the above perspective and background, let us dive into the atomic structure of metals,

which is an important rung on the ladder of multiscale structures. You are expected to

be familiar with Miller indices for crystallographic directions and crystallographic planes

already, and I just want to take the case of hexagonal crystals (Mg, Zn, Ti, Zr,... and

graphite) to do some practice. For hexagonal system with three-fold basal symmetry, people

tend to use a redundant coordinate frame a0, a1, a2, a3, where the bold font denotes a vector,

and translation by each of ai would take one atomic site to an equivalent site in the Bravais

primitive cell (e.g. a Bravais translational vector). People also tend to call a3 vector c. So

[u0u1u2u3] denotes a direction u0a0 + u1a2 + u2a2 + u3a3, where ui may be rational numbers

to denote crystallographic directions. However, since

a0 + a1 + a2 = 0 (1.3)

[u0 + λ, u1 + λ, u2 + λ, u3] would denote the same direction as [u0u1u2u3]. This creates one

floating degree of freedom in the notation. One can get rid of the float by choosing a “gauge”,

which is an arbitrary but necessary convention to make the numerical representation unique,

like the reference states people use in chemical thermodynamics. The convention people

choose is:

u0 + u1 + u2 = 0. (1.4)

Thus, [112̄0]/3 would be connecting to a nearest neighbor on the closed-packed plane, and

[101̄0] would be connecting to a 2nd nearest neighbor.

Note that FCC has period-3, ...-©+-©+-©+... stacking, where © denotes a close-packed

layer at z = 0, + denotes a close-packed layer on top of the © layer (and shifted in plane),

and - denotes a closed-packed layer below the the© layer (shifted in plane also, differently).
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In contrast, HCP has period-2 stacking: ...©+©+©+... If one looks down onto the HCP

basal plane, there are infinite tunnels at the - sites.

For labeling of crystallographic planes in hexagonal system, we note that an atomic plane is

defined as

n · x = d (1.5)

if x is the separation between an atom on that plane and an observer atom at the origin,

d is a constant for the plane, and n is the surface normal. For the same n, there is a set

of equivalent-site atoms (one essentially considers only 1 representative atom in a primitive

Bravais cell) forming a plane with closest distance that is yet nonzero:

n · x = dmin > 0 (1.6)

which we call the minimum-distance plane. Since a0, a1, a2, a3 are lattice vectors (combina-

tion of Bravais lattice vectors) that translates to equivalent positions, the atom at x = a0

would be sitting on a plane with d0 ≡ n · a0, the atom at x = a1 would be sitting on a plane

with d1 ≡ n · a1, the atom at x = a2 would be sitting on a plane with d2 ≡ n · a2, with

constraint:

d0 + d1 + d2 = 0 (1.7)

due to (1.3). According to the “intercept rule” in labeling planes, one takes the minimum

plane for a particular n, and looks where it intercepts along the the a0 direction, with

d0

dmin

≡ m0 ↔ dmin =
d0

m0

(1.8)

and m0 being an integer (could be zero), since atom at x = a0 should be equivalent to atoms

on the minimum plane. Similarly,

d1

dmin

≡ m1,
d2

dmin

≡ m2, (1.9)

with

m0 +m1 +m2 = 0. (1.10)

So in HCP crystals, one uses (m0m1m2m3) to label planes, with the understanding that

there is one slaved variable, m0 = −m1 −m2.

Suppose someone tells you the four integers (m0m1m2m3), how to find n in Cartesian coor-
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dinates? One can first set up the linear algebra equation:


a0x a0y a0z

a1x a1y a1z

a2x a2y a2z

a3x a3y a3z



nx

ny

nz

 = dmin


m0

m1

m2

m3

 (1.11)

But since the first row vector of the 4× 3 matrix is a linear combination of the second and

third row vectors, the first equation is redundant, so we only need to solve


a1x a1y a1z

a2x a2y a2z

a3x a3y a3z



nx

ny

nz

 = dmin


m1

m2

m3

 (1.12)

One does not know dmin at the beginning, but it does not matter, since one can first solve

for an unnormalized ñ first,

ñ =


a1x a1y a1z

a2x a2y a2z

a3x a3y a3z


−1 

m1

m2

m3

 ≡ G


m1

m2

m3

 (1.13)

and then normalize it later (in fact, this is how one finds dmin):

n =
ñ

|ñ|
. (1.14)

BTW, the column vectors of the 3 × 3 matrix G is called the reciprocal vector (sometimes

people multiply 2π on it),

G = (g1|g2|g3), (1.15)

since 
a1x a1y a1z

a2x a2y a2z

a3x a3y a3z

 (g1|g2|g3) =


1 0 0

0 1 0

0 0 1

 (1.16)

and we see from (1.13) that

ñ = m1g1 +m2g2 +m3g3, n =
m1g1 +m2g2 +m3g3

|m1g1 +m2g2 +m3g3|
. (1.17)

The above does not presume a3 = c is perpendicular to a0, a1, a2, or a1 and a2 extends 120◦
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angle. It only presumes a0 + a1 + a2 = 0. This is important because we would like to talk

about crystallography (and do diffraction and imaging) on elastically strained lattice. Note

that according to the so-called Cauchy-Born rule, if a macroscopic deformation gradient J

is applied:

∆x̃ = J∆x (1.18)

where x is an original macro-position in the body, and if there is no plasticity or phase

transformation in the body, then any Bravais lattice vector would transform as

ãi = Jai. (1.19)

Note that (1.19) only applies to the Bravais lattice vector, and not necessarily to the internal

coordinates within a complex unit cell (if the unit cell contains ≥ 2 atom). Thus, in an

elastically strained lattice,

ã0 + ã1 + ã2 = J(a0 + a1 + a2) = 0 (1.20)

Even though the above was motivated by HCP metal, the above formulas are completely

general for any Bravais crystals. Indeed, the vector form (1.16) is just

gi · aj = δij, i, j ∈ 1, 2, 3 (1.21)

which is the fundamental property of reciprocal vectors g1,g2,g3. Also, it is easy to show

from the definition n · ai = midmin that

dmin =
1

|m1g1 +m2g2 +m3g3|
. (1.22)

For arbitrarily strained hexagonal crystal, if we want to know whether a direction [u0u1u2v]

lies in the plane (m0m1m2l) or not, we can compute

(u0a0 + u1a1 + u2a2 + vc) · (m1g1 +m2g2 + lg3) (1.23)

= ((u1 − u0)a1 + (u2 − u0)a2 + vc) · (m1g1 +m2g2 + lg3) (1.24)

= (u1 − u0)m1 + (u2 − u0)m2 + vl (1.25)

= u1m1 + u2m2 − u0(m1 +m2) + vl (1.26)

= u1m1 + u2m2 + u0m0 + vl (1.27)
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is zero or not. So even though the hexagonal system uses a redundant coordinate system

that is also non-orthogonal, we can perform naive inner product on the two 4-vectors.

For example, if we want to know whether [202̄2] is an in-plane direction of (1̄012) or not, we

just simply compute 2× 1̄ + 0× 0 + 2̄× 1 + 2× 2 vanishes or not. (“3→ 4D”)

People use 〈〉 to represent family of [] vectors, including all crystallographic symmetry op-

erations. In a cubic crystal, for instance, the crystallographic symmetry operations involve

permutation and mirror operations, thus

〈110〉 : [110], [11̄0], [1̄10], [1̄1̄0], [101], [101̄], [1̄01], [1̄01̄], [011], [011̄], [01̄1], [01̄1̄] (1.28)

which has 3× 2× 2 = 12 family members (6 if inversion doesn’t count as distinct direction).

〈123〉 : [123], [132], [312], [213], [231], [321], ... (1.29)

which has 3! × 2 × 2 × 2 = 48 family members (24 if inversion doesn’t count). Similarly,

people use {} to represent family of () plane inclinations. The family members couting of

planes has the same rule as []→ 〈〉.

“3→ 2D”: Human retina is 2D and we are inherently good at manipulating 2D graphs.

The stereographic projection is a technique to project 3D directions n onto a 2D chart:

s(n) ≡ n̂− (n̂ ·m)m

1 + |m · n̂|
, n̂ ≡ n

|n|
(1.30)

where m is the projection (or “line of sight”) direction, which should be a normalized vector.

A simpler projection is

p(n) ≡ n̂− (n̂ ·m)m (1.31)

without the denominator in (1.30). It is easily seen that both p(n) and s(n) lie in the unit

circle for any n. p(n) is just Parallel projection with a point light source at xlight = −∞m,

and projection screen at xscreen = m. p(n) converts any circle on the unit sphere to an ellipse

on the screen with no cusp.

In contrast, s(n) also converts great circles on the unit sphere to an ellipse-like curve, but

with two cusps, due to the discontinuity from the absolute value operator in the denominator

of (1.30). For n ·m ≥ 0, we have the light source at xlight = −m, and screen at origin; and

for n ·m < 0, we have the light source at xlight = +m, and screen at origin. (The light
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actually hits the screen before it hits the sphere, so it’s not a true projection screen).

Also, the mapping from p → n̂ or s → n̂ is almost unique (has a degeneracy of 2). The

spherical surface n/|n| has two hemispheres. We can label the forward hemispherical half

(n ·m ≥ 0) by filled symbol, and rear hemispherical half (n ·m < 0) by open symbol.

A crystallographic plane can either be represented by the set of {vi} that satisfies n ·vi = 0,

where vi is an in-plane separation vector, or by the plane normal vector n itself. In the former

representation on stereogram, we get a solid-line half curve plus a dash-line half curve, with

representative s(vi)s labelled by “[u1u2u3]” of the vi’s. In the latter representation, we just

plot n itself, with a label “(m1m2m3) pole”. The two representations are equivalent. A

pole with two-fold rotational symmetry is called diad, represented by an ellipse. A pole

with three-fold symmetry is called triad, represented by a triangle. A pole with four-fold

rotational symmtry is called tetrad, represented by a square.

In microscopy, a zone axis z is a direction, that defines a bunch of planes {ni} by ni ·z = 0,

sort of turning the normal definition around. One can label a zone axis by “[u1u2u3] ZA

direction”, or by the set of planes ni, each using the first or second representation of planes.

Take a z = [111] zone axis (one direction of the 〈111〉 family, that consists of [111], [1̄11],

[11̄1], [111̄], [1̄1̄1̄], [11̄1̄], [1̄11̄], [1̄1̄1]). There are three from the {110} planes ((11̄0), (101̄),

(011̄)), three from the {112} planes ((12̄1), (112̄), (21̄1̄)), six from the {123} planes ((123̄),

(213̄), (13̄2), (23̄1), (31̄2̄), (32̄1̄)), and their inversions which belong to the rear hemisphere,

that falls into the zone.

The significance of the above is that when an incoming X-ray or e-beam has kin ‖ ez, the

diffraction condition is

(kout − kin) · (xil − xjm) = (l −m)2πn (1.32)

where kout is the scattered wave vector, {xil} are atoms that belong to plane number l, and

{xjm} are atoms that belong to plane number m (both having the same normal n). Eqn.

1.32 is the condition where constructive interference of waves occur. From Eqn. 1.32, we see

that

(kout − kin) · (xil − xi
′

l ) = 0 (1.33)

or

kout − kin ‖ n (1.34)
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For elastic scattering,

|kout| = |kin| (1.35)

(the Ewald’s sphere), and for small-angle scattering (in TEM for example, a 200 keV electron

has wavelength 0.025079 Å, which is much smaller than interplanar spacing), kout − kin is

almost perpendicular to kin, so the set of kout−kin that gives strong diffraction on the screen

are very close to the normal directions of the crystal planes that belong to the zone axis.

BTW people usually denote the angle between kout from kin as 2θ, where θ is called the

Bragg angle. (If we fix kin ‖ ez, the above would have factor of 2 difference in labeling k̂out

from the typical spherical coordinate label (r, θ, φ) convention: θ → 2θ). We see that in

order for constructive interference to between scattered waves of equivalent atoms:

∑
j

exp(i(kout − kin) ·∆xj) → (kout − kin) ·∆xj = 2πN (1.36)

there needs to be

q ≡ kout − kin = 2π(m1g1 +m2g2 +m3g3)n (1.37)

or

|q| =
2πn

dmin

(1.38)

but since |q| = 2 sin(θ)|kin|, we get

2 sin(θ)|kin| =
2πn

dmin

→ 2 sin(θ)|h̄kin| =
nh

dmin

→ 2 sin(θ)dmin = n
h

|pin|
= nλ (1.39)

where we used p = h̄k and the de Broglie relation λ = h/p that holds even for relativistic

electrons, to get the famous Bragg’s law:

dmin =
nλ

2 sin(θ)
(1.40)

where λ is the incoming and outgoing electron wavelength.

Just like we need grids on a Cartesian graph paper, we also needs grids on a stereogram to

read out the approximate angular values for any n̂ plotted on the stereogram. This is called

a Wulff net, typically with ∆θ = ∆φ = 2◦. θ is the polar angle (latitude, constant-latitude

lines are called parallels), φ is the azimuthal angle (longitude, constant-longitude lines are
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called meridians). With θ, φ read out, we can reconstruct

n̂ = (sin θ)(sinφ)ex + (cos θ)ey + (sin θ)(cosφ)m (1.41)

where θ = 0 is the “north pole” and φ = 0 is the central vertical line. Also, we would have

s(n) =
(sin θ)(sinφ)ex + (cos θ)ey

1 + | sin θ cosφ|
(1.42)

The beauty of stereographic projection s(n) is that angle is preserved from spherical sur-

face (“3D”) to 2D, the so called “conformal” property. Consider a move on the forward

hemisphere:

ds =
dn̂− (dn̂ ·m)m

1 + m · n̂
− (n̂− (n̂ ·m)m)(m · dn̂)

(1 + m · n̂)2

=
dn̂− (dn̂ ·m)m + (m · n̂)dn̂− (m · n̂)(dn̂ ·m)m− (n̂− (n̂ ·m)m)(m · dn̂)

(1 + m · n̂)2

=
dn̂− (dn̂ ·m)m + (m · n̂)dn̂− n̂(m · dn̂)

(1 + m · n̂)2

=
(1 + (m · n̂))dn̂− (dn̂ ·m)m− n̂(m · dn̂)

(1 + m · n̂)2
(1.43)

Now consider two moves n̂→ n̂ + dn̂1 and n̂→ n̂ + dn̂2, thus

ds1 · ds1 =
(1 + m · n̂)2dn̂1 · dn̂1 + 2(m · dn̂1)2 + 2(dn̂1 ·m)2(m · n̂)− 2(1 + m · n̂)(dn̂1 ·m)2

(1 + m · n̂)4

=
(1 + m · n̂)2dn̂1 · dn̂1

(1 + m · n̂)4
(1.44)

as dn̂1 ⊥ n̂, and also dn̂2 ⊥ n̂

ds2 · ds2 =
(1 + (m · n̂))2dn̂2 · dn̂2

(1 + m · n̂)4
(1.45)

ds1 · ds2 =
(1 + m · n̂)2dn̂1 · dn̂2 + (m · dn̂1)(m · dn̂2) + (m · dn̂1)(m · dn̂2)

(1 + m · n̂)4
+

2(dn̂1 ·m)(dn̂2 ·m)(m · n̂)− 2(1 + m · n̂)(dn̂1 ·m)(dn̂2 ·m)

(1 + m · n̂)4
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=
(1 + m · n̂)2dn̂1 · dn̂1

(1 + m · n̂)4
. (1.46)

Thus,

cos(dn̂1, dn̂2) ≡ dn̂1 · dn̂2

|dn̂1||dn̂2|
=

ds1 · ds2

|ds1||dŝ2|
≡ cos(ds1, ds2) (1.47)

QED. The above proof is not so transparent, the steps below are more “geometric”:

ds(n) =
p(dn)− (m · dn)s(n)

1 + m · n
=

dn− (m · dn)(m + s(n))

1 + m · n
(1.48)

we then note that cos(dn̂1, dn̂2) does not depend on the amplitude of dn̂1, dn̂2, so we can

drop the denominator below. Furthermore, by definition

m + s(n) =
m + n

1 + m · n
(1.49)

So the Wulff net which maps parallels and meridians all have 90◦ angle at crossings, just like

on the spherical surface.

Take a cubic crystal, if we plot all the 〈100〉 (degeneracy=6), 〈111〉 (degeneracy=8), and

〈110〉 (degeneracy=12) on the stereogram, we find we divide the 4π solid angle into 48

equivalent patches. Each patch is a “triangle”, with one vertex from each of the 〈100〉,
〈111〉, 〈110〉 families.3 Thus, when we would like to tabulate the response of a single crystal

of cubic symmetry to an external input with direction n, for example uniaxial tensile stress

of the form σnnT , or the dielectric polarization due to electric field En, there is no need to

collect data for the entire 4π solid angle. We only need to collect and parametrize data in the

4π/48 solid angle, which is called the standard stereographic triangle that is [100]-[110]-[111]

connected by geodesic lines (part of the great circle or “flight path”). The response, when

n falls into any of the other 47 triangular patches, can be simply related to what happens

in the standard triangle by symmetry permutations.

Anisotropy means some material response function, for example electrical resistivity r(n),

depend on n, i.e. directional nature of the applied probe 4. For a cubic crystal, this means

angular non-uniformity within the standard stereographic triangle. For example, BCC iron

is the most easy to magnetize along 〈100〉 (the magnetic field or induction B rises the fastest

3The so-called rule of addition works for these vertices, that is, [111] is on the line connecting [001] and
[110] on the stereogram, so [111] = [001] + [110]

4There is a definition using tensors[4], but we use scalar response for pedagogical simplicity.
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with the magnetizing field H in that direction), so when making transformer cores, one

should aim to align the 〈100〉 direction with the magnetic flux lines, which reduces magnetic

hysteresis and improves energy efficiency of transformers. In FCC nickel, however, the

easiest-to-magnetize direction is 〈111〉 family. So, anisotropy is generally crystal-structure

and materials dependent.

In real applications, it is often difficult to come up with large single crystal. It is much easier

to produce polycrystals, which is aggregate of many single crystals. The lattice orientation

of a single crystal consists of three angular degrees of freedom, since a rotational matrix in

3D:

x̃ = Rx (1.50)

has three degrees of freedom, due to the constraints imposed by RTR = RTR = I. R may

be mapped onto three Euler angles (α, β, γ), in a decomposition:

R = r(ez′ , γ)r(ex′ , β)r(ez, α), (1.51)

where r(ez, α) means rotating about ez axis by angle α, ex′ is the new position of ex after

the first operation, and ez′ is the new position of ez after the second operation. So we have

(ex, ey, ez) → (ex′ , ey′ , ez) → (ex′ , ey′′ , ez′) → (ex′′ , ey′′′ , ez′) (1.52)

Note that the order of α, β, γ is important. Also, there is a theorem that any R can be

written as r(n, θ), where n has two degrees of freedom, and θ has one.5

Thus, any crystalline grain’s lattice orientation embedded in a polycrystal can be specified

by these three numbers (with respect to a reference crystal). A random rotation is specified

by

dP = f0(α, β, γ)dαdβdγ =
dα

2π
· d cos β

2
· dγ

2π
=
| sin β|

8π2
dαdβdγ (1.53)

where α is uniformly distributed in [0, 2π), cos β is uniformly distributed in [−1, 1], and γ is

uniformly distributed in [0, 2π). The reason for the “special treatment” of β is that we notice

that ez undergoes only one transformation in (1.52), and we need to make sure ez′ covers

the 4π spherical angle evenly, since although (ex, ey, ez) are treated procedurally differently

in (1.52), they must end up physically equivalent (for example the ex, ey, ez could be [100],

5The real polynomial det|R − λI| = 0 has three roots λ1, λ2, λ3, with |λi|2 = 1. So one of {λi} must
be ±1, while the other two could be complex conjugates. The −1 root possibly is due to inversion, which
flips the right-handedness of the three axis, and therefore can be separated out from the operation. If R is
differentially produced that preserves the right-handedness, the −1 root cannot be there.
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[010] and [001] of a cubic lattice), and thus “equally random”, which means ez = [001] should

cover the sphere evenly.

Texture means the distribution of crystal orientation differs from the random orientation:

f(α, β, γ) 6= f0(α, β, γ) (1.54)

and there are preferred lattice orientations in the polycrystal. In wire drawing, where one

pulls the metal through a die, a 〈110〉 wire texture could develop in BCC iron, which means

the grains tend to have one of their 〈110〉 ‖ the wire drawing direction. This happens through

a complex, multi-step process, where severe plastic deformation and dislocation storage first

occurs, followed by so-called dynamic recovery / recrystallization. We will address how

texture forms by plastic deformation later in the course. Note here that even if 〈110〉 is fixed

(2 degrees of freedom), the lattice orientation still has a random degree of freedom, in that

the grain can rotate around its 〈110〉 axis.

If one rolls a BCC polycrystal into a sheet (rolling direction (RD) + transverse direction

(TD) in the sheet plane, plus rolling plane normal (ND)), the favoable lattice orientation is

either (A) 〈110〉 ‖ RD, or (B) 〈100〉 ‖ RD. In both (A) and (B), 〈001〉 ‖ ND. Clearly, for

making transformer core by repeatedly folding the sheets, (B) texture is better. For BCC

Fe-4wt%Si soft magnet, a special process was developed to produce texture (B). Note that

if one has “perfect” rolling texture (A) or (B), then one just get a single crystal. In reality,

though, even in a strongly textured polycrystal, there is likely ±10◦ variance in adjacent

grains.

In recent years, so-called grain orientation imaging using automated electron backscatter

diffraction (EBSD) [5, 6, 7] was developed and widely used, which can identify αi, βi, γi as

well as grain sizeDi and shape, for individual grains {i} on the surface. Thousands of contigu-

ous grains can be characterized automatically, which can then be analyzed into single-grain

statistics, or even multi-grain correlations (for example the grain boundary misorientation

is a 2-grain correlation, and grain boundary path/network is a multi-grain correlation[8]).

To characterize texture, which is a single-grain statistics, so-called pole figure is developed,

which are stereograms with the line of sight m ‖ ND, RD is ey, and ex is TD. We note

this is different from the standard stereographic triangle where the reference directions are

the crystallographic directions, and external probing n are plotted in reference to them

(“properties” anisotropy of single crystal). Here, the reference directions are the process-

ing geometry, while what are plotted are the crystallographic directions of an assmebly of
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polycrystals, since the crystal orientation themselves are changing. This contrast is because

the texture pole figures are for characterizing “processing→structures” anisotropy. Thus,

from the stereogram tools, which is used to characterize anisotropy in 3D, we can already

see “properties”, and “processing→structures”, which are the fundamental ingredients of

materials science.

In this chapter, we had a flavor of atomic structure and polycrystalline structure. This is

only the beginning - there are many fascinating “structures” in metallurgy, that await us in

this course.
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Chapter 2

Metallic Bonding, Ideal Strength and

the Dislocations Machinery

People’s impression of metals are shiny (lights cannot transmit through, much is reflected),

malleable objects, and cool when touched (relatively high thermal conductivity κ [W/m/K]).

If they measure the electrical conductivity σ [1/Ohm/m], they will also find it to be high.

These behaviors are fundamentally connected. A high electrical conductivity means low-

and medium-frequency electromagnetic fields will be strongly screened by the free, mobile

electrons inside the metal, and thus cannot penetrate far. From an energy band point of

view, this also makes sense since zero band gap means arbitrarily low-frequency photons can

be absorbed (and maybe re-emitted later). The higher thermal conductivity is related to

electrical conductivity through the Wiedemann-Franz law

κ ≈ TσL, L =
π2

3

(
kB

e

)2

= 2.44× 10−8W/Ohm/K−2 (2.1)

which holds reasonably well for simple metals, when the main charge carriers are also the

main heat carriers. The last property, that they are malleable (relatively speaking, and

varying between metals), originates from metallic bonding (vs. covalent and ionic bonding),

which also has to do with the aforementioned delocalized, free electrons.

Before we delve into the nature of metallic bonding, and the nature of malleability or duc-

tility, I just want to mention that the mere existence of shiny solids on Earth is kind of a

miracle! This is because metals themselves are quite reactive with oxygen gas molecules,
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which surround the Earth. In fact, the standard Gibbs free energy of formation of Fe2O3:

2Fe(bcc) +
3

2
O2(g) = Fe2O3(rhombohedral ′′hematite′′) (2.2)

is ∆G0 = −740 kJ/mol at T = 298.15K and P (O2) = 1atm, or -3.8 eV per Fe atom! To

appreciate the magnitude of this, most liquid→solid and solid→solid phase transformations,

such as solidification and martensitic transformations, have driving force less than 0.05eV

per atom. The -3.8 eV per Fe atom is a huge thermodynamic driving force, Damocles

sword up the neck of metallic Fe so to speak, that is not going away any time soon! Our

stone-age ancestors saw trees, earth, rocks, clouds and animals, but in their daily lives they

did not see much shiny, opaque, ductile solids around. That’s perhaps why they were

fascianted by gold, which is the most stable of metallic elements chemically, as reflected

in the electromotive force series, which characterize the willingness of metals to give up

their free electrons and turn into a hydrated cation1. As metallurgy and human civilization

advances, more and more shiny opaque strong and tough objects are produced, so now we

are surrounded by them. However, if not tended to, the shiny facade of the Stata Center

(made of titanium), the metal trim of your iphone, WILL oxidize away after many many

years. So, the whole concept of metallurgy, the usage of metal in human civilization is

in fact exploiting the metastable state of matter! Corrosion, which is the chemo-

mechanical degradations of matter including oxidation reactions, is forever the enemy of most

metals. Fortunately, metals developed a defense mechanism called “parabolic kinetics”, that

slows down (but not stops) the advance of oxidation with time. This miracle of the long

metastability of metal, which has a kinetic origin, is called passivation.[9] A thin passivation

layer develops on the surfaces of metals, that are barriers against oxygen transporting inward,

or metal transporting outward to meet oxygen. So it is this thin passivation layer of tens

of nanometers (the oxidation layer can be microns or even mm scale, but the region that

offers true resistance, the region that is truely atomically compact, only needs to be tens of

nanometers) that saves gigantic metal structures of our world that runs cm to meter or even

kilometer lengthscale!

If all works out according to the plan, metals should have nothing to worry about within a

few millennia. But “parabolic kinetics” does not always work, due to for instance localized

pitting corrsion [10] and “friable” oxide, which has a lot of cracks and whose thickness grows

linearly with time. And also this skin could be quite fragile mechanically, so when there is

1The electronegativity, as characterized by the standard potential, tends to increases from left to right
on the periodic table for the same period.
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a crack, and stress is applied and amplified at the crack-tip, the skin could be broken, and

then the material could fail by combined chemical and mechanical attack, which manifest

as stress-corrosion cracking for instance.

It is not always O2(g) that is the problem. The “environment” that the metal is embedded

in could contain all kinds of agents that is bad for the metal. In Fukushima Daiichi nuclear

disaster, the following reaction

Zr(hcp) + 2H2O(l) = ZrO2(s) + 2H2(g) (2.3)

happened, as Zr is more active than H2 in the electromotive series2. The reaction also

happens under normal reactor operating temperatures, but is greatly accelerated at high

temperatures. So after Fukushima, nuclear metallurgists are developing accident-tolerant

nuclear fuel claddings, that does not react with the environment rapidly at high tempera-

tures.

Now coming to the main theme of mechanical response. Metals have valence electrons

(incomplete shells) that are loosely bound to the nuclei. When we assemble metal atoms into

condensed matter by bringing them into proximity, these valence electrons start to meander

between ions, even without thermal agitation (electronic temperature Te=0K), since there is

enough benefit in quantum kinetic energy 〈ψ| −∇2|ψ〉 not to be constrained around one ion

and being able to propagate around.3 These “itinerant” electrons are shared between many

ions, and do not “belong” to a particular ion. (Metallic vs ionic/covalent bonding is like

Communism vs GOPism for bachelors and married couples). Under an external electric field,

these itinerant electrons can freely flow, giving high electrical and thermal conductivities.

Like a glue, this sea of itinerant electrons provide bonding, which is to say bringing the

atoms together reduced the total energy compared to the individual isolated atomic states:

Eb(N) ≡ Etogether(N)−Neisolated < 0 (2.4)

where N is the number of atoms. We can also define binding energy or cohesive enery per

particle:

eb ≡ lim
N→∞

Eb(N)

N
(2.5)

2The standard potential is U0 = −1.45V, meaning 1.45eV per electron more acive than hydrogen
in http://en.wikipedia.org/wiki/Standard electrode potential (data page). Minor alloying and/or high-
temperature structural phase transformations will not change the ball-park value from HCP Zr.

3No thermal fluctuation is needed, since quantum fluctuation and Pauli exclusion is already sufficient to
delocalize.
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where the surface contribution is filtered out by the large-number limit. eb of course

is crystal structure and lattice constant (elastic strain) dependent. In FCC Cu,

eb = −3.54 eV/atom. −3.54 eV/atom can be considered to the energy gain of embedding

the Cu core ion in the electron glue, after donating its valence electrons to the glue also.

The usual way people described metallic bonding is the embedded-atom model [11]:

U({xi}) =
∑
i

∑
j 6=i u(rij)

2
+ Fi(

∑
j 6=i

ρ(rij)), (2.6)

where ρ(rij) is the “glue projection” function, and Fi is the “ion embedding” function.

U({xi}) is called the interatomic potential or the atomistic potential energy landscape

(PEL). The u(rij) is the pair and additive contributions like the simplest Lennard-Jones

potentials, but the second term makes the many-body nature of bonding manifest. The

embedding function, Fi(·), is often chosen to be
√
· in the so-called Finnis-Sinclair forms.[12]

This provides a bonding energy benefit that scales as −
√
Z, where Z is the coordination

number. This −
√
Z form has a coordinate-saturation effect that stablizes lower-coordination

crystal lattices such as BCC, relative to the FCC and HCP close-packed lattices. With a

many-body potential form like (2.6), we can sum over lattice sites to obtain eb for a given

lattice structure geometry at T = 0. The plot of eb(Ω), where Ω is the atomic volume, is

called the cohesive energy curve. This would allow us to compare the stability of different

crystal structures at zero pressure, as well as at finite pressures (after adding the +PΩ term).

With U({xi}), we can also calculate the total potential for an assmebly of non-perfectly

arranged atoms (imagine thermal fluctuations of ion positions, aka phonons, and/or defects

- a defect is defined by a set of atoms having atomic-neighbor relations or bond topologies

significantly different from those in the perfect reference lattice - defects tend to have

higher energy and sit in PEL’s metastable energy basins), and run molecular dynamics

(MD) simulations with it

mi
d2xi
dt2

= −∂U({xi})
∂xi

(2.7)

From a pure theorist point of view, (2.7) creates a complete “world”, in the sense that all

crystal and defect structures, their time evolutions and therefore thermomechanical proper-

ties can in principle be obtained by integrating (2.7) forward in time.4

4The practical computability is another matter. In this course, even though we do not teach how to
implement (2.7) in the computer, we do want to ask people to think from the “atomistic world” perspective,
which is one of the multiscale perspectives of thinking about materials.
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It should also be cautioned that the “free electron glue” picture is only an idealization that

works best for s- and p- valence electrons, which are the most delocalized. d-electrons are

more spatially localized and also have a narrower energy distribution than s- and p-electrons,

which makes transition metals harder to deal with from ab initio calculations. f -electron

metals, such as rare-earth metals (such as La, Ce) and actinide metals (such as Pu), are

even harder to deal with, due to even stronger electron localization and electron-electron

correlation. Also, there is in fact some angular dependence in metallic bonding, even in

sp-bonded simple metal like Aluminum [13]. This is the reason for the development of

Modified Embedded-Atom Model (MEAM) [14] family of empirical interatomic potentials

for metals. The form of MEAM is general enough that it may even be used to describe

covalently bonded semiconductors, which is important for metallurgy if we want to consider

impurities in metals, or compounds such as metal silicides.

The lattice at mechanical equilibrium at T = 0 is the result of

a0(c0, ...) ≡ arg min
structure

eb. (2.8)

Elastic deformation is defined as “small”, reversible, but diffuse/delocalized change to

the Bravais lattice vectors {ai(x)} of a perfect crystal, where x is a coarse-grained position

inside the material. By definition, elastic deformation excludes highly localized changes

in atomic geometry, which samples the nonlinear nonconvex part of the atomistic potential

energy landscape (PEL). The elastic response can be probed by applying an external stress

σext:

min
ε
eb(ε)− ΩTr(σextε) → σint ≡

1

Ω

∂eb(ε)

∂ε
= σext. (2.9)

We could define shear modulus G by

G ≡ ∂σshear
int

∂εshear

∣∣∣∣∣
ε=0

=
1

Ω

∂2eb

∂ε2shear

(2.10)

and the bulk modulus B by

B ≡ ∂σhydro
int

∂εhydro

∣∣∣∣∣
ε=0

=
1

Ω

∂2eb

∂ε2hydro

(2.11)

where εshear is the shear elastic strain (generally, we will use the engineering shear strain, for

example εshear = γxz = ∂xuz + ∂zux), and εhydro is the hydrostatic invariant. For pedagogical
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simplicity, we could envision a representative elastic deformation that looks like

ε =


εhydro

3
0 εshear

2

0
εhydro

3
0

εshear
2

0
εhydro

3

 . (2.12)

In a crude sense, the elastic constants G and B (generally, cijkl tensor) characterize the

curvature of the energy landscape with respect to small, diffuse changes to {ai(x)} (the

elastic strains):

eb(εhydro, εshear) = eb(0, 0) +
Ω

2
(Gε2shear +Bε2hydro) +O(ε3) (2.13)

At finite T , we just need to add −Ts term to eb, and use fb = eb−Ts = −N−1kBT lnZ, the

Helmholtz free energy of binding per particle, instead of eb. This is so-called thermoelasticity

formalism. Z is the partition function in statistical mechanics.

In simple lattices, εhydro stretches the bonds (changes the atomic distance rij ≡ |xj − xi|)
without changing the bond angles θijk, a 3-atom quantity. But εshear changes the bond

angles. As the names “free electron gas” or “Fermi liquid” (even at Te=0K) imply, people

consider the aforementioned electron glue to be somewhat isotropic. The result is that

metallic bonding tends to be more isotropic than covalent bonding, as reflected in lower

shear modulus to bulk modulus ratio of most metals compared to semiconductors [15, 16]:

G

B
(metals) <

G

B
(Si,Ge, SiC, etc.). (2.14)

Metallic bonding is thus “shear-weak” or “shear-soft” compared to ceramics, all the way

till spontaneous bond switching driven by shear, when the so-called ideal shear strength

σideal is reached.

The ideal strength σideal is defined by the following thought experiment (Gedankenexper-

iment). Imagine a perfect crystal without any defects and at T = 0. Now we gradually

elastically strain up the lattice, according to a path ε(λ), which could be a simple straight

line in the 6D strain space

ε(λ) = λε0, λ = [0, λC), (2.15)

at what point would a critical λC be reached, that the homogeneity of the lattice can no

longer be maintained, and the deformation loses reversibility?
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We could imagine that along the εshear axis, we can shear the bonds more and more, until at

some point, the original set of nearest-neighbor bonds snap, or break spontaneously. Then we

reach the ideal shear strength σshear
ideal and ideal shear strain εshear

ideal . We could also imagine that

along the εhydro axis, we stretch the bonds more and more, until the nearest-neighbor bonds

snap; then we reach the ideal hydrostatic tensile strength σhydro
ideal and ideal hydrostatic tensile

strain εhydro
ideal . Generally speaking, εideal is a 5-dimensional surface in the 6-dimensional strain

space. Moving the strain path ε(λ) anyway inside the εideal surface is completely reversible

- one can fully recover the perfect crystal upon unloading (all at 0K). But if the path ever

touches the surface, BOOM!

Ab initio calculations can be used to calculate εideal and σideal. The results tend to be huge

values [16]. For instance, BCC Fe has εshear
ideal = 0.178 and σshear

ideal = 8 GPa. (Have you ever seen

a piece of bulk Fe that can elastically shear 17% and sustain critical resolved shear stress

(CRSS) of 8 GPa reversibly? The key, however, is the qualifier bulk Fe and what defects may

be contained in your typical polycrystalline bulk Fe: dislocations, GBs, inclusions, surface

damages, voids, outright microcracks....)

If you don’t believe the numerical ab initio calculations, the large ideal strength can be still

be justified on theoretical grounds. The renowned physicist Yakov Frenkel proposed the

famous “Frenkel sinusoid”[17] in 1926. Imagine a material whose electron glue is local, i.e.,

its energy response only cares about the atomic plane immediately above, and the atomic

plane immediately below. We can then perform the so-called generalized stacking fault

(GSF) energy calculation, which characterize a sharp slip between two rigidly upright blocks

of crystals. Let us define the slip displacement as x (note x does not mean position here!),

and we can calculate the energy increase as the top plane rides above the bottom plane,

∆E1(x), the subscript 1 denotes there is just one glue layer that is being sheared (between

just two planes). Clearly, ∆E1(x) is extensive quantity and needs to be normalized by the

slip plane area A0, and we can define an intensive quantity called one-layer GSF:

γ1(x) =
∆E1(x)

A0

(2.16)

We note that γ1(x) resembles the most localized deformation possible in the vertical direction,

very distinct from the elastic deformation before. We will address this difference later.

Right now, however, focus on γ1(x), which has the unit of energy per area, same as the

surface or interfacial energies (it is a kind of stacking fault). We note that γ1(x) must be a
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periodic function:

γ1(x + b) = γ1(x) (2.17)

where b is a Bravais translational vector. And

γ1(0) = γ1(nb) = 0 (2.18)

where for a simple cubic solid, one likely have a very high energy for x ∼ b/2, since we will

have an energy saddle point. Thus, a most crude fitting form for the slip-shear response

would be

γ1(x) =
γ∗

2
[1− cos

(
2πx

b

)
] (2.19)

where γ∗ is the unstable stacking energy. We can also define

dγ1(x)

dx
=

πγ∗

b
sin

(
2πx

b

)
, (2.20)

which can be regarded as the traction-displacement response of the local electron glue.

(The “metallic bonding” really comes from the electron glue, as we have seen before). dγ1(x)
dx

has the unit of stress.

Now consider a series of constrained deformation, E2(x), E3(x), E4(x), ..., En(x), where the

deformation is more and more delocalized (diffuse) in the z-direction. But we can normalize

the energy by n, the number of glue layers being sheared:

γn(x) =
∆En(x)

nA0

. (2.21)

There is clearly also:

γn(x + b) = γn(x) (2.22)

and we can now directly compare intensive quantity γn(x) with intensive quantity γ1(x). As

it turns out, in FCC Cu,

γn(x) ≈ γ1(x) (2.23)

indicating the electron glue in Cu is indeed quite local [18]. In FCC Al, γn(x) and γ1(x)

differ somewhat - the difference thus indicates the glue is not entirely local, there is some

bond angle dependence in the energy which generate triple-layer interactions. Nontheless,

γn(x) (up to γ∞(x), which characterizes elastic deformation) are of similar magnitude with
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γ1(x). For pedagogical simplicity, let us pretend

γ∞(x) = γ1(x) (2.24)

and the electron glue is very local in this course.

From (2.9), we see that

σshear = lim
n→∞

1

Vn

∂En
∂εshear

=
1

nA0d0

∂nA0γn(x)

∂(x/d0)
=

dγ∞(x)

dx
(2.25)

From (2.24) and (2.20), we then get

σshear =
dγ1(x)

dx
=
πγ∗

b
sin

(
2πx

b

)
. (2.26)

From the very simple physical reasoning above, two conclusions can be drawn:

1. For small deformation, x� b,

σshear ≈
πγ∗

b

2πx

b
=
πγ∗

b

2πεsheard0

b
(2.27)

so we get

G =
2π2γ∗d0

b2
(2.28)

or

γ∗ =
Gb2

2π2d0

. (2.29)

as an estimate of the energy barrier (actually energy/area) for localized shear, or slip.

2. The peak shear stress is obtained at:

σideal
shear =

πγ∗

b
=

Gb

2πd0

(2.30)

when x = b/4 and

εideal
shear =

b

4d0

. (2.31)

At this point,
∂2E

∂ε2shear

= 0, (2.32)
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and one enters into the non-convex region of the PEL. The local elastic stability is lost,

and homogeneity of the lattice can no longer be maintained.

(2.30) is called the Frenkel ideal shear strength estimate. Generally speaking, in a simple

metal, b = |b| is the nearest-neighbor distance. With respect to the reference atom on

one plane, the adjacent plane below should also have one of its nearest neighbors, but the

separation is not perfectly parallel to the plane normal n, so there tends to be

b > d0 (2.33)

Thus, a reasonable estimate for the ideal shear strength is

σideal
shear ≈

G

5
(2.34)

from the Frenkel sinusoid model. However, as we have mentioned before, metals are “shear-

soft”, and the sinusiod is actually tilted [19] and peaks earlier than b/4, so a better approx-

imation for metals might be

σideal
shear ≈

G

10
. (2.35)

Thus, if we take the {0001}〈112̄0〉 shear system of HCP Mg, G = 19.2 GPa, the ideal shear

strength should be around 2 GPa, which is close to the density functional theory (DFT)

calculated value of 1.84 GPa[15].

In an actual experiment on a bulk metal, say HCP Mg, what one gets is a plastically flowing

metal at much lower stresses than the ideal strength:

σ = σ(ε), ε = ε̇t (2.36)

where a typical applied strain rate is ε̇ = 10−4/s. A notable bend occurs in the curve at

σ = σy. People usually define σy by the “0.2% offset strain” rule. The rationale for this is

that the unloading modulus is often a good (sometimes even better) estimate of the elastic

modulus as the loading modulus, so if one imagines unloading, the amount of residual plastic

strain at zero load would be 0.2%, which is small but measurable amount of sample-scale

plasticity. Thus, the point of σy can be considered to have initiated measurable sample-scale

plasticity, on top of whatever elasticity that have occurred. Hollomon’s equation is

σ = Kεnp, (2.37)
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where n is the (plastic) strain hardening exponent (between 0.1 and 0.5 for most metals),

and εp is the plastic strain component of the total applied strain

ε = εe + εp (2.38)

and εe is the elastic component of the total applied strain. Also, for traditional macroscopic

experiments, it is a very good approximation to have

σ = Eεe (2.39)

where E is the Young’s modulus. Thus, combining the equations, we have

σ = K
(
ε− σ

E

)n
, (2.40)

which gives the total stress-strain curve.

σy is very small for pure bulk Mg, if we align (0001)Mg 45◦ to the uniaxial pulling direction.

The contrast between σy ∼ 0.7 MPa and σshear
ideal = 1.8 GPa is really stark, off by a factor of

more than 2000! Has Frenkel gone mad?

In 1934, G. I. Taylor [20], Egon Orowan [21] 5 and Michael Polanyi [22] simultaneously

introduced the concept of dislocations, which resolve the paradox or discord between ideal

strength and practically observed strength of bulk metals. If we regard Frenkel’s estimate as

pure physicists’ answer to strength of crystals, the answer by Taylor, Orowan and Polanyi

has more pessimistic realism in it, which is the typical view of material scientists. The

2000-fold difference is attributed to initial condition in the material, ie. microstructures or

defects, namely dislocations. These dislocations are line defects that move inside the crystal,

like crawling caterpillars or rolling carpet creases [23]. Dislocations are giant atomic-bond

harvesting machines: as a dislocation core move in the crystal, it cuts some old bonds but

also simultaneously stitches some new bonds together, promoting so-called bond-switching

(not permanent bond-loss as in crack propagation), which is the essence of inelastic or

plastic shear. Dislocations are not thermal-equilibrium defects: they must be generated by

“beating”.

Let us back up a little. Scientists in the 1800s have envisioned elastic distortions on aether

[23] that contain localized defects. Anton Timpe [24] and Vito Volterra [25] indeed solved the

elastic stress fields of these defects. Volterra further classified these line defects into six types

5Orowan was a professor of metallurgy at the MIT from 1950.
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of distorsioni, three turns out to be dislocations, and three turns out to be disclinations. The

dislocations are the 1D edges of a 2D translational fault (∆x = b to ∆x = 0 ), or slip fault.

The disclinations are the 1D edges of a 2D rotational fault (∆θ = 10◦, a grain boundary, to

∆θ = 0, no grain boundary). Disclinations are prohibitively expensive in 3D crystals, but

they can exist in 2D crystals embedded in 3D [26, 27] and liquid crystals [28, 29].

Dislocations were first directly observed by transmission electron microscopy (TEM) by the

team led by Sir Peter B. Hirsch at Oxford in 1956. [30] Thus, in this case, materials theory

was ahead of experimentation by more than 20 years!

Dislocations are created to relax (gradually reduce) elastic strain energy. As previously men-

tioned, elastic strain energy is small (small amplitude) but diffuse (long wavelength) “pain”

inside the crystal. The most common treatment of such small-amplitude, long-wavelength

pain is so-called linear elasticity theory, where stress-strain relation is linear but energy is

approximately by quadratic fitting of the bottom. Basically one attempts to fit the PEL by a

quadratic expansion near the local minimum. But even if the strain amplitude is somewhat

larger and needs to go beyond the quadratic fitting (so-called nonlinear elasticity), the main

toplogical features of crystal bonding remains as at the bottom of the energy basin, and re-

versibility is ensured upon unloading. In contrast, dislocations represent extremely localized,

large-amplitude, highly nonlinear (convex→concave→convex) and metastable deformation.

The key to plasticity is the lock-in effect, which can be seen from (2.17) and (2.22) already.

Namely, if one abuses a crystal by shearing, initially the crystal will cry out for pain, but

if one keeps up the abuse, and push it through the nonlinear regime, then the crystal will

start to feel less pain, and in the end would see no difference from its comfort zone. Until

the next round of abuse starts. This “locks in” the large-amplitude, highly localized slip dis-

placement. Nonlinearity and non-convexity in the PEL is the essence of plasticity.

(as versus elasticity, which focusses on and is limited by the quadratic fit).

Why then, is dislocation slip preferred over, say, shearing 3 layers together? (From here

on, slip means most localized, large shearing between two atomic planes.) We notice even

that the generalized stacking fault calculation of γ1(x) looks kind of “unnatural”, in that

one must rigidly constrains the top and bottom blocks, and only allow relative displacement

between the two rigid block. Why would one artificially apply such constraint?

The reason turns out to have more to do with the nonlinear response, than with the linear

response of the crystal. If one fixes the external displacement ∆ that spreads over n layers,

one should plot and compare γ1(∆) with nγn(∆/n) (From now on, we use ∆ to denote shear
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displacement instead of x, since we will talk about spatially dependent displacement ∆(x)).

It turns out that, if we assume the local electron glue, (2.23), then for small ∆:

γ1(∆)� nγn(∆/n) (2.41)

Indeed, the curvature of the former is n times larger than that of the latter. So, for small ∆,

diffuse deformation is preferred, the more diffuse, the better. However, once we requires large

shear offset ∆, the situation is seen to be reversed. The saddle-point energy to overcome a

diffuse barrier is n times larger than that of γ1(∆)! Thus, for the most localized slip defor-

mation, the pain comes quickly, but peaks earlier; whereas for the delocalized deformation,

the pain comes later, but is ultimately greater. This basically says that, if one must cuts

bonds to achieve large traction relaxation, then doing the bond cutting on one atomic plane

is the best choice.

The above is the argument for the strongest possible localization in the z-direction, which

is localizing down to a single slip plane between two adjacent atomic planes. There is

also an argument for localization in the xy-plane, the so-called Peierls-Nabarro theory of

the dislocation core. [31, 32] Basically, Peierls argues that if only pain on the slip plane

(“localized pain”) is counted:

Eslip =
∑

atom i in core

γ1(∆i) ≈
∫
dxγ1(∆(x)) (2.42)

this energy would prefer a core as narrow as possible. However, since a dislocation must

make the transition from ∆ = 0 (outside of slipped plate) to ∆ = b (inside slipped plate),

the slip offset ∆ changes with position x, and therefore elastic energy in other places (“diffuse

pain”) must also be involved. One could show it is of the form

Eelastic =
∫
dx
∫
dx′

d∆(x)

dx
K ln |x− x′|d∆(x′)

dx′
, (2.43)

where K depends on the elastic constants only. The above is a quadratic form: it is easy to

show that if the dislocation core is wider by 2:

∆(x) → ∆
(
x

2

)
(2.44)

Eelastic would drop by a factor of 4. Therefore Eelastic prefers as wide core as possible. Peierls
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solved the variational problem:

Edislocation =
∫
dxγ1(∆(x)) +

∫
dx
∫
dx′

d∆(x)

dx
K ln |x− x′|d∆(x′)

dx′
, (2.45)

and obtained the in-plane size of the dislocation core.[31] The problem with (2.45) is that

there is no barrier against the translation

∆(x) → ∆(x− s) (2.46)

for arbitrary shift s of the dislocation core, forming so-called Goldstone mode, due to the

continuum formulation. This is not true in reality, because so-called lattice friction does

exist on all dislocations, for example screw dislocation in BCC metal, and dislocations in

semiconductors, are known to have very significant lattice frictions.

Nabarro solved the zero-friction problem by resorting back to the atomistic sum:

Eslip =
∫
dxγ1(∆(x)) → Eslip =

∑
atom i in core

γ1(∆i) (2.47)

using the Peierls core solution. The key results from Nabarro’s work [32] are: (a) Nabarro

obtained an energy barrier for dislocation translation, paradoxially called the Peierls energy

barrier (in terms of stress needed to overcome this barrier, the Peierls stress), and (b) the

Peierls barrier has strong (exponential) dependence on the core size. The wider the dislo-

cation core, the lower the Peierls barrier. So, dislocations in FCC metals have wider cores

(due to Shockley partials splitting), and the lattice friction is small. But screw dislocation

in BCC crystals have narrow cores, and therefore the lattice friction can be very large, so

large that it can dominate the overall plastic flow strength.

So dislocation is basically a machine to cut bonds on one plane, and then re-stitch them

together. It should not be surprising that dislocation is the fundamental agent of plastic

deformation, which is basically irreversible shape change, because dislocation slip gives the

most localized (in z and in x) way to cut the bonds.

A dislocation is characterized by its line direction ξ, |ξ| = 1, and the Burgers vector b, with

b =
∮

C

∂u

∂l
dl =

∮
C

(
∂uelastic

∂l

)
dl (2.48)

where the line integral is taken in a right-handed sense relative to ξ. C is a closed loop in an
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original perfect crystal far from the dislocation core (the Lagrangian frame of reference), and

u is the total displacement after the dislocation has sheared into inside the loop, creating a

branch cut. C is the same loop as C, except it is open and avoiding the branch cut. ∂u
∂l

is a

strain-like quantity, so we have

∂u

∂l
=

∂uelastic

∂l
+
∂uinelastic

∂l
(2.49)

where ∂uelastic

∂l
is small-amplitude but diffuse (away from the core), and ∂uinelastic

∂l
is a delta-

function like quantity in space, tracking the 2D branch cut. (The 2D branch cut ends at the

1D dislocation core.) Since stress σ ∝ ∂uelastic

∂l
, and the material at the branch cut is perfectly

repaired and has the same load-bearing ability as the uncut material, σ is continuous across

the branch cut and in fact is not even aware of its existence. (We will later see this from

the stress solution of screw and edge dislocations). So ∂uinelastic

∂l
is also continuous across

the branch cut and not aware of the branch cut’s existence. The second equality in (2.48)

holds because in the continuum representation of u(x), the 2D branch cut is infinitely thin,

and since ∂uelastic

∂l
is finite, integrating ∂uelastic

∂l
across the zero-thickness branch cut gives zero

anyway. In the literature, one often sees

b =
∮

C

∂u

∂l
dl (2.50)

But one must understand this is an abbreviated notation due to “notational laziness”. The

branch cut unaware second equality in (2.48) is my favorite version because of its subtlety,

and to make it even more subtle we can even use the (2.50) form, but keeping in mind that

u there is the elastic component, i.e. modulo b at the branch cut plane to make ∂u
∂l

not

divergent.

From (2.48) we see that ξ definition and b definition is related. (−ξ,−b) actually describes

the same dislocation defect configuration as (ξ,b).

If b ‖ ξ, it is called screw dislocation. If b ⊥ ξ, it is called edge dislocation. Otherwise it is

called mixed dislocation.

Because a loop integral of purely elastic displacements
∮

C
∂uelastic

∂l
dl should always give 0

(imagine we apply a diffuse but single-valued elastic distortion field in which C is embedded),

(2.48) gives the purely inelastic excess displacement, which is the slip displacement b between

two adjacent atomic planes (in continuum mechanics, this is idealized as infinitely sharp slip
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fault). Because of this, there should be Burgers vector conservation law:

b1 = b2 + b3. (2.51)

as one could distort C purely elastically from one location to another in Fig. 1-24 of [33].

For an infinite straight dislocation in isotropic elastic medium, the stress field is

σxz = −µb
2π

y

x2 + y2
, σyz =

µb

2π

x

x2 + y2
, σxy = σxx = σyy = σzz = 0 (2.52)

for “positive” screw dislocation:

ξ =
b

|b|
= ez. (2.53)

where µ is the shear modulus (we use G for crystallographic shear modulus). In cylindrical

coordinate, this is

σθz =
µb

2πr
, σrz = σrθ = σrr = σθθ = σzz = 0. (2.54)

For edge dislocation,

ξ = ez, b = bex (2.55)

the formula is a little bit more complicated:

σxx = − µb

2π(1− ν)

y(3x2 + y2)

(x2 + y2)2
, σyy =

µb

2π(1− ν)

y(x2 − y2)

(x2 + y2)2
, σxz = σyz = 0 (2.56)

σxy =
µb

2π(1− ν)

x(x2 − y2)

(x2 + y2)2
, σzz = ν(σxx + σyy) = − µbν

π(1− ν)

y

x2 + y2
, (2.57)

In cylindrical coordinates:

σrr = σθθ = − µb sin θ

2π(1− ν)r
, σrθ =

µb cos θ

2π(1− ν)r
, (2.58)

σzz = ν(σrr + σθθ) = − µbν sin θ

π(1− ν)r
, σrz = σθz = 0. (2.59)

Taking the screw dislocation as example (the edge dislocation has the same scaling, but is

algebraically more complex). We note in above that the dislocation stress field decays as r−1.

This means the elastic strain field decays also as r−1, and the elastic strain energy density
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behaves like

eelastic(x) =
σ2
θz

2µ
=

µ2b2

8π2µ
r−2 (2.60)

Thus, with a standalone dislocation, the total elastic energy per length scales as

Eelastic

L
=
∫ R1

R0

dr2πr
µb2

8π2
r−2 =

∫ R1

R0

dr
µb2

4π
r−1 =

µb2

4π
ln
R1

R0

, (2.61)

which is the diffuse “pain” in a ring of materials between R0 and R1. Obviously there is a

problem with convergence in both the inner cutoff R0 and the outer cutoff R1. The inner

cutoff can be handled by recognizing that elastic strain has a limit of ∼ 10%. Once that

limit is reached, we get into the inelastic region of the core, and the pure elasticity theory

no longer applies, and one has to use the Peierls-Nabarro theory of the dislocation core that

has some handle on the nonlinear non-convex part of PEL, the Eslip term in (2.42). [31, 32].

When that nonlinear energy inside R0 is included, the self energy can be written as

Eself

L
=

µb2

4π
ln
R1

R0

+ einelastic ≡
µb2

4π
ln
R1

R̃0

. (2.62)

Quite often people find R̃0 to be around the order of b from exact atomistic calculations.

[34].

There is also a problem with the outer cutoff R1. This in fact means the dislocation cares

about its environment. If a single screw dislocation exists in the center of a nanowire [35],

then one can expect R1 to be of the order the cylinder radius R. Generally speaking, in a

bulk metal, if there are other dislocations which screen the field of the dislocation in question,

and those nearest-neighbor screening dislocations are of the order Rscreen, we would have the

dislocation self energy as
Eself

L
=

µb2

4π
ln
Rscreen

R̃0

. (2.63)

A rule of thumb in the literature is to take

η ≡ Eself

L
∼ αµb2 (2.64)

with α ∼ 0.5− 1. From (2.63), we see this implies the screening distance is of the order

α = 0.5 : Rscreen ∼ e2πR̃0 = 535R̃0, α = 1 : Rscreen ∼ e4πR̃0 = 286751R̃0 (2.65)

Assuming R̃0 = b = a0/
√

2 = 2.556Å in Cu, this converts to Rscreen = 137nm for α = 0.5, to
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Rscreen = 73µm for α = 1, which covers most of the physically sensible ranges, from heavily

work-hardened metal (a mediumly cold-worked Cu has dislocation density ρ = 4× 1014/m2

[36], which implies a characteristic spacing of 50 nm), to highly annealed metal.

From (2.64), we see the cost of creating a dislocation scales with b2. Thus, whenever possible,

the dislocation tends to split into the smallest crystallographic unit. Also, if the interplanar

spacing d0 is large, one tends to have smaller shear moduli. So to minimize the cost of

dislocation µb2, the preferred slip system tend to have (a) the smallest Burgers vector, and

(b) the widest planar spacing. (a) and (b) are in fact not unrelated, because the smallest

Burgers vector tend to occur on in the closest packing plane. But since the atomic density

(a scalar) is the same no matter which planes and corresponding normal direction we count,

the closest packing plane also tends to be the loosest stacking plane. All these point to choice

of slip plane with the largest d0 and smallest b.

Thus, in HCP metals, when the c/a-ratio is significantly smaller than the ideal value of√
8/3 = 1.633, like in Ti and Zr, the prismatic slip {101̄0}〈12̄10〉 is triggered, instead of

basal slip {0001}〈12̄10〉.

The above logic naturally leads to Shockley partials. Assuming G is isotropic in plane (it is

if the plane has 3-fold symmetry), the Frank’s rule says that whenever

b1 = b2 + b3, |b1|2 > |b2|2 + |b3|2 (2.66)

the b1 dislocation can reduce its energy by splitting into a b2 dislocation separated some

distance from the b3 dislocation.

Consider (111) plane. The normal of this plane is n = [111]/(
√

3a0). To orient ourselves

(see Fig.2.1), we can take

ex′ =
[112̄]√

6a0

, ey′ =
[1̄10]√

2a0

, ez′ =
[111]√

3a0

(2.67)

we can check that ex′ × ey′ = ez′ . On this plane, there are six full Burgers vectors:

b1 ≡
[011̄]

2
, b2 ≡

[1̄01]

2
, b3 ≡

[11̄0]

2
, (2.68)
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basal plane

[110]/2 [011]/2

[101]/2

[121]/6

[112]/6

[ ]

[110]

[112]

[111]

Figure 2.1: Looking down onto the (111) plane.

and −b1, −b2, −b3. Generally,

εunsymmetrized
inelastic =

AslipnbT

V
(2.69)

where V is the total same volume, Aslip is how much area has slip occurred on this slip plane,

and the superscript “unsymmetrized” means we have not carried out the symmetrization

process in computing strain:

εinelastic =
εunsymmetrized

inelastic + (εunsymmetrized
inelastic )T

2
. (2.70)

So (n,−b) are often considered to be a different slip system from (n,b).

Bruce Lee: Now you put water in a cup, it becomes the cup; You put water into a bottle it

becomes the bottle; You put it in a teapot it becomes the teapot. Now water can flow or it

can crash. Be water, my friend. One needs 5 indepedent slip systems to be able to deform

arbitrarily.

The point here is that

b1 = bp1 + bp2, (2.71)
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where the partial dislocations

bp1 =
[112̄]

6
, bp2 =

[1̄21̄]

6
(2.72)

Since

|bp1|2 = |bp2|2 =
a2

0

6
, (2.73)

we have

|bp1|2 + |bp2|2 =
a2

0

3
(2.74)

which is smaller than

|b1|2 =
a2

0

2
. (2.75)

Thus, two partials, separated far away, would have smaller energy than a full dislocation. In

reality, they will not separate infinitely far apart because of the stacking fault ribbon they

generated. Roughly speaking, the reduction in elastic energy is proportional to

∝ G∆(b2)

4π
ln

s

R̃0

(2.76)

where s is the splitting separation between the two partials, so the total energy is like

E = −G∆(b2)

4π
ln

s

R̃0

+ sγISF, (2.77)

where γISF is the intrinsic stacking fault energy. So the equilibrium splitting distance scales

as

seq =
G∆(b2)

4πγISF

. (2.78)

For low-stacking fault FCC crystal like pure Cu, γISF = 40 mJ/m2, the splitting distance is

large, like s = 2nm. For high-stacking fault FCC crystal like pure Al, γISF = 160 mJ/m2,

the splitting distance is small, like s = 4Å. This has severe consequences on the dislocation

dynamics. For example, it is much more difficult for screw dislocations in Cu to cross-slip,

because in order to do so, it must first constrict. But a widely separated ribbon would make

the energy barrier for constriction larger.

The so-called Thompson tetrahedron describes the arrangement of full and partial Burgers

vectors on slip planes. There are four faces (ABCδ, BCDα, CDAβ, DABγ, the last Greek

letter is the center of each equilateral triangle), representing the {111} planes. Clearly, if we
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want to have
−→
DA slip on DABγ slip plane, we can go:

−→
DA =

−→
Dγ +

−→
γA (2.79)

or
−→
DA =

−→
γA +

−→
Dγ (2.80)

where
−→
DA ≡ A − D denotes the translation direction of the top block versus the bottom

block across the slip plane (γ1). The order of the decomposition matters, as one moves from

∆ = 0 region across the dislocation core, to the ∆ =
−→
DA region. Only one choice among

(2.79), (2.80) would be allowed. For (2.79), the atom at D site in the top block would be

translated to

D +
−→
Dγ = γ (2.81)

at the intermediate state. For (2.80), the atom at D site in the top block would be translated

to

D +
−→
γA (2.82)

which is also a crystallographic site. The key question here is whether γ or D +
−→
γA is on top

of a - site, or on top of an © site. The former (intrinsic stacking fault) is the much lower in

energy than the latter on-top configuration. Since γ is on top of C when we look down on

the DABγ plane of a Thompson’s tetrahedron, we can determine that (2.80) is always right,

when we perceive DABγ to be the top (+) plane. There is no bp ↔ −bp symmetry in FCC

or HCP crystals.

The Lomer-Cottrell (LC) lock is formed by the following reaction:

[112̄](111)

6
+

[1̄2̄1](1̄11)

6
=

[01̄1̄]

6
≡ bLC, (2.83)

since
a2

0

6
+
a2

0

6
>

a2
0

18
. (2.84)

However, note that bLC = [01̄1̄]
6

is not our usual Burgers vector. Slip by [01̄1̄]
6

on any atomic

plane is likely to creates a very high energy stacking fault. Furthermore, there is another

fundamental conflict if the Lomer-Cottrell dislocation is to move by glide. Note that by the

way LC is formed, its line direction ξLC must be a common direction on both (111) and

(1̄11) planes, namely ξLC ‖ [111] × [1̄11] ‖ [011̄]. However, bLC = [01̄1̄]
6

does not belong to

either (111) or (1̄11) “old” planes. It does belong to the (111̄) and (1̄11̄) “new” planes, but
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ξLC does not belong to these “new” planes. Thus, there is no {111} plane where the LC

dislocation could move as edge dislocation. That plane should be bLC × ξLC = (100), but

this cube plane is unusual for slip. For this reason, the Lomer-Cottrell dislocation is called

“sessile”, or “lock” or “junction”, meaning it is a low-energy trap state, but once formed, it

would be difficult to move. The LC dislocations are important for dislocation storage and

forest dislocation hardening in FCC metals. 6

The so-called Peach-Koehler force on a dislocation can be derived by virtual work:

δW = V Tr(σδεinelastic) = bTσ(ξdl×δx) = dl(b ·σ) ·(ξ×δx) = dlδx ·((b ·σ)×ξ) (2.85)

since a · (b× c) = c · (a× b). So the force per unit length of dislocation is

dF

dl
= (b · σ)× ξ. (2.86)

In index form this would be
dFi
dl

= εijkblσljξk. (2.87)

where repeated indices are summed over, and εijk is the Levi-Civita permutation symbol:

ε123 = ε231 = ε312 = 1, ε213 = ε132 = ε321 = −1, all others = 0. (2.88)

This force is always perpendicular to ξ. For a non-screw dislocation, the slip plane would

have normal

m =
b× ξ
|b× ξ|

(2.89)

with m ⊥ ξ, and gliding direction

g = ξ ×m. (2.90)

So the total force can be written as

dF

dl
=

dFglide

dl
+
dFclimb

dl
(2.91)

with
dFglide

dl
= g(g · ((b · σ)× ξ)),

dFclimb

dl
= m(m · ((b · σ)× ξ)). (2.92)

Generally speaking, dislocation climb is called “non-conservative” process, because a net

6It is not impossible to move, or at least remove LC dislocations, however, if we consider dislocation
reactions under stress, or dislocation climb.
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flux of atoms toward the core by diffusion is needed in order to drive climb. Thus at lower

temperatures when long-range diffusion is impossible, even with finite driving force dFclimb

dl
,

dislocation won’t climb.

Dislocation glide, however, is called “conservative” or displacive process, where all that is

needed is for the atoms that are already there to shift their positions by a small and semi-

deterministic amount. Dislocation glide is much more ready process when
dFglide

dl
exceeds

some threshold. Below we look at a famous case. Consider a pure applied shear stress

σxy = τ for a curved dislocation on y-plane with b = bex, and

ξ(l) = ξxex +
√

1− ξ2
xez. (2.93)

dFclimb

dl
= 0,

dFglide

dl
= bτey × ξ, (2.94)

We can call η in (2.64) the line tension of a dislocation. If we pretend

1. η to be independent of ξ. (In reality η depends on ξ.)

2. Besides the self energy, the dislocations do not interact with each other elastically. (In

reality, they do).

we come to the so-called line tension model of a dislocations. This is an extremely simple

model because it is local.

Consider the line direction ξ(l) as a function of the dislocation length l. If the dislocation is

a straight line, then locally we have force equilibrium from the line tension. But, if ξ(l) has

curvature, this would generate

dF = ηξ(l + dl)− ηξ(l) = η
dξ

dl
dl = η

eR(l)

R(l)
dl (2.95)

where R(l) is the radius of curvature, and eR points towards the center of the local tangent

circle.

If a dislocation is pinned between two fixed ends with distance 2a, then we would have a

circular segment, with line tension balancing the PK force:

bτ =
η

R(l)
→ R(l) =

η

bτ
(2.96)
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From the derivation above, we see R is actually independent of l when the dislocation reaches

equilibrium. This means at equilibrium, the dislocation is always arc of a perfect circle in

the isotropic line tension model.

The critical configuration is actually when R = a (R first decreases with τ ↑, but after

reaching the minimum value of a, would start to increase again, so R = a is the “saddle”

configuration), so the critical external stress for bow-out is

τC =
η

ba
=
αGb2

ba
=
αGb

a
. (2.97)

In reality, a = 10−6m, but b ∼ 2× 10−10m, so we get

τC ∼ 10−4G. (2.98)

The above immediately explains the 1000× difference with Frenkel estimate of ideal shear

strength.

The dislocation density ρ [unit 1/m2] is defined as the total length of all dislocations in

a unit volume of material. ρ in mediumly work-hardened Cu is typically on the order of

4 × 1014/m2 (number of etch pits per unit area) = 4 × 1014m/m3 (dislocation line length

per m3 of material - in reference, circumference of earth is 4× 107m, circumference of sun is

4× 109m - it would take light 15 days to traverse the dislocation line in 1m3 of copper! so to

simulate plasticity by tracking dislocations is quite a challenge). We can estimate the mean

spacing between between dislocations to be

2a = ρ−1/2 (2.99)

Plugging into (2.97), we get

τC = 2αGbρ1/2 (2.100)

The above ρ1/2 dependence is called the Taylor hardening law. It comes from forest dislo-

cation resistance. There can be other sources of plastic flow resistance, for example lattice

friction, solute hardening, precipitate/dispersion hardening, grain boundary hardening etc.

The typical way of modeling them is to add all together:

τC = 2αGbρ1/2 + τPeierls + τsolute + τprecipitate/dispersion + τGB (2.101)

τC is called the critical resolved shear stress (CRSS). The resolved shear stress τ on a slip

42



system is generally computed as

τ ≡ (b · σ) · n
|b|

=
biσijnj
b

(2.102)

If we put uniaxial tension/compression along a direction u, we have

σ = σuuT (2.103)

we have

τ =
σ(b · u)(n · u)

b
= σ cos(θb) cos(θn) (2.104)

where θb is angle between u and b, and θn is angle between u and n. cos(θb) cos(θn) is called

the Schmid factor. Since n ⊥ b, the maximum Schmid factor is 1
2
, when u is 45◦ between n

and b.

The so-called Schmid’s Law means all that matter is scalar CRSS τC, no matter what is the

tensor σ that generates this scalar.

In above we have been talking about shear, i.e. bond switching, where there is transient

loss of coordination for the atoms involved, but over long timescale no net loss of total

coordination (or very little). This is fundamentally different from the cleavage process, where

there is often irreversible loss of metal-metal coordination 7 Shear and cleavage are the two

fundamental categories of inelastic events inside the solid. For small elastic deformation, they

are roughly characterized by G and B, respectively. Then for ideal strength calculation, there

is no formal distinction, but practially the tensile and shear ideal strength and strains can

be used to characterize the intrisic brittleness of materials [15, 16]. But for large nonlinear

inelasticity, the inelastic shear and inelastic cleavage are very different. The metal-metal

bond switching is a reversible source of dissipation: an arrays of bond switched this way can

be reswitched later, converting mechanical energy to heat many many times. But if there

is a loss of coordination, for example by voiding and surface creation, then this can only be

used one time. For this reason, metals which are shear soft have a larger fracture toughness,

because the soft shear entices the shear relaxation again and again. Bonding shearing is a

sustainable way of dissipating energy, whereas cleavage is basically a one-off thing.

Just like the Frenkel relation for shear, there is a popular form for fitting decohesion called

Universal Binding Energy Relation (UBER)[38]. The details are not that important, the

7Imagine, that, once two metal surfaces are opened by the Griffith process [37], the metal surfaces are
passivated by oxygen, and one cannot recover the metal-metal coordination even if the crack is closed later.
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key is that eb(εhydro) is not a periodic function, but is a function with a minimum, followed

by a turning point where the 2nd derivative vaishes. So σhydro(εhydro) has a maximum, then

decays to zero as εhydro → 0. Also, it can be shown that to separate a material, the best way

is to localize the bond cutting on one plane. In other words, consider a crystal with 1024

atoms, thus 108 planes on each side. It takes only cutting the bonds on one plane out of the

108 to achieve separation. Brittle ceramics basically do this. It turns out that metals are

wily, and do not fall for this generally. It takes a whole lot of bond shearing in metals before

one coordination loss is achieve in metals, by for instance dislocation emission in front of the

crack tip.

Having reconciled the σideal
shear = 2GPa for Mg vesus the measured CRSS = 0.35 MPa for

Mg (Basically dislocation is like a lever, that breaks bond in its core, and then restitches

them back together), I would like to mention an interesting possibility of elastic strain en-

gineering [39, 2]. All physical properties are function of the elastic strain. Because “smaller

is stronger”, nanostructured materials such as nanowires, nanotubes, nanoparticles, thin

films, atomic sheets etc. can dynamically withstand non-hydrostatic (e.g. tensile and shear)

stresses up to a significant fraction of its ideal strength without inelastic relaxation by plas-

ticity or fracture. For example, large elastic strains can be generated by epitaxy in thin films,

or by static or dynamical external loading on small-volume materials, and can be spatially

homogeneous or inhomogeneous. This leads to new possibilities for tuning the physical and

chemical (e.g. electronic, optical, magnetic, phononic, catalytic, etc.) properties of a mate-

rial, by varying the 6-dimensional elastic strain as continuous variables. By controlling the

elastic strain field statically or dynamically, one opens up a much larger parameter space

(probably on par with chemical alloying) for optimizing functional properties of materials,

imparting a new meaning to Feynman’s statement ”there’s plenty of room at the bottom”.
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Chapter 3

Linear Response Theory and

Long-Range Diffusion

The chemical potential

µi ≡
∂G

∂Ni

∣∣∣∣∣
Nj 6=i,T,P

= g(T, P,X) + (pi −X) · ∇Xg(T, P,X), (3.1)

where

g =
G

N
, N ≡ N1 +N2 +N3 + ...+Nc, (3.2)

X = [X2, X3, ..., Xc], Xi ≡
Ni

N
, (pi)j = δi,j+1 (3.3)

is the thermodynamic “price” of a type-i atom. If the price varies spatially µi = µi(x),

there will be an incentive for the atom to move from locations of higher price to locations

of lower price (social analogy: migrant worker, currency arbitrage). Such a system is not

in global thermodynamic equilibrium, but the non-equilibrium is of global nature (“type A”

non-equilibrium in chapter A) so local T (x), P (x), µi(x) can be defined. In other words,

each RVE (representative volume element), were it isolated, would be infinitesimally close to

an equilibrium state (atoms in this RVE are “happy” with nearby atoms in the same RVE;

they just try to “keep up with the Joneses” - the other RVEs).

Define atom flux Ji to be the number of type-i atoms jumping though a unit area per unit

time:

dNi(in→ out)− dNi(out→ in) = (Ji · n)dAdt (3.4)
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Note that in d-dimensional space, flux is a d-component vector Ji = [Jix, Jiy, Jiz], of unit

atoms/m2/s. Conjugate to the flux vector, define the concentration of type-i atoms to be

ci ≡ Ni(RVE)/volume(RVE), which has unit atoms/m3. The total concentration (also unit

atoms/m3) is

c ≡
∑
i

ci =
N(RVE)

V (RVE)
=

1

v
(3.5)

the concentration and the composition are related simply by:

ci = cXi (3.6)

since the common volume factors cancel out. Because the total number of atoms is conserved,

one RVE’s gain must be other RVEs’ loss, there will be an atom conservation equation (Fick’s

second law):

∂tci = −∇ · Ji = −∂xJix − ∂yJiy − ∂zJiz. (3.7)

(3.7) can be simply appreciated in the case of 1D transport: Jiy = Jiz = 0, Jix = Jix(x, t).

If we take interval [x −∆x/2, x + ∆x/2] and unit area in yz plane, and count the number

of “red Ferraris” Ni in the interval, as well as observing how many red Ferraris have passed

observation posts (police patrol cars) x −∆x/2 and x + ∆x/2, there must be conservation

of red Ferraris:

Jix(x−∆x/2, t)− Jix(x+ ∆x/2, t) = Ṅi → −∂xJix(x) ≈ ∂tci. (3.8)

The thermodynamic driving force for diffusion is the negative gradient of chemical potential:

Fi ≡ −∇µi(x) = −[∂xµi, ∂yµi, ∂zµi]. This is because if there were no gradients: µi(x) = µref
i

for all i, then no matter how high or low are the uniform µref
i s’ the absolute magnitude,

there will be no diffusion. We know that Ji somehow depends on the driving forces Ji =

Ji(F1,F2, ..,Fc), so we can do a Taylor expansion on the driving forces around F1 = F2 = .. =

Fc = 0, and when the driving forces are small, only the leading-order terms are important,

which are:

Ji =
∑
j

LijFj = −
∑
j

Lij∇µj (3.9)

where Lij’s are called Onsager linear-response coefficients. For example, in a 3-component

system (C = 3), we would have

J1 = L11F1 + L12F2 + L13F3 = −L11∇µ1 − L12∇µ2 − L13∇µ3
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J2 = L21F1 + L22F2 + L23F3 = −L21∇µ1 − L22∇µ2 − L23∇µ3

J3 = L31F1 + L32F2 + L33F3 = −L31∇µ1 − L32∇µ2 − L33∇µ3 (3.10)

Regarding (3.9), several important observations can be made:

1. Since the Taylor expansion is about F1 = F2 = .. = Fc = 0, the linear coefficients Lij

themselves are independent of the driving forces (“linear response”), but they could depend

on the local composition, as well as temperature and pressure: Lij = Lij(X) = Lij(X(x)),

as well as the position through X(x).

2. Each Lij is a d×d matrix. If the material is isotropic or if we are in a quasi-1D situation,

however, we can consider Lij as a scalar: Lij = LijId×d.

3. Lii (L11, L22, L33) are so called diagonal or direct coefficients. Lij with j 6= i are so called

off-diagonal or cross-coupling coefficients. Cross-coupling effect can be appreciated, in for

instance gas diffusion [40]. Say species 3 gas atoms have uniform chemical potential in the

chamber: µ3(x) = µref
3 , so there is no incentive for species 3 atoms to move left or right

overall, macroscopically. However, imagine there is a finite diffusional driving force ∇µ1(x)

for species 1 atoms, which causes them to move macroscopically from left to right. There

are unavoidable collisions between type-3 and type-1 atoms: since on average more type-1

atoms are moving to the right when they collide, type-3 atoms may be entrained to move to

the right as well, even if it is not in their own “interest” to move to the right. This is similar

to eating more than you typically do in a convivial feast with giants. A remark should be

made here that even if type-3 atoms are driven to diffuse up its own ∇µ3 gradient, the overall

dSuniverse > 0 (Chap.2 of [41]), since type-1 atoms will gain more by diffusing down the ∇µ1

gradient.

The cross-coupling effect is very general. Not only the atom (ion) fluxes, but heat flux JQ

(unit W/m2) and electron flux Je (unit #electrons/m2/s, the electrical current in a metallic

wire I = −eJeA where A is cross-section of the wire) can be related to gradients in the

thermal potential (lnT ) and electron’s chemical potential µe (see Chap 2.1 of [41]). The

cross-coupling effects manifest in for instance in electro-migration:

Ji = Lii(−∇µi) + Lie(−∇µe), Je = Lei(−∇µi) + Lee(−∇µe) (3.11)

where Ji stands for some ion/atom flux. µe is the electron chemical potential, and is related

to the electrode potential U simply as µe(x) = −eU(x). In [42], one sees indium atom
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transfer from larger indium nanoparticle to smaller indium nanparticle, which is reverse of

typical coarsening process. This is because there is an electrical current and “electron wind

force” that are blowing indium atoms downstream.

The cross-coupling effect is also the basis for the thermoelectric effects (Fig. 2.2, 2.3 in [41]),

due to:

JQ = LQQ(−∇ lnT ) + LQe(−∇µe), Je = LeQ(−∇ lnT ) + Lee(−∇µe) (3.12)

A well-known special case is the Seebeck effect, where temperature gradient can lead to

electromotive force (voltage). To show this, take two metallic wires A and B made of different

materials. Take a large-impedance voltmeter at constant temperature T , connect the two

wire to two leads of the voltmeter at T , then join the other two ends at another constant-

temperature reservoir at T+∆T . Due to the large electrical impedance of the voltmeter, there

is nearly no current in the circuit, Je = 0 in either wire. This means LeQ(∇ lnT ) = eLee(∇φ),

so ∆φA =
LA
eQ

eLA
ee

ln T+∆T
T

, ∆φB =
LB
eQ

eLA
ee

ln T+∆T
T

. Since φB = φA at the place they join, the

voltmeter must measure a potential difference. This potential difference (electromotive force)

can be exploited (thermal energy → electrical energy), although the calculation becomes

more involved when the current is finite. Because there are no moving parts, this can be

used for low-grade thermal energy scavenging. Also, this is the mechanism behind some

thermocouples (temperature sensors). For example, a Cu - Cu55Ni45 (constantan, eureka)

thermocouple has a Seebeck coefficient (aka thermopower) of 41 microvolts per Kelvin at

room temperature.

One can also use electrical energy to transport heat, which is so-called Peltier effect. Consider

replacing the voltmeter above by a battery, and let us start by having ∆T = 0, i.e. the whole

apparatus starts isothermally. Then, there is JQ/Je = LQe/Lee. Consider two wires having

equal cross section, then there is electron current in the circuit driven by the battery, with

electron current conservation JA
e = JB

e . But since LA
Qe/L

A
ee 6= LB

Qe/L
B
ee in general, we will

have JA
Q 6= JB

Q. Unlike electrons, heat can easily accumulate (CP ) and can also irradiate, and

in fact we can inject heat JA
Q− JB

Q on one end, and take out heat JB
Q− JA

Q on the other, and

maintain steady-state operation. This is then a heat pump, and is in fact how refrigerator

works. There are now thermoelectric refrigerators on market: they have no moving parts

and is therefore dead quiet. Because electrical dissipation (finite electrical impedance) is

involved in this setup, the efficiency of the thermoelectric refrigerator is less than the ideal

Carnot efficiency (ηideal =∞ in fact for isothermal heat pump).
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Note that the Onsager (3.12) is a master equation (“Grandaddy of all them equations”) that

can describe thermal conduction or electrical conduction individually, as well as their cross-

coupling effect. For example, the well-known Ohm law ∆φ = IR for a resistor under voltage

drop ∆φ is just a special case of (3.12). Consider a wire of length l and cross-sectional area

A. If the wire is under isothermal condition, then ∇ lnT = 0, and then the only driving

force to drive electron flux in (3.12) would be ∇µe = −e∇φ: Je = eLee∇φ = eLee∆φ/l, and

the electrical current in the wire is then I ≡ (−e)JeA = −e2LeeA/l∆φ = ∆φ/Rwire. We can

thus identify

Rwire =
l

e2LeeA
(3.13)

the minus sign is because electrical current always flow from high φ to low φ. We see

then Rwire is proportional to the wire length, and inversely proportional to its cross-sectional

area, which agrees with intuition. Similarly, when there is no electrostatic potential gradient,

∇φ = 0, we have JQ = LQQ(−∇ lnT ) = −(LQQ/T )∇T and a simple thermal conduction

problem, and we can identify LQQ/T to be the so-called thermal conductivity with unit

J/m/s/K.

4. (3.9) is correct only if we measure the flux in an observation frame co-moving with the

material. If we talk about diffusion in crystalline materials, this frame of observation is

called the local lattice or crystal frame (C-frame) . All fluxes in (3.9) and (3.10) then have C

superscript on them: Ji = JC
i , which denote diffusional contribution to the flux. It is quite

obvious that if the whole material is translating with respect to an observer, with velocity

vL
C, where L denotes measurements performed by the observer in the lab, there should be

JL
i = JC

i + civ
L
C, where civ

L
C is the convective contribution to the flux. Another way to see

this is to define vC
i ≡ JC

i /ci, the average diffusional velocity seen in the crystal frame. vC
i is

simply the average atomic velocities of all type-i atoms in the RVE, measured by a crystal-

frame observer who is attached to the lattice and who thinks the RVE is not moving. Since

velocities are additive, there must be vL
i = vC

i + vL
C, and JL

i = ci(v
C
i + vL

C) = JC
i + civ

L
C.

This distinction between crystal-frame and lab-frame observations will be important when

we later discuss about the Kirkendall effect, because it turns out that the crystal planes

can actually move with respect to the lab (creep) in diffusion-couple experiments, due to

finite divergence of the vacancy flux. The creeping velocities vL
C can depend on position, in

which case JL
i = JC

i + civ
L
C(x). The physical basis of decomposing flux into diffusional and

convective contributions is because thermodynamics is fundamentally local, and decoupled

from macroscopic motion. An atom in a glass of water in a spaceship sees only atoms nearby

and has no idea how fast the spaceship is moving, or even how fast the water is twirling.
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The chemical potential of atom which drives the Onsager flux is thus decoupled from the

macroscopic velocity of the spaceship or even the twirling of water in the glass. The task

of solving for the convective velocity vL
C(x) in a whole continuum body falls in the realm of

mechanics (elasto-plasto dynamics and fluid dynamics) and outside of the realm of materials

thermodynamics and kinetics, although in extremely simple geometries like Kirkendall effect

in quasi-1D diffusion couple we can just make statements about vL
C(x) by inspection without

doing mathematical mechanics. This is true for ion/atom flux as well as electron flux.

When one is talking about gas or liquid, there is no longer the concept of a site lattice or “crys-

tal frame”. In that case, the correct procedure is to define vL
C ≡

∑
i∈RVEmivi/

∑
i∈RVEmi for

atoms within an RVE, which is the convective velocity of that RVE. The diffusive fluxes are

defined when vL
C is subtracted off from the atom velocities. The reason for this is that v̄ in

the Maxwellian distribution (A.1) is vL
C.

Based on statistical mechanics, Lars Onsager (1968 Nobel prize in chemistry) proposed a

fundamental reciprocal relation Lij = LT
ji. In the case of isotropy (for diffusion, this means

cubic symmetry or higher [4]) or quasi-1D situation, this means

Lij = Lji. (3.14)

For example, in the case of c = 3,

J1 = −L11∇µ1 − L12∇µ2 − L13∇µ3

J2 = −L21∇µ1 − L22∇µ2 − L23∇µ3

J3 = −L31∇µ1 − L32∇µ2 − L33∇µ3 (3.15)

and we have L12 = L21, L13 = L31, L23 = L32.

The general formalism above is true for gas, liquid or solid-state diffusion, as long as convec-

tive contribution to flux is taken out. In the gas phase, according to kinetic theory of gases

the diffusion rate is controlled by the rate of atomic collisions, where atoms can be thought

of as hard spheres that move in space, that occupy much less volume than the empty spaces

(free volume), so collisions are infrequent, mean free path is long and diffusion rate is high.

In the liquid phase, the free volume on average is less than the occupied volume, so atomic

collisions are frequent and diffusion is more difficult than in the gas phase. In liquids, free

volume is typically spread out between clusters of atoms (this cluster of thirty atoms have

higher average volume per atom than that cluster of forty atoms, see Fig. 3.1(b)), and is
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not sharply localized at a certain site. Diffusion is faster in a local region with higher free

volume. Envision the crowd at departmental Christmas party: the room is jam-packed, and

for one person to move (“excuse me”), several persons have to adjust collectively. The zones

in the room where there are bit more space on average would allow diffusion to happen faster

there.

(a) (b)

1

1
2
3V

(c)

Figure 3.1: The concept of free volume in (a) gas (b) liquid (c) crystal.

Inside a crystal lattice, free volume is sharply localized as lattice site vacancies. Excess free

volume in crystals also exists inside dislocation cores, grain boundaries and near surfaces,

where the free volumes tend to be more delocalized, percolate in space and larger in magni-

tude compared to other parts of the crystal (i.e. vacancy nanoporosity). The trend of larger

free volume→ higher diffusion rate generally holds true in crystals as well. Thus, the relative

ease of diffusion is ranked as surface diffusion > grain boundary diffusion ∼ dislocation core

(pipe) diffusion > lattice diffusion. We will quantify this ranking later.

Inside crystalline lattice away from line and planar defects, by far the more common mech-

anism of diffusion is the exchange of atoms with vacancy, shown in Fig. 3.1(c). A careful

analysis of the thermodynamics of vacancies is therefore critical for understanding solid-state

diffusion. Before we proceed, we must make a distinction between atomic sites and atoms

in a crystal. This distinction is similar to the difference between US government structure

(white house, senate, supreme court etc.) with who are occupying the offices now. The

government structure (site lattice) tends to be more permanent than the office holder, in

crystalline solids; although sites can be destroyed as well, such as during climb of an edge

dislocation. The sites can certainly be moved, which is the essence of plastic deformation

(when we touch some object and feel it is deformed, we are not registering which labelled

atom goes where, only the shifting of atomic site which are occupied by some atom - in other

word our hand canot tell tracer or self diffusion).
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A vacancy can be regarded as the occupation of a lattice site by a “Vacadium” species,

denoted by V. In Fig. 3.1(c), a site is always occupied by either a red atom (1), a blue atom

(2), or V (3). Thus:

X1 +X2 +XV = 1. (3.16)

Solution thermodynamics typically ignores the existence of XV because XV is small, often

at ppm level and below, although near the melting temperature it can reach ∼0.1% [43].

But vacancies are more critical to the kinetics than to the thermodynamics. In the crystal

observation frame, due to conservation of lattice sites there must be:

J1 + J2 + J3 = 0, (3.17)

which means

(L11 + L21 + L31)∇µ1 + (L12 + L22 + L32)∇µ2 + (L13 + L23 + L33)∇µ3 = 0 (3.18)

The above will be true in all situations if

L11 + L21 + L31 = 0, L12 + L22 + L32 = 0, L13 + L23 + L33 = 0, (3.19)

or
∑
i Lij = 0 for all j. And since Lij = Lji, we will also have:

L11 + L12 + L13 = 0, L21 + L22 + L23 = 0, L31 + L32 + L33 = 0, (3.20)

or
∑
j Lij = 0 for all i. Then we can simplify (3.15) as

J1 = −L11∇(µ1 − µ3)− L12∇(µ2 − µ3)

J2 = −L21∇(µ1 − µ3)− L22∇(µ2 − µ3)

J3 = −L31∇(µ1 − µ3)− L32∇(µ2 − µ3) (3.21)

The above is the consequence of network constraint (see chap 2.2.2 of [41]), where the true

compositional degrees of freedom are Nc − 1 instead of Nc, and thus there are only Nc − 1

driving forces. If we have 1-2(V) only (monatomic solid with vacancy), the equation would

be simplified to be:

J1 = −L11∇(µ1 − µ2)

J2 = −L21∇(µ1 − µ2) = L11∇(µ1 − µ2) (3.22)
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where L11 = −L12 = −L21 = L22 > 0. Rewriting 2 as V, we would have

J1 = −LV V∇(µ1 − µV ), JV = LV V∇(µ1 − µV ). (3.23)

Now we can discuss about what controls µV . Consider a Kossel crystal with nearest-neighbor

springs u(r) = −ε+k(r−a0)2/2 and Z nearest neighbors (Z = 4 in 2D and 6 in 3D). At 0K,

if there is no vacancy, each atom would have e1 = −Zε/2 cohesive energy since each atom

is connected to Z springs, shared with another atom. By creating vacancy, the total energy

would have risen by eV = Zε/2 per vacancy created, since when plucking out an atom from

Kossel crystal Z springs are broken, but when we re-attach this atom to a surface ledge,

Z/2 springs are formed anew. The total energy thus can be written as E = N1e1 + NV eV

at 0K, so long as NV � N1 so the probability of two vacancies sitting side by side is small.

At finite temperature, this vacancy formation energy eV would be modified by vibrational

contribution, so eV → f fV , the vacancy formation free energy (no configurational entropy

contribution, only vibrational entropy contribution). Similarly, the cohesive energy e1 will

be modified by vibrational energy contribution, e1 → f ◦1 . The total Helmholtz free energy

of the system would thus look like:

F = N1f
◦
1 +NV f

f
V + (N1 +NV )kBT (X1 lnX1 +XV lnXV ) + ... (3.24)

where F0 = N1f
◦
1 is a fully dense reference state with NV = 0. At zero stress (P = 0),

G = F , and F = F0 +NV f
f
V + kBT (N1 lnX1 +NV lnXV ) will be minimized at

f fV + kBT

(
N1

X1

· dX1

dNV

+
NV

XV

· dXV

dNV

+ lnXV

)
= 0. (3.25)

or simply

fV ≡ f fV + kBT lnXV = 0. (3.26)

Note that µV ≡ fV at zero stress, thus µboundary
V = 0 if the RVE has reached equilibrium with

the adjacent surface vacancy source/sink. Many textbooks call the vacancy formation free

energy Gf
V , but the word Gibbs free energy is sometimes overused. In some occasions, when

people say Gibbs free energy, they actually mean the Helmholtz free energy. At P = 0 the

two are equivalent, but to keep the discussion clean we will stick to the fV ≡ f fV +kBT lnXV

notation even at finite stress.

µboundary
V = 0 because unlike in a typical A-B solution, where A and B have to come from
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some mass sources, here the solid chooses its own optimal degree of porosity or atomic-

scale free volume. To have more nanoporosity all the solid needs to do is to encroach on

adjacent vacuum, which is in infinite supply at P = 0. So to reach equilibrium with the

surface, the source of this vacuum, the boundary condition is just fV = µboundary
V = 0, where

fV ≡ f fV + kBT lnXV . In this case then, XV = exp(−f fV /kBT ), and a plot of lnXV versus

1/T would give hfV /kB, the vacancy formation enthalpy. There is then f fV = hfV − Ts
f
V (vib).

sfV contains only the vibrational entropy contribution. In copper, hfV is about 1.27 eV, sfV is

about 2.35kB. [3]

In this course the vacancy formation volume Ωf
V , a concept parallel to the vacancy formation

energy f fV , is assumed to be simply Ωf
V = Ω, where Ω is the atomic volume. That is to say,

for simplicity we will assume “Vacadium” is exactly as large as the solvent atom. Or, there

is zero vacancy relaxation volume Ω − Ωf
V after we pluck out an atom, which is true in the

Kossel crystal. Then we have c = N/V = 1/Ω, XV = cV /c = cV Ω. And so the equilibrium

vacancy concentration at zero stress is c0
V = Ω−1 exp(−f fV /kBT ).

If there is normal traction tnn = nσn = σnn on the surface1, then vacuum no longer comes at

zero price. The thermodynamic balance then requires fV ≡ f fV +kBT lnXV = tnnΩ to linear

order in stress, which gives XV = exp(−(f fV − tnnΩ)/kBT ), whereby tension favors more

vacancy (since work can be done on the boundary when nanoporosity is created inside),

and compression favors less vacancy. The boundary traction will need to be equilibrated

mechanically with the internal stress. If we identify tnnΩ as work, then still µboundary
V = fV −

tnnΩ = f fV +kBT lnXV −tnnΩ = 0. This may be understood by the following argument: µV =

∂G/∂NV , where G is the total thermodynamic potential including surface work. Initially,

when XV = 0, µV is very negative, so by taking in additional porosity, NV → NV + 1, G

decreases. The solid can take as much nanoporosity as it wants, and this only stops when µV

approaches 0. Taking in more porosity then would make the total thermodynamic potential

G go back up again.

The effects of internal stress on f ◦1 and f fV are 2nd order in stress (strain energy), which in

most cases may be ignored, whereas stress come into the boundary condition as f fV = tnnΩ,

which is linear order in stress if tnn 6= 0. In the case of uniform hydrostatic pressure, tnn = −P
for whichever exposed surface, so the solid body can be in global thermodynamic equilibrium

if the vacancy density is uniform XV = exp(−(f fV + PΩ)/kBT ). On the other hand, if the

solid is in uniaxial tension or shear, the solid body can never be in global thermodynamic

1Traction t is a boundary quantity, σ is a bulk quantity: even though the two are related by t = σn on
the surface, their physical meaning are distinct.
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equilibrium. This is because the local equilibrium value of XV would depend on which surface

the RVE is adjacent to (which “market” the RVE is “trading with”, and like people, the

closest market is the most important one). There will be more vacancies near surface under

tensile normal traction, and less vacancies near surface under compressive normal traction.

The vacancy flux will move to surface under compression, which will drive deformation of

the solid by diffusional creep.

In (3.22), if we take 2 to be V, then J1 = −LV V∇(µ1− µV ), JV = −LV V∇(µV − µ1). What

drives diffusion inside the body is always µV 1 ≡ µV −µ1 instead of µ1 or µV alone. Note that

µV 1 corresponds to a magical operation of directly extracting atom from inside the material:

(N1, NV )→ (N1− 1, NV + 1) without the necessity of putting the atom on a surface ledge 2.

As such µV 1 is entirely local and depend only on x, as it should be for any quantity used in

the PDE. If Ω1 = ΩV = Ω (no relaxation volume), then in terms of strain, the µV 1 operation

is silent, thus the exchange potential µV 1 would have no dependence on σ(x) in the linear

order, and it would depend only on concentration:

µV 1 = f ◦V − f
f
1 + kBT ln

XV

X1

= f ◦V − f
f
1 + kBT ln

XV

1−XV

(3.27)

Note that ln(1−XV ) is not a sensitive function of XV when XV is very small. In contrast,

lnXV diverges violently as XV → 0. Thus µ1V ≈ f ◦1−f
f
V −kBT lnXV = f ◦1−f

f
V −kBT ln ΩcV ,

and ∇µ1V = −kBT/cV∇cV . So,

−J1 = JV = −LV V kBT/cV∇cV . (3.28)

Define DV ≡ LV V kBT/cV , we get JV = −DV∇cV (Fick’s 1st law), and so

∂tcV = ∇ · (DV∇cV ). (3.29)

The above assumes vacancies are only created/annihilated on the surface or grain boundary,

and once they move inside the lattice can only be transported but not created/annihilated.

If there are internal vacancy sources/sinks inside the crystal besides planar surfaces or grain

boundaries, for instance around the half-planes of edge dislocations (another “market” with

which the RVE can trade atomic-scale porosity), then (3.29) needs to be modified appropri-

2Note the canonical surface vacancy creation process is (N1, NV ) → (N1, NV + 1) where we do worry
about the ledge. To make (N1, NV ) → (N1 − 1, NV + 1) less magical, what we actually do is to take the
extracted atom to an isloated atom dump (infinitely dilute gas).
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ately:

∂tcV = ∇ · (DV∇cV ) + (∂tcV )source. (3.30)

where (∂tcV )source reflects the rates of internal creation/annihilation of atomic-scale poros-

ity/free volume. Typically, (∂tcV )source would induce motion of the lattice planes, as would

the surface / grain boundary sources (imagine playing a game of Tetris).

Consider a square block of solid of size d under uniaxial tension σ11 > 0, σ22 = 0. RVEs

near the vertical surfaces have cV = c0
V . RVEs near the horizontal surfaces have cV =

c0
V exp(tnnΩ/kBT ) ≈ c0

V (1 + tnnΩ/kBT ), when tnn is very small. Thus, ∇cV will be of the

order c0
V tnnΩ/kBTd, and the vacancy flux will be of the order DV c

0
V tnnΩ/kBTd. Because

each vacancy arriving at vertical surface destination would cause local sink-in of volume Ω,

the displacement rate would be of the order DV c
0
V tnnΩ2/kBTd and strain rate would be of

the order ε̇ ∼ DV c
0
V tnnΩ2/kBTd

2. If we recognize DV c
0
V Ω = DVX

0
V ∼ D∗, the self diffusivity

of type-1 atoms (to be shown later), then the creep strain rate of this block of solid is simply

ε̇ ∼ (D∗Ω/kBTd
2)tnn. This is called Nabarro-Herring creep [44]. The creep rate is supported

by lattice vacancy transport, and is proportional to the inverse 2nd power of the sample size

or grain size, where vacancy flows from its source (high Xboundary
V ) to its sink (low Xboundary

V ).

In addition to surfaces and grain boundaries, edge dislocations (half-planes in crystals) can

also be source and sink of vacancies. When edge dislocation acts as vacancy source, its

half plane extends, and simultaneously a vacancy appears in the adjoining crystal. When

it acts as sink of vacancies, its half plane shrinks (see Fig. 3.3(b) of [41]). Thus, if there

are plenty of edge dislocations of different Burgers vectors inside the crystal, the crystal

can also creep with strain rate (D∗Ω/kBTd
2)tnn, where d is now the average spacing from

dislocation vacancy source to dislocation vacancy sink. Having plenty of dislocations inside

the crystal (half-planes for vacancy to be generated near and annihilated with) would ensure

µV ≈ 0 everywhere inside the crystal, if the atomic processes of emitting and absorbing

vacancies near the dislocation core is not too difficult (that is, if it is not so-called reaction

limited kinetics). Also note that just like vacancies annihilating on surface would induce

macroscopic motion (ε̇ ∼ tnnD
∗Ω/kBTd

2), vacancies annihilating on half-planes would also

induce macroscopic motion, vL
C.

One also have the situation where local σnn is generated by the Young-Laplace pressure, then

fV ≡ f fV + kBT lnXV = −γκΩ, where κ = R−1
1 + R−1

2 , and XV = exp(−(f fV + γκΩ)/kBT ).

Thus hill top would have less vacancy, valley would have more vacancy, which will drive

vacancy flux uphill (= atom flux downhill), and smooth out the surface. Note that if there
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is no vacancy relaxation volume: Ω−Ωf
V = 0, then µ1V and internal diffusion is independent

of pressure. A detailed mathematical treatment of surface smoothing is given in Chap. 14.1

of [41].

Since JV = cV vV (this is still C-frame), we have vV = −LV V kBT/c
2
V∇cV = LV V /cV (−∇µV ).

Since −∇µV can be identified as the thermodynamic driving force for vacancy motion, we

can define MV ≡ LV V /cV to be the vacancy mobility. We have previously defined DV ≡
LV V kBT/cV . Thus we have derived the Einstein relation MV = DV /kBT .

Among all three inter-related transport quantities, LV V = −L1V = −LV 1 = LV V , DV

and MV , MV has the most direct physical interpretation. If the vacancy has charge, as in

ionic crystals, MV may be measured by applying an external electric field to the crystal

and checking how much faster the vacancies move on average. In the limit of dilute cV ,

MV should be nearly a constant of cV , since the driven motion of one vacancy should be

independent from the driven motion of another vacancy, as they seldom cross each other’s

path when vacancy concentration is so dilute:

MV (cV ) = M0
V +O(cV ) (3.31)

Therefore

DV (cV ) = kBTMV (cV ) = D0
V +O(cV ). (3.32)

This means LV V = −L1V = −LV 1 = LV V = cVMV must scale as cV for small cV . Within

the small cV approximation then, DV may be taken out of ∂tcV = ∇ · (DV∇cV ) = D0
V∇2cV

as the leading order term. This is still in the C-frame.

How to physically interpret D0
V ? Let us perform a thought experiment, and see what the

field equation ∂tcV = D0
V∇2cV implies. Imagine we put a single vacancy at the origin at

t = 0. This like a delta-function in the initial vacancy concentration. We know the solution

to ∂tcV = D0
V∇2cV in the case of 1D is cV (x, t) = 1√

4πD0
V t

exp(− x2

4D0
V t

). Since cV (x, t) is

normalized,
∫∞
−∞ dxcV (x, t) = 1, it can be understood as a probability density of finding

the vacancy migrating to x at time t, given that it was at 0 at time 0. The mean squared

displacement is thus ∫ ∞
−∞

dxx2cV (x, t) = 2D0
V t. (3.33)
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In the case of 3D, the normalized concentration / probability density is just

cV (x, y, z, t) =
1

(4πD0
V t)

3/2
exp

(
−x

2 + y2 + z2

4D0
V t

)
(3.34)

with mean squared displacement∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

dxdydz(x2 + y2 + z2)cV (x, y, z, t) = 6D0
V t. (3.35)

This is what the macroscopic field equation tells us. But what is the microscopic basis for

this vacancy’s mean squared displacement?

Atoms are always rattling around the vacancy, and once in a while a nearest-neighbor atom

jumps across to fill this vacancy, but also leaving an empty spot behind. We then say “the

vacancy has hopped” or “the vacancy has interchanged with an nearest-neighbor atom”. In

1D, the vacancy can hop left or right. In 2D, the vacancy can hop up, down, left, right

(Z = 4), etc. The rate of successful hop to one specific nearest neighbor (say right) can be

modeled as Γ′V = ν exp(− gmV
kBT

), where ν is a physical attempt frequency (typically ∼ 1012/s)

and gmV is the vacancy migration free energy barrier: gmV ≡ G∗−G, where G∗ is the system’s

total free energy at saddle point (when vacancy has moved halfway from one lattice site to an

adjacent lattice site). When there is no external bias (zero driving force), Γ′V should be the

same in all Z channels, so the total hop rate of the vacancy is ΓV = ZΓ′V . The vacancy will

essentially be performing unbiased random walk on the site lattice, each hop labeled by an

integer k = 1..K, where K = ΓV t� 1. Let us define rk to be the vectorial hopping distance

at kth-hop. In 1D, rk would be a0 or −a0 with equal probability. In 2D, rk would be (a0, 0),

(0, a0), (−a0, 0), (0,−a0) with equal probability, etc. If we let xV (t) be the position of the

vacancy at time t, then

xV (t) = r1 + r2 + ...+ rK . (3.36)

In the theory of probability, if A and B are two random variables, then E[A+ B] = E[A] +

E[B], where E[X] means the expectation (average) value of X. Thus E[xV (t)] = E[r1] +

E[r1]+...+E[rK ] = 0, which means the centroid of xV (t) distribution is still 0. The variance of

X is defined as Var[X] ≡ E[(X−E[X])2]. If A and B are independent random variables, there

is further Var[A+B] = Var[A] + Var[B]. So Var[xV (t)] = Var[r1] + Var[r1] + ...+ Var[rK ] =

KVar[rk] = Ka2
0, where a0 is the Kossel crystal lattice constant. This is because rk · rk = a2

0

with probability 1 when the vacancy is hopping on the simple cubic Kossel lattice (in BCC,

Z = 8, E[rk] = 0 and Var[rk] = 3a2
0/4; in FCC, Z = 12, E[rk] = 0 and Var[rk] = a2

0/2).
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The final piece of the puzzle is to apply the so-called central limit theorem from the theory of

probability, which states that if many random variables are added together, the probability

distribution function of that sum will approach Gaussian, no matter how the individual

random variables are distributed:

dP (xV (t) in dxdydz) =
dxdydz

(2πσ2)3/2
exp

(
−x

2 + y2 + z2

2σ2

)
, (3.37)

with 3σ2 = Var[xV (t)] = Ka2
0 = ΓV ta

2
0. Matching the field equation solution (3.35) with

that from discrete random walk, we may identify 6D0
V t in (3.35) as ΓV ta

2
0, so D0

V = ΓV a
2
0/6.

A more mundane interpretation of D0
V = ΓV a

2
0/6 is also possible, but this case we imagine

a driven system, where there is concentration gradient ∇cV , and thus finite thermodynamic

driving force. Specifically, imagine ∇cV = (∂xcV , 0, 0), and consider two adjacent atomic

planes at x = 0 and x = a0, respectively. The plane at x = 0 will have on average cV (x = 0)a0

vacancies per unit area, whereas the plane at x = a0 will have on average cV (x = a0)a0

vacancies per unit area, and the two are generally not equal. The number of vacancies

hopping from left plane → right plane is cV (x = 0)a0Γ′V , the number of vacancies hopping

from the right plane→ left plane is cV (x = a0)a0Γ′V , so the net vacancy flux (if measurement

is done at x = 0.5a0) will be (cV (x = 0) − cV (x = a0))a0Γ′V ≈ −∂xcV a2
0Γ′V . On the other

hand, the field equation says the flux should be −D0
V ∂xcV , so we identify D0

V = a2
0Γ′V .

In the random walk model of diffusion, the tagged vacancy just wanders around without any

driving force or preferred direction of motion. In the alternative derivation, there is a macro-

scopic concentration gradient and chemical potential driving force. We see the two models

give identical result for D0
V , which is a manifestation of so-called fluctuation-dissipation the-

orem, which states that equilibrium fluctuations (equilibrium position fluctuations in the

case of random walk) are governed by the same laws as an externally driven system (macro-

scopic ∂xcV and ∇µV ) if the driving force is small. The Einstein relation M = D/kBT is

a manifestation of this idea as well, where M characterizes the velocity of a driven object,

and D characterizes the random-walk response of that object when there is no driving force.

Aside from this insight, the random walk model also gives us a microscopic physics expres-

sion D0
V = a2

0Γ′V . Thus, the slope of lnD0
V versus 1/T would give us hmV /kB, the enthalpy of

vacancy migration, with gmV = hmV − TsmV , where smV is the entropy of vacancy migration.

Now we can discuss about self-diffusion in solids. Self-diffusion means that instead of iden-

tifying a vacancy and tracking its motion xV (t), we “tag” an atom and tracks its motion.

The way self-diffusion is measured experimentally is to use radioactive isotope 2 = 1∗, which
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is chemically identical to 1. The system 1-2(1∗)-3(V) satisfies:

J1 = −L11∇µ1V − L12∇µ2V , J2 = −L21∇µ1V − L22∇µ2V . (3.38)

For example, in a diffusion couple experiment, one weld two bar together, one bar has c−∞1 ,

c−∞1∗ , the other has c∞1 = c−∞1 + c−∞1∗ (Fig. 3.1 of [41]), and then heat it up for some hours for

1∗ to diffuse inward. If the system is under P = 0, the vacancy density should be uniform

everywhere c0
V = Ω−1 exp(−f fV /kBT ), since the vacancy can’t “tell” the difference between

1∗ and 1, and would have no motivation to change its statistical and dynamical behavior

before/after c1 is replaced by c1∗ .

Generally we also have the Gibbs-Duhem relation:

X1dµ1 +X2dµ2 +XV dµV = 0 (3.39)

for an isothermal isobaric system, with only X is changing. Therefore

X1∇µ1 +X2∇µ2 +XV∇µV = 0 → X1∇(µ1 − µV ) +X2∇(µ2 − µV ) = −∇µV . (3.40)

If µV = 0 = ∂G
∂NV
|N1,N2 everywhere (vacancies thermodynamically equilibrated with sur-

face/GB/dislocation sources), we will have

X1∇(µ1 − µV ) +X2∇(µ2 − µV ) = 0 → ∇µ2V = −c1

c2

∇µ1V . (3.41)

Plugging this back into (3.38), we get

J1 = −(L11 −
L12c1

c2

)∇µ1, J2 = −(L22 −
L21c2

c1

)∇µ2, (3.42)

or applying this to 1-1∗-V system

J1 = −(L11 −
L11∗c1

c1∗
)∇µ1, J1∗ = −(L1∗1∗ −

L1∗1c1∗

c1

)∇µ1∗ . (3.43)

Because 1-1∗ always mix ideally no matter what is c1∗ , there is

∇µ1 =
kBT

c1

∇c1, ∇µ1∗ =
kBT

c1∗
∇c1∗ , (3.44)
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and so

J1 = −kBT (
L11

c1

− L11∗

c1∗
)∇c1, J1∗ = −kBT (

L1∗1∗

c1∗
− L1∗1

c1

)∇c1∗ . (3.45)

Define self diffusivity as

D∗ ≡ kBT (
L1∗1∗

c1∗
− L1∗1

c1

), (3.46)

we get Fick’s 1st law for radioactive tracers:

J1∗ = −D∗∇c1∗ . (3.47)

Even though vacancies seem to disappear from the derivations above, we will argue below

based on physical grounds that in fact D∗ = fXVDV , where f is a correlation correction

factor of order 1 (Chap. 8.2 of [41]). The argument is the following. If we track a tagged

atom: its rate of changing site is actually much lower than the average hopping rate of a

vacancy Γ′V , because unless there is a vacancy just next to this tagged atom, there is no

chance for the atom to hop. The unconditional probability of finding a vacancy right next

to our tagged atom is ZXV , so the total rate of atom hopping is approximately ZXV Γ′V .

The method of random walk then gives us D∗ ≈ ZXV Γ′V a
2
0/6 = XVDV . From this we see

that unlike the vacancy diffusivity itself DV ≈ D0
V , the self-diffusivity D∗ is actually a very

sensitive function of XV . Ultimately this is because self-diffusion in substitutional alloys is

physically a side effect of vacancy diffusion. This also illustrates the point that although

vacancy is almost always negligible thermodynamically (on µ of other species; µV does care

about XV ), it is almost always non-negligible kinetically.

There is a tricky point in the derivation above, which is that even if the “vacancy hops” are

truly uncorrelated, the atom jumps would still be somewhat correlated. The reason can be

seen from the following: if we do not know where the vacancy is coming from (left, right, up,

down), the atom would jump left, right, up, down with equal probability. However, once we

know what r1 is for the atom jump, for example r1 = (a0, 0), we now know that immediately

after the jump, the vacancy must be immediately to the left of the atom. This makes r2

more likely to be (−a0, 0), the so-called “back flow”. Thus, r1 and r2 for the atom jumps

would be correlated somewhat negatively. This has an effect of reducing the self diffusivity

D∗ = fXVDV , where 0 < f ≤ 1 is a correlation correction factor. This is treated more

extensively in Chap. 8.2 of [41], and f is found to be 0.78 in FCC crystals and 0.73 in BCC

crystals.

The self-diffusivity D∗ is widely used because it can be experimentally measured. When we
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plot lnD∗ versus 1/T , the slope is (hfV + hmV )/kB, the sum of the enthalpy of formation and

the enthalpy of migration of the vacancy. In copper, hmV is about 0.71 eV, which means the

effective activation enthalpy hfV + hmV is about 2 eV since hfV is about 1.27 eV. [3]

In self-diffusion, there is no vacancy flux: JV = 0, since whether atoms surrounding the

vacancy are radioactive or not have no bearing on the vacancy trajectory xV (t). In such

case, there is no macroscopic lattice plane motion inside the crystal, vL
C = 0, and C-frame and

L-frame are identical. Now let us discuss an example where this is not the case, which leads

to the famous Kirkendall effect [45, 46]. Imagine 1-2-V system where 1 is chemically different

from 2, in particular imagine 1-V exchange is much easier than 2-V exchange. For simplicity

let us assume this difference in rate of exchange comes entirely from hmV (1) 6= hmV (2), and

not in the vacancy formation energy. That is to say, unless the vacancy attempts to hop,

it cannot tell the difference between 1 and 2. Then even though there is a concentration

gradient in 1 vs 2, say the left side is richer in 1 and the right side is richer in 2, we have

c1(x) + c2(x) ≈ 1 and cV should be approximately constant throughout the sample. We also

assume there is no volume difference between 1 and 2: Ω1 = Ω2 = Ωf
V = Ω.

Consider again two atomic planes at x = 0 and x = a0, and there is a concentration gradient

∂xc2, so the x = a0 plane has more type-2 atoms than the x = 0 plane. This will be

compensated mainly by −∂xc1, since X1 + X2 + XV = 1, and XV cannot exceed a certain

limit, say 0.1% before voids start to appear, while change in X2 in the sample can be tens of

percent. Thus, |∂xc2| ≈ |∂xc1| � |∂xcV |. In fact, if we assume there are plenty of dislocation

sources inside the crystal, then µV ≈ 0, and XV is uniform (the non-uniform XV case of

Nabarro-Herring creep is because there is macroscopic stress bias on different surfaces; when

there is no appreciable global stress bias, as in typical diffusion couple experiment, XV should

be nearly uniform). We thus expect there will more type-1 atoms on x = 0 plane than on

x = a0 plane. Vacancies on x = a0 plane will therefore see more type-1 atoms and less type-2

atoms on the x = 0 plane, whereas vacancies on x = 0 plane will see more type-2 atoms

and less type-1 atoms on the x = a0 plane. Since 1-V exchange is facile while 2-V exchange

is sluggish, there will be more vacancies hopping from right plane to left plane than vice

versa. Thus, there will be a net vacancy flux JV 6= 0 observed in the crystal frame. The

nano porosities are being pumped backward, to the 1-rich side. We have seen in our previous

discussion of Nabarro-Herring creep that JV 6= 0 has the ability of modifying the site lattice

by “tetris”-like action and inducing a macroscopic motion of the lattice planes vL
C(x) ≈ ε̇x.

This is the same story in the Kirkendall effect.
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Formally, we have

JC
V = −JC

1 − JC
2 , (3.48)

where we add the C superscript back on. (3.42) is still applicable, but the thermodynamic

interactions between 1-2 may be non-ideal, so

µ1 = µ◦1 + kBT ln γ1X1, µ2 = µ◦2 + kBT ln γ2X2 (3.49)

where γ1, γ2 are the activity coefficients. The effect of uniform and small XV is ignored in

µ1 and µ2 expression. (Generally speaking, XV is not important thermodynamically to any

species’ chemical potential except for µV , although XV is diffusion kinetically critical to all

species). Therefore

dµ1 = kBT (1 +
d ln γ1

d ln c1

)
dc1

c1

, dµ2 = kBT (1 +
d ln γ2

d ln c2

)
dc2

c2

. (3.50)

Plugging it back into (3.42), we get

JC
1 = −kBT (

L11

c1

− L12

c2

)(1 +
d ln γ1

d ln c1

)∇c1, JC
2 = −kBT (

L22

c2

− L21

c1

)(1 +
d ln γ2

d ln c2

)∇c2. (3.51)

Using the Gibbs-Duhem relation it can be shown that the thermodynamic factors d ln γ1
d ln c1

=
d ln γ2
d ln c2

.

Define intrinsic diffusivities

D1 ≡ kBT (
L11

c1

− L12

c2

)(1 +
d ln γ1

d ln c1

), D2 ≡ kBT (
L22

c2

− L21

c1

)(1 +
d ln γ2

d ln c2

), (3.52)

we have

JC
1 = −D1∇c1, JC

2 = −D2∇c2. (3.53)

As we previously discussed, ∇c1 ≈ −∇c2, but D1 can be larger than D2, therefore JC
1 6= JC

2 .

So

JC
V = D1∇c1 +D2∇c2. (3.54)

What is the physical effect of JC
V ? If we imagine all these nano porosities are dumped directly

on the free surface on the left end of the diffusion couple, this would induce a sink-in/pop-out

velocity of −JC
V Ω of that free surface. If that free surface is held fixed, the whole sample

would then shift with velocity vL
C = JC

V Ω. In reality, the vacancy flux JC
V (x) does not need
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to go all the way to the free surface to annihilate, they can annihilate on edge dislocations as

shown in Fig. 3.3 of [41]. But it can be seen by direct inspection, that whether annihilating

inside or the end surface would give the same vL
C = JC

V (x)Ω (like in the game of tetris), if

the end surface is held fixed in the laboratory frame.

Thus,

JL
1 = JC

1 + c1v
L
C = −D1∇c1 +X1(D1∇c1 +D2∇c2) ≈ −(X2D1 +X1D2)∇c1 (3.55)

JL
2 = JC

2 + c2v
L
C = −D2∇c2 +X2(D1∇c1 +D2∇c2) ≈ −(X2D1 +X1D2)∇c2 (3.56)

where we ignored the small XV . The vacancy flux is JL
V = JC

V + cV vL
C = JC

V + XV J
C
V ≈

JC
V = D1∇c1 + D2∇c2 = (D2 −D1)∇c2. If we define interdiffusivity D̃ ≡ X2D1 + X1D2,

a lab-frame quantity, then

JL
1 = −D̃∇c1, JL

2 = −D̃∇c2, (3.57)

which is what we really need in solving most diffusion problems. Fick’s 2nd law says that,

in lab frame (the conservation of “red Ferraris” works in lab frame, or in any uniformly

translating frame - that is to say if the two police patrol cars move with identical speed -

but not if with different speeds):

∂tc1 = ∇ · (D̃∇c1), ∂tc2 = ∇ · (D̃∇c2). (3.58)

D̃ should be a function of composition D̃(X2), where we assumed XV (degree of porosity)

take the equilibrium value for given X2. From the Onsager coefficient representation, we

also know that D̃ should have similar order of magnitude as the self-diffusivity D∗ (1 or 2),

which means that D̃ ∝ XV . (3.58) interdiffusion in the lab frame is the starting point for

solving most diffusion problems.

How to experimentally measure the interdiffusivity D̃(X2) as a function of composition?

Matano devised a graphical method, where D̃(X2) can be determined from a single diffusion

couple experiment:

∂tc2 = ∂x(D̃∂xc2), x ∈ (−∞,∞), (3.59)

c2(x, t = 0) =

 c−∞2 , x < 0

c∞2 , x > 0
. (3.60)

The first step in this analysis is the so-called Boltzmann transform. Define η ≡ x/2
√
t.
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There is reversible mapping (η, t)↔ (x, t). For any function y(η, t) = y(x/2
√
t, t), there is

∂ty = ∂ηy ×
−x

4t3/2
+Dty, (3.61)

where Dty ≡ ∂y/∂t|η. Similarly

∂xy = ∂ηy ×
1

2
√
t
. (3.62)

Thus (3.59) can be rewritten as

Dtc2 −
η

2t
∂ηc2 =

1

4t
∂η(D̃∂ηc2). (3.63)

Because the initial profile (3.60) has no intrinsic lengthscale (the interface of c−∞2 → c∞2 is

infinitely sharp), Boltzmann argued that any c2(x, t) we see at finite time must already have

fallen into a self-similar attractor profile c2(x, t) = c2(η), and Dtc2 = 0. This self-similar

attractor profile would satisfy:

−2η∂ηc2 = ∂η(D̃∂ηc2). (3.64)

Without the Dt dependence, ∂η is really d/dη, so

−2η
dc2

dη
=

d

dη

(
D̃
dc2

dη

)
. (3.65)

Thus,

−2
∫ η

−∞
dη′η′

dc2

dη′
= D̃(X2)

dc2

dη
, (3.66)

since we know D̃∂ηc2 is zero at minus infinity. Thus

D̃(X2) = −2
dη

dc2

∫ η

−∞
η′dc2 = − 1

2t

dx

dc2

∫ x

−∞
x′dc2(x′). (3.67)

On the right-hand side since we know dc2/dx approaches zero at plus infinity as well, and

D̃ must be finite at plus infinity, there must be:

0 =
∫ ∞
−∞

x′dc2. (3.68)

The x = 0 plane is also called the Matano plane or the Matano interface. It is a stationary

plane in the lab frame, and does not correspond to any lattice plane (since all lattice

planes are moving). The Matano plane is the lab-frame location where the two sides of the
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diffusion couple are first joined. Formula (3.67) is called the Boltzmann-Matano analysis.

To experimentally measure the interdiffusivity using (3.67) requires knowing where the origin

x = 0 is, where the two sides first met. If you are given a sample that is the outcome of

a diffusion-couple experiment, but the person who did the experiment has died, so no one

remembers where x = 0 is, what are you going to do? (think in forensics or archaeological

context). Well, you can measure the concentration profile c2(x̃) using EDS, where x̃ is with

respect to your current, arbitrarily chosen, origin. Suppose x̃ = ∆ is where the Matano

plane is, then x̃ = x + ∆ (coordinate transformation between current frame and original

experimenter’s frame). Then, obviously∫ ∞
−∞

x̃′dc2(x̃′) =
∫ ∞
−∞

(x+ ∆)dc2 = 0 + ∆(c∞2 − c−∞2 ), (3.69)

∆ =

∫∞
−∞ x̃

′dc2(x̃′)

c∞2 − c−∞2

. (3.70)

Equation (3.70) tells you where is the Matano plane in your current, arbitrarily chosen,

frame, even if you did not do the experiment yourself. Thus, we see that the terminology

“Matano plane” is not a completely trivial thing, even though initially it may sound trivial.

In above we have considered the microscopic physics of lattice diffusion coefficient Dlattice,

where free volumes are in the form of localized lattice vacancies, the concentration and

mobility of which control the effective mobility of atoms in lattice. It is typical to write

Dlattice(T ) = D0
lattice exp

(
−h

∗
lattice

kBT

)
(3.71)

where both D0
lattice and h∗lattice are temperature-independent to leading order. Note that the

effective activation energy g∗(T ) ≡ gfV + gmV has both enthalpic and entropic contributions:

g∗(T ) = h∗ − Ts∗. The s∗ term is due to vibrational entropy, including vibrational entropy

of the saddle-point configuration when vacancy migrates. Thus, the slope of exp(−g∗(T )
kBT

) in

log scale versus 1/T is not g∗(T ), because g∗(T ) is itself a function of T , due to finite s∗.

On the other hand, we may assume h∗ and s∗ to be independent of T , effectively truncating

a Taylor expansion of g∗(T ) in T to first order. Then, exp(−g∗(T )
kBT

) = exp( s
∗

kB
) exp(− h∗

kBT
),

and the exp( s
∗

kB
) can be absorbed (together with the physical trial frequency ν) into the

temperature-independent prefactor D0
lattice.

In above we have dealt with lattice diffusion in substitutional alloys, specifically vacancy-

exchange dominated lattice diffusion. Prior to Smigelskas and Kirkendall’s famous experi-
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ment [45], people thought that interdiffusion in alloy occur by the direct-exchange mecha-

nism, that is, a Cu atom and an adjacent Ni atom directly swap position without the aid

of vacancy. Smigelskas and Kirkendall’s experiment proved that vacancies play a huge role

is material kinetics: as a side effect, it also causes motion of the lattice - a surprising effect

like continental drift or glacier motion.

Lattice diffusion may also happen by the motions of interstitials. If one follows the life of an

interstitial (after it is created, before it is annihilated, at surface/GB/climbing dislocations),

it also performs random walk, with an apparent interstitial diffusivity DI = MIkBT . The

contribution of interstitials to lattice diffusivity can also be estimated as ∆Dlattice ∝ XIDI

(the atom at the interstitial can exchange/kick out atom on the lattice, causing mixing of

lattice atoms). The total lattice diffusivity can thus be estimated as Dlattice ∝ XIDI +

XVDV . The equilibrium interstitial concentration is estimated as X0
I = exp(−gfI /kBT ), the

interstitial diffusivity may be estimated asDI = ν exp(−gmI /kBT )a2
0, so the total temperature

sensitivity of theXIDI is governed by hfI+hmI , the formation energy plus the migration energy

of interstitial. In typical metals, the migration energy of interstitial is much lower than that

of vacancy, for example, in Cu hmI = 0.1eV [3]. However, the formation energy of interstitial

is much higher, hfI = 3eV [3]. Thus the total activation parameter for interstitial-exchange

diffusion is usually higher than that for vacancy-exchange diffusion, for substitutional alloys

(in interstitial alloys like Fe-C system it’s another story), inside crystals near point-defect

equilibrium. However, in irradiated materials where the point-defect distribution could be

far from equilibrium, interstitial-exchange could cause abnormally high diffusivity. Also note

that, for interstitials, there is no network constraint, and the Onsager equations would look

somewhat different. We will not delve into the details here.

Since there are also free volumes near surface (Dsurface), in grain boundaries (GBs, DGB) and

dislocation cores (Dcore), which often form percolating paths, we expect

Dsurface(T ) � DGB(T ) ∼ Dcore(T ) � Dlattice(T ) (3.72)

This is because although the trial frequencies of atom hops are comparable or even a bit

lower near surface, GB and dislocation cores, the activation enthalpies for atom hops should

h∗surface < h∗GB ∼ h∗core < h∗lattice (3.73)

such that the rate of successful hops is much higher and (3.72) holds true at all 0 < T < Tmelt.

In FCC metals, h∗GB ∼ 0.5h∗lattice. So mass transport is much accelerated near these extended
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defects, which are capable of forming percolating networks.

On the other hand, there are less number of atoms near these extended defects (surface,

GB, dislocation) than atoms in the lattice. In the case of GB enhanced diffusion, envision

the idealized geometry shown in Fig. 2.26 of [47], where the grain boundary thickness is

δ, and the rest is lattice crystal of thickness d − δ. Atoms inside δ layer are supposed to

diffuse faster down a concentration gradient ∂xc. Typically, we can take the grain boundary

thickness to be something like 3Å, and d is the grain size (something like 1µm). The total

flux averaged over the d cross-section would be

Japp = −DGBδ +Dlattice(d− δ)
d

∂xc ≡ −Dapp∂xc (3.74)

Dapp = Dlattice + (DGB −Dlattice)
δ

d
≈ Dlattice +DGB

δ

d
(3.75)

the approximation in the end is because the absolute magnitude of DGB is always much larger

than Dlattice. From Fig. 2.27 of [47] we see that there is then a transition temperature Ttrans

for diffusion rate in polycrystal, above which Dapp ≈ Dlattice, below which Dapp ≈ DGBδ/d,

with different temperature slopes. Ttrans ∼ 0.75 − 0.8Tmelt in many materials. The same

behavior holds true if we have a single-crystal nanowire of diameter d and surface thickness

δ, in which atoms hop faster. We see that interfacial or surface mass transport paths will

always dominate over lattice crystal mass transport at low enough temperatures (or small

enough d’s) because of lower activation enthalpies.

In the case of dislocation core diffusion (aka pipe diffusion), the correspondent quantity to

δ/d would be ρδ2, which is the ratio of atoms in the dislocation core to total number of

atoms, where ρ is dislocation density and δ is dislocation core thickness:

Dapp = Dlattice + (Dcore −Dlattice)ρδ
2 ≈ Dlattice +Dcoreρδ

2 (3.76)

ρ in mediumly work-hardened Cu is typically on the order of 1014/m2 (number of etch

pits per unit area) = 1014m/m3 (dislocation line length per m3 of material - in reference,

circumference of earth is 4× 107m, circumference of sun is 4× 109m). Taking δ =3Å, we see

that the dimensionless quantity ρδ2 ∼ 10−5, i.e. per hundred thousand atoms in the lattice,

there is one atom in the dislocation core. Although this weighting factor looks small, at low

enough temperatures Dcore(T ) can become so much larger relative to Dlattice(T ) that mass

transport (for whatever rate of mass transport that can occur at such low temperatures) will

be governed by dislocation core diffusion instead of lattice diffusion.
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In MSE we emphasize solids, but fluids are also worth a brief mention. Even under optical

microscope, one can see small particles embedded in a fluid (pollen in water, fat droplet

in milk) executing agitated random motion, with no perceivable macroscopic forcing. This

provides direct visualization of random walk, aka Brownian motion, and thermal fluctuation

forces. Consider a fat droplet of size r (around µm): the British fluid dynamicist George

Gabriel Stokes derived a relation between drag force F and steady state velocity of a sphere

embedded in a continuum Newtonian fluid (σ = ηε̇) of viscosity η as F = 6πrηv. Einstein

wrote it as v = 1
6πrη

F and identify 1
6πrη

as the mobility M (not mass) of the fat droplet in

the fluid medium. Then, using Einstein formula D = MkBT , he predicted

D =
kBT

6πrη
(3.77)

which agrees perfectly with the measured random-walk characteristics of the fat droplets.

(3.77) is called the Stokes-Einstein formula. Although (3.77) was intended for larger particles

like pollens or fat droplets, people attempt to correlate macroscopic hydrodynamic quantity

η with self-diffusivity of molecules. For example, liquid water has η = 10−3 Pa·s (centipoise)

at 20◦C, which one can measure macroscopically with a viscometer, and water molecule size

can be taken to 2Å. Plugging into (3.77) gives one 10−9 m2/s. The actual self-diffusivity of

water molecule in liquid water is about 2× 10−9 m2/s [48, 49].

One expects diffusion in solids, even surface diffusion Dsurface(T ), to be smaller than diffusion

in liquids. Thus, 10−9 m2/s or 10−5 cm2/s can be taken as the upper bound on solid-state

diffusivity. For example, yttria stabilised zirconia (YSZ) with yttria doping and around 10%

oxygen vacancies on the anion sub-lattice, is known to be a fast oxygen ion conductor. The

magnitude of oxygen diffusivity is about 3× 10−6 cm2/s in YSZ at the highest temperatures

of 2000K [50]. An alternative way to think about this number is that D ∼ XV νa
2
0e
−g/kBT :

with trial frequency ν = 1012/s (atomic vibration frequency), a0 = 3× 10−10m, we see that

even when the success rate of barrier hopping per trial reaches 1/10, that is, one succeeds

for every 10 trials of mounting the barrier, D would be 10−9 m2/s. When the success rate is

1/10, the diffusing species can really be thought as more “fluid” than “solid”. The typical

success rate in solids per trial is much lower, though, especially at lower temperatures.
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Chapter 4

Capillary Energy Effects

All previous discussions ignored the role of surfaces (area and shape), which are asymp-

totically correct for large bodies with infinite volume-to-area ratio. Actual bodies are not

infinite. Define surface free energy as the excess Helmholtz free energy:

F (N, T, V,A) ≡ Fbulk(N, T, V ) +
∫
A
dAγ(n,N, T, V,A) (4.1)

where A denotes the area and shape of V ’s border, and

Fbulk(N, T, V ) ≡ lim
λ→∞

F (λ3N, T, λ3V, λ2A)

λ3
, (4.2)

is A-independent. The above are well-defined recipes for Fbulk(N, T, V ) and γ, given state

function F (N, T, V,A), and arbitrary but consistent choices of the dividing surface A and

V . The dependent variables of γ is a bit involved. γ definitely depends on n, as well as T ,

chemistry and density of the substrate.

In the case of a liquid, γ(n) = γ,

F = Fbulk + γA. (4.3)

If γ > 0, the shape that minimizes G is clearly a sphere: V = 4πR3/3, A = 4πR2.

What determines R? This may sounds like a trivial question since you know the number of
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atoms, and can write down something reasonable like

Nv̄ =
4πR3

3
(4.4)

the question is then what is v̄. The inside of the liquid can choose to shrink against its

own internal pressure, to reduce the outside surface area (like you would wrap up in a fetal

position when a bunch of thugs attack you - you generate internal pressure to minimize

surface pain - if surface pain is extreme, you may shrink smaller).

Pext

compress

dV dV,dAflow to backfill

(a) (b)

Figure 4.1: The origin of Young-Laplace pressure: (a) in liquid droplet (b) in Kossel crystal
with free surface

Consider the thought experiment in Fig. 4.1(a). The square RVE squeeze by dV , its

Helmholtz free energy increases by PintdV . The normal liquid backflow to occupy the vacated

volume, simultaneously reducing the exposed surface area by dA. The external pressure does

work PextdV . To reach equilibrium:

PextdV + γdA = PintdV, (4.5)

so

Pint = Pext + γ
dA

dV
= Pext +

2γ

R
, (4.6)

The above pressure difference is called Young-Laplace pressure, which can be derived purely

mechanically.

For the Young-Laplace relation to work, the ability of the material to flow is important.
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Consider the following paradox. There is a simple cubic crystal with nearest neighbor springs

u(r) = −ε + k(r − a0)2/2 (Kossel crystal). The equilibrium lattice constant is just a0. If

you cut out the surfaces, you break surface springs and there is finite surface energy (ε/2a2
0).

But there is no internal pressure generated, at least not immediately - if the crystal is to

remain elastic (no change in bonding topology) - because elastic shrinkage in the center

causing elastic displacement on the outside do not reduce the number of broken bonds (the

surface stress of solid turns out to be zero in this case, despite of finite surface energy). If

however there are plenty of dislocations inside the crystal, which can help to reconfigure

and eliminate the number of surface sites with broken bonds by absorbing and emitting

vacancies, then over a long time, an internal pressure wil be generated, and that despite

of finite interal elastic strain energy thus created will still have lower total energy than the

original stress-free configuration because of less number of surface sites (imagine.

broken bonds

broken bonds

broken bondsbr
ok

en
 b

on
ds

Stress = 0

(a) (b)

Figure 4.2: (a) A Kossel crystal with broken bonds at surface will still have interal lattice
constant a0 and zero interal stress, despite of finite surface energy due to the surface dangling
bonds. (b) A solid is able to shear as well as eliminate surface sites by dislocation climb.

In the literature, you see three terms frequently: surface energy, surface stress and surface

tension. For liquid surfaces all three terms mean the same thing. Surface tension basically

means isotropic surface stress, like hydrostatic pressure is a special case of general stress

state in 3D. For solid surfaces, one must be very careful: surface stress (force per length

that is attributed to a geometric surface) is not necessarily surface energy, and does not have

to be isotropic. Also, whether the Young-Laplace pressure exists depends on the timescale

of observation. If the timescale of observation is long enough that diffusion is allowed to

happen and surface sites reconfigured (see Fig. 4.1(b)), then the solid behaves more like a
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liquid (for even “the mountains flowed before the Lord”[51]), and surface stress may start

to be related to the surface energy. On the other hand, in short timescale and with no bond

reconfiguration, the surface stress does not have to be the surface energy and Young-Laplace

pressure may not be established inside the solid, as the Kossel crystal paradox showed.

Consider now the chemical potential change of atoms in the finite sized body. Since

∂µi
∂P

∣∣∣∣∣
X,T

= vi (4.7)

For an RVE of composition X, compared to the same RVE embedded in an infinite particle,

the chemical potential would have risen by

∆µi = vi
2γ

R
. (4.8)

The above is called the Gibbs-Thomson effect (Young and Laplace were mechanicians in

1805, but chemical potential concept was only invented after Gibbs work in 1876 at Yale).

It will play a role in driving bulk and surface diffusion.

Near a general surface

∆µi = γvi

(
1

R1

+
1

R2

)
= γvi(κ1 + κ2), (4.9)

where κ1 and κ2 are the two principal curvatures, since there is the general geometric relation

dA

dV
= κ1(x) + κ2(x). (4.10)

Note that (4.9) is a local condition, and R1, R2, κ1, κ2 all depend on the position x of the

surface: R1(x) = 1/κ1(x), R2(x) = 1/κ2(x).

Consider a 1D height profile h(x) of a surface. We will show in below that the local curvature

K(x) = 1/R(x) ≈ −∂2
xh, if h(x) is a gently varying curve, with small |h|. The reason that

curvature is related to the 2nd-order derivative is because a straight line profile h(x) = a+bx,

which has finite 0th and 1st-order derivatives, has no curvature. Curvature is defined by a

local fit to h(x) by a perfect circular arc. Consider h(0) = h′(0) = 0 (since 0th and 1st-order

derivatives are unimportant to curvature value), and we would like to fit to h(x) by a circle

that is tangent to the horizontal axis at x = 0. With such a circle of radius R, we would

have (R− h)2 + x2 = R2, or −2Rh+ h2 + x2 = 0. For |h| � |x| � R, we can ignore the h2
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term, and have h ≈ x2/2R, so h′′(0) = 1/R, Q.E.D.

Consider now a thin film with no internal stress attached to a bottom substrate, with an

initially undulating top surface height profile h(x). If the surface energy is isotropic, the

total capillary energy γ
∫
dx
√

1 + (h′(x))2 can be reduced by taking a flat h(x) = h0, and

choosing h0 such that the total number of atoms is conserved. This is the “macroeconomic”

view of why surface undulations should disappear for a stress-free thin film. The question is

what are the “microeconomic” mechanisms for undulations decay by diffusion. That is, what

are in it for the individual atoms at different locations to smooth out the profile undulations.

Note that according to the sign convention in (4.6), there should be an extra negative sign

K(x) = 1/R(x) ≈ −∂2
xh if the material is below the surface. Then, in this quasi-1D problem,

κ1(x) = −∂2
xh, κ2(x) = 0, and the Gibbs-Thomson effect says that ∆µ = −γ∂2

xhΩ, in

reference to same system with flat surface. Thus, RVEs immediately beneath the profile

crest (negative ∂2
xh) will have positive ∆µ, whereas RVEs beneath the profile valley (positive

∂2
xh) will have negative ∆µ. Thus, there will be a driving force for atoms near the crest to

migrate to the bottom. The migration can occur by bulk diffusion, e.g. vacancy mechanism,

but it can also occur by surface diffusion.

Let us consider the case of mass transport dominated by surface diffusion, due to for example

low temperature or small-wavelength undulations. In this case we consider there is a surface

skin channel of width δ where atom mobilities are high (Dsurface/kBT � Dbulk/kBT ). Atoms

in the skin channel must be equilibrated with RVEs immediately beneath the skin, and

therefore see the same thermodynamic driving force −∂x∆µ = γΩ∂3
xh to move. We have

flux in the skin channel to be Jsurface = csurfacevsurface = csurface(Dsurface/kBT )(−∂x∆µ) =

(γcsurfaceΩDsurface/kBT )∂3
xh = (γDsurface/kBT )∂3

xh. The last equality is because csurfaceΩ ≈ 1

(we assumed the surface channel has comparable atom density as bulk: a small difference

of tens of per cent can anyhow be absorbed into the definition of Dsurface). So the total

rate of “red Ferrari” transport across the surface skin channel is Jsurface(x)δ. If Jsurface(x)δ

is a constant across a certain range of x, then we just have uniform transport of matter

with no accumulation. On the other hand, if Jsurface(x + ∆x)δ 6= Jsurface(x)δ, then we will

have accumulation of “red Ferraris”. The rate of accumulation is −∂x(Jsurface(x)δ) per unit

distance of x. Since each “red Ferrari” carries volume Ω, the rate of surface height increase

would be

∂th = −Ω∂x(Jsurfaceδ) = −(γδDsurfaceΩ/kBT )∂4
xh (4.11)

It is easy to check that the unit works out.

74



Define B ≡ γδDsurfaceΩ/kBT (unit m4/s, Eq. 14.10 of [41]), the equation ∂th = Bsurface∂
4
xh de-

scribes so-called curvature-driven surface diffusion. In contrast to the typical diffusion equa-

tion derived from Fick’s 1st and 2nd law, ∂tc = D∂2
xc, which is a parabolic PDE (parabolic

spatial derivative), curvature-driven flow is a quartic PDE. That is, the highest-order spatial

derivative is 4th order. This difference is fundamentally because ∂tc
∗ = D∗∂2

xc
∗ is driven

by thermochemistry, whereas ∂th = −B∂4
xh is driven by geometry and the Young-Laplace

pressure derived from geometry. Introduction of capillary energy now adds an A-dependent

term in the chemical potential, which is now geometry-sensitive for finite-sized objects. The

power of the Onsager formalism which depends on −∇µ and mobility M / Onsager coeffi-

cient L, rather than the concentration gradient −∇c and diffusivity D, should now be more

apparent. We see that two very different equations, ∂th = −Bsurface∂
4
xh and ∂tc = D∂2

xc, can

both be derived from the same grandaddy Onsager equation. Therefore, physically, −∇µ
and M are definitely the more fundamental quantities to remember than −∇c and D and

Fick’s 1st law, though in practice −∇c and D are probably more convenient to use and mea-

sure. So the connection from −∇µ Onsager language to −∇c Fick language is important to

demonstrate, which we have already done in Sec. 3.

Suppose we are given initial height profile h(x, t = 0) = h0 + a0 sin(kx), we may guess the

solution to ∂th = −B∂4
xh to be h(x, t) = h0 + a(t) sin(kx). This guess is called separation of

variables, and it happens to work out:

da(t)

dt
sin(kx) = −Ba(t)(−k2)2 sin(kx) (4.12)

da(t)

dt
= −Bk4a(t) → d ln a(t)

dt
= −Bk4 → a(t) = a(t = 0)e−Bk

4t (4.13)

Thus h(x, t) = h0 + a0e
−Bk4t sin(kx). Because ∂th = −B∂4

xh is linear PDE (it is nonlinear

in ∂x operator but linear in h), the solutions are additive. According to Fourier, almost any

initial profile can be decomposed into sine and cosine of different wavevectors:

h(x, t = 0) =
∫ ∞

0
dk(a0(k) sin(kx) + b0(k) cos(kx)) (4.14)

including initial profiles with sharp steps. So the finite-time solution is simply:

h(x, t = 0) =
∫ ∞

0
dk
(
a0(k)e−Bk

4t sin(kx) + b0(k)e−Bk
4t cos(kx)

)
(4.15)

We see that the smaller-wavelength component (sharp features) dies out much faster than

longer-wavelength component. By increasing the wavelength by a factor of 2, the amplitude
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decay halflife increases by a factor of 16. (The same is true for ∂tc
∗ = D∗∂2

xc
∗ for composition

modulations: here increasing the wavelength by a factor of 2 increases the decay halflife by a

factor of 4.) Indeed, for k = 0 component (the average height profile h0), the amplitude does

not decay at all. Note that {sin(kx), cos(kx)} or {eikx} is a good basis for infinite domain

x ∈ (−∞,∞) problems, where there is no boundary condition, or periodic domain problems,

where the boundary condition is trivial. For problems with nontrivial boundary conditions

(finite spatial support), {eikx} is no longer good spatial basis and other eigenfunction basis

suitable for this particular boundary condition would be needed. Separation of variables

approach still works in those situations though, as long as the PDE is linear.

Wulff plot: γ(n)n, and inverse Wulff plot: γ−1(n)n.

Kossel crystal show that surface energy naturally have sin |φ| type singularities, with cusps

(locally minimal surface energy) occurring at certain special φ’s that have especially well

packed surface structure ({111}, {110}, {100} surfaces in FCC crystals). When φ deviates

just a little bit (either + or −) from these special angles, there will be crystallographic ledges

whose density is ∝ sin |∆φ|, causing a singular cusp in the energy vs φ plot. Such singularity

is due to crystallography, and ultimately, the discreteness of atoms.

unit length φ

(a) (b)

n3

n1

n2

a1

a2

a3

(c)

Figure 4.3:

Stability of a certain thin film surface (constrained on substrate) against decomposition.

Consider a1 + a2 = a3. First we would like to show

a1n1 + a2n2 = a3n3 (4.16)

where |a1| = a1, |a2| = a2, |a3| = a3. Since a1â1 + a2â2 = a3â3, we only need to apply 90◦
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rotation matrix R to both left and right-hand side to prove (4.16). There is a more general

proof (applicable to tetrahedron in 3D) using Gauss theorem. Define all ni of a polyhedra

to be pointing outward. The claim is that

∑
i

Aini = 0. (4.17)

The proof is to consider

b ·
∑
i

Aini =
∫

surface
dAb · n =

∫
body

d3x(∇ · b) = 0. (4.18)

for arbitrary b. So (4.17) must be true, and (4.16) is a 2D special case, with normal of 1,2

defined inward as shown in Fig. 4.3(c).

Now the energy of 1+2 combination is γ1a1 + γ2a2. Define

γ∗3 ≡
γ1a1 + γ2a2

a3

(4.19)

If the actual γ3 > γ∗3 , the n3 facet would be unstable against decomposition into 1+2.

However, the geometric equality (4.16) could be rewritten as

a1γ1γ
−1
1 n1 + a2γ2γ

−1
2 n2 = a3γ

∗
3γ
∗−1
3 n3 = γ1a1γ

∗−1
3 n3 + γ2a2γ

∗−1
3 n3 (4.20)

So:

a1γ1(γ−1
1 n1 − γ∗−1

3 n3) = a2γ2(γ∗−1
3 n3 − γ−1

2 n2) (4.21)

which means γ∗−1
3 n3 must be on the straightline connecting γ−1

1 n1 and γ−1
2 n2. If the actual

γ−1
3 lies inside of this γ∗−1

3 line segment, then γ3 will be unstable against decomposition.

So when we plot the inverse Wulff plot, γ−1(n)n. Any facet that is inside the common

tangent construction of γ−1(n)n will be unstable against decomposition (read p. 346-349,

608-615 of [41], ignore the discussion about the capillary vector ξ(n)). Note that it is possible

to adjust the relative position of 1+2 to 3, such that beneath 3 contains exactly the same

number of atoms.

Define the angle between n3 and n1 to be φ. From the law of sine in inverse Wulff plot, we

get
sin(π − α− φ)

γ−1
1

=
sinα

γ∗−1
3

. (4.22)
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Figure 4.4: .

In above φ is variable as n3 scans between n1 and n2, but α is constant, set by γ−1
1 n1 and

γ−1
2 n2. We may rewrite the equation then as

γ∗3(φ) = γ1
sin(π − α− φ)

sinα
. (4.23)

It turns out that γ∗3(φ) must be part of a circle which goes through three points: the origin,

γ1n1 and γ2n2. This can proven by the following, consider Fig. 4.4(b). Let us call the angle

shown in Fig. 4.4(b) as α′. By the law of sine, we have

sin(π − α′ − φ)

γ∗3(φ)
=

sinα′

γ1

→ γ∗3(φ) = γ1
sin(π − α′ − φ)

sinα′
. (4.24)

Comparing with (4.23), the only way this can be true is α′ = α, which is constant. The set

of points with such property forms a perfect circle (inscribed angle inside a circle facing a

constant chord is constant). An alternative and simpler proof is that a straight line with

unity distance to the origin maps to a circle after r−1 transformation.

Define γ∗(n)n as the stable Wulff plot. Given γ(n)n (from say, a first-principles total en-

ergy calculation), one plots γ−1(n)n and eliminate segments of γ−1(n)n that lies inside the

common tangent construction. The montage of straight-line common tangent segments plus

uneliminated γ−1(n)n segments form γ∗−1(n)n. We then invert γ∗−1(n) to get γ∗(n)n.

Alternatively, the above can be formulated in Wulff space directly. Tangent circle the-

orem: Given γ(n)n, both the necessary and sufficient condition that γ∗(n′) = γ(n′) for a

particular n′ is that if one draws a circle through the origin and tangent to γ(n)n at n′, such

tangent circle lies completely within γ(n)n and do not hit any other points on γ(n)n. This
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is because a tangent line of γ−1(n)n that does not hit γ−1(n)n at any other point maps to

a tangent circle inside γ(n)n.

The tangent circle theorem and decomposition test is useful for thin-film surface on substrate.

For free-standing crystallite such as formed in deposition, where surface energy dominates the

shape, we need Wulff construction: consider a crystal with f possible surface orientations

ni. Denote their distance to the center as hi. Then the exposed length is ai. Clearly,

ai = ai(hi−1, hi, hi+1). (4.25)

We also have the following reciprocal relation:

∂ai
∂hi−1

=
∂ai−1

∂hi
=

1

sin θi,i−1

, (4.26)

which can be proven from inspecting the geometry, where θi,i−1 is the angle between ni and

ni−1.

Now consider a free-standing particle of fixed volume V . We seek the shape that minimizes

its surface energy:

Fsurface =
∑
i

γiai, (4.27)

with the shape completely determined by the {hi}. Change in volume must be constrained

to zero:

0 =
∑
i

aidhi, (4.28)

and

dFsurface =
∑
i

(
γi−1

∂ai−1

∂hi
+ γi

∂ai
∂hi

+ γi+1
∂ai+1

∂hi

)
dhi, (4.29)

so there must be

γi−1
∂ai−1

∂hi
+ γi

∂ai
∂hi

+ γi+1
∂ai+1

∂hi
= βai, (4.30)

where ai is the Lagrange multiplier. Using the reciprocal relation:

γi−1
∂ai
∂hi−1

+ γi
∂ai
∂hi

+ γi+1
∂ai
∂hi+1

= βai. (4.31)
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On the other hand, ai(hi−1, hi, hi+1) is a homogeneous function of degree 1 (in 2D):

ai(lhi−1, lhi, lhi+1) = lai(hi−1, hi, hi+1) (4.32)

So by taking derivative against l on both sides, and then setting l = 1, there is

hi−1
∂ai
∂hi−1

+ hi
∂ai
∂hi

+ hi+1
∂ai
∂hi+1

= ai. (4.33)

In 3D, there is ai(lhi−1, lhi, lhi+1) = l2ai(hi−1, hi, hi+1) and hi−1
∂ai
∂hi−1

+hi
∂ai
∂hi

+hi+1
∂ai
∂hi+1

= 2ai.

Comparing the two equations, we see that

... =
γi−1

hi−1

=
γi
hi

=
γi+1

hi+1

= ... = β (4.34)

for all i, will be a variational extremum. In fact, dFsurface = dFbulk = (Pint − Pext)dV

is the original Young-Laplace pressure argument (Fig. 4.1(a)), and the facet-independent

Lagrange multiplier β can be identified to be simply the Young-Laplace pressure difference

∆P = Pint − Pext. So in 2D, we have ∆P = γi
hi

.

The above means that the inner envelope formed by all Wulff planes (a Wulff plane lies

perpendicular to γ(n)n at γ(n)n) gives the equilibrium shape of a free-standing nanocrystal.

This is called Wulff construction, which minimizes the total surface energy of a free-

standing nanoparticle. Note that the Wulff construction serves a different purpose from the

tangent circle theorem. The tangent circle theorem deals with the stability of one surface

constrained to have overall inclination n′ because it must conform to the substrate, whereas

the Wulff construction needs to optimize all facets of the nanocrystal simultaneously.

In 3D, there is an extra factor of 1
2

on RHS, and we get

... =
γi−1

hi−1

=
γi
hi

=
γi+1

hi+1

= ... =
β

2
=

∆P

2
(4.35)

or ∆P = 2γi
hi

to be the pressure increase inside the solid particle. We see that for isotropic

surface energy and spherical particle, this reduces to the familiar expression ∆P = 2γ
R

.

Here comes a paradox. Ignoring the more subtle effect of surface pre-melting, the ∆P = 2γi
hi

pressure increase should change the melting point of the solid nanoparticle [52, 53, 54, 55],
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like a pressure cooker. According to the Clausius-Clapeyron equation:

∆Tmelt =
∆s

∆v
∆P =

∆s

∆v

2γi
hi
∝ ∆s

∆v

2γ

R
(4.36)

Thus, the change in melting point should scale as 1/R, which seems to agrees with Fig.

4.5(a) (Fig. 2 of [54]). Indeed, Fig. 4.5 shows significant change (by more than 50%!) of

the melting point of pure Au solid nano-particles when the diameter reaches 2nm. However,

a more careful inspection indicates the sign of Tbulkmelt − Tnanomelt is wrong! While naive

application of the Clausius-Clapeyron relation indicates the melting point should increase

due to positive Young-Laplace pressure, the actual experimental and simulation data indicate

the melting point is suppressed. What is going on?

Here are some data: vfcc
Au ≈ 17.8 Å3, vliquid

Au ≈ 18.9 Å3, and suppose Richard’s rule holds

(entropy of melting is about 1.1kB), formulate the problem, define and estimate the physical

quantity you could extract from Fig. 4.5. Even though the actual solid particle is faceted as

shown in the inset, here in the “spherical cow” approximation take them to be spherical.

M
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]

Au nanoparticle diameter [nm]

(a)
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µbulk

µcompetitor

RC
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Figure 4.5: Nanoparticle stability. (a) Melting point of Au nanoparticles as a function of
diameter, observed experimentally as well as in molecular dynamics simulations [54]. (EAM:
Embedded Atom Method; MEAM: Modified Embedded Atom Method, both are interatomic
potentials for performing computer simulations). (b) Chemical potential of (energy of at-
taching) an atom in nanoparticle as a function of nanoparticle radius.

The resolution of the paradox is the following. In deriving the Wulff construction for free-

standing solid particle, we mentioned γi/hi = ∆P/2, so there is pressure increase inside the

solid particle. If one blindly feeds this Young-Laplace pressure increase into the Clausius-

Clapeyron equation for bulk material dP/dT = ∆s/∆v, one gets melting point increase,
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since Au melts with positive volume of melting, ∆v = vliquid
Au − vfcc

Au = 1.1 Å3, and positive

entropy of melting, ∆s = sliquid
Au −sfcc

Au = 1.1kB. Using any formula without remembering how

it was derived can be dangerous. Recall that P in the Clausius-Clapeyron relation is the

external pressure Pext, to be shared equally between the solid and liquid phases upon ∆Pext.

Apparently, the Young-Laplace pressure difference does not work like a common Pext.

The right mental setup here is to envision a competing Au liquid droplet. There will also

be a Young-Laplace pressure difference, but the pressure difference in the liquid droplet will

be proportional to γL, the liquid surface energy, rather than γS, the isotropic solid surface

energy in the “spherical cow” approximation. Thus, capillary pressure will be of different

magnitudes inside the solid particle and liquid particle. If γS is quite a bit larger than γL,

then the increase of chemical potential inside the solid particle will exceed the increase of

chemical potential inside the liquid particle, destabilizing the solid particle relative to the

liquid particle and suppressing the melting point.

The discussion is further complicated by the phenomenon of surface pre-melting, where a

thin layer of liquid covers the solid particle before the core of the solid particle melts [55].

To take this into account requires more extensive modeling (Model II in [53, 52]). For

pedagogical reason let us pretend pre-melting does not happen. The physical effect and

parameters extracted from Model II and Model I are not fundamentally different.

Recall that Gsolid(N, T, Pext, A
solid) = Gsolid

bulk(N, T, Pext) + 4πR2
SγS, Gliquid(N, T, Pext, A

liquid) =

Gliquid
bulk (N, T, Pext)+4πR2

LγL, where RS and RL are the radius of the solid and liquid nanopar-

ticles, respectively. Setting them equal, we have

4π(R2
SγS −R2

LγL) = Gliquid
bulk (N, T, Pext)−Gsolid

bulk(N, T, Pext). (4.37)

Also recall that at bulk melting point Tbulkmelt, we have

Gliquid
bulk (N, Tbulkmelt, Pext)−Gsolid

bulk(N, Tbulkmelt, Pext) = 0, (4.38)

so we can perform Taylor expansion of the right-hand side around T = Tbulkmelt and keep

only the leading-order term in the spirit of spherical-cow approximation, and get:

4π(R2
SγS −R2

LγL) = N∆s(Tbulkmelt − T ). (4.39)

We also have the following relations: Nvfcc
Au = 4πR3

S/3, Nvliquid
Au = 4πR3

L/3, N = 4πR3
S/3v

fcc
Au =

4πR3
L/3v

liquid
Au , and so R2

L = R2
S(vliquid

Au /vfcc
Au)2/3 = 1.04R2

S (the liquid particle of equal mass is
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slightly larger in size). Thus we have:

Tbulkmelt − T =
4πR2

S(γS − 1.04γL)

∆s · 4πR3
S/3v

fcc
Au

=
3vfcc

Au(γS − 1.04γL)

∆s ·RS

. (4.40)

We get a melting point suppression that goes like R−1
S , which is good news because that is

how the figure looks like. If we take Tbulkmelt− T to be 700 K at RS = 1nm (diameter 2nm),

then we could estimate γS − 1.04γL to be 0.2 J/m2. This is quite reasonable number. In

Table 3.1 of [47], γS is listed to be 1.39 J/m2. So from (4.40) we may deduce that γL = 1.14

J/m2.

In Table 3.4 of [47], γSL is listed to be 0.132 J/m2. We know that Au liquid, as most metallic

liquids, wets its own solid: γS − γL − γSL > 0, and that certainly does not conflict with our

result. In reality, bulk measurement gives γL = 1.135 J/m2 [53], which is embarrassingly

close to the prediction of (4.40).

Instead of comparing the total free energy, there is an alternative derivation based on com-

paring the chemical potentials. Since

µsolid = µsolid
bulk +

2γSv
fcc
Au

RS

, µliquid = µliquid
bulk +

2γLv
liquid
Au

RL

, (4.41)

if we equate µsolid with µliquid, and use the expression µliquid
bulk − µsolid

bulk = ∆s(Tbulkmelt − T ), we

will get:

Tbulkmelt − T =
1

∆s

(
2γSv

fcc
Au

RS

− 2γLv
liquid
Au

RL

)
=

2vfcc
Au(γS − 1.04γL)

∆s ·RS

, (4.42)

since vliquid
Au /vfcc

Au = R3
L/R

3
S. The rationale for equating the chemical potentials is that, if

there is an existing liquid particle of equal mass to the solid particle, the liquid particle

would grow and the solid particle would shrink, via vapor phase transport. This assumption

was clearly stated on p.2289 of [53], even though the scenario is not very realistic (where

does this liquid particle of just the right size come from...) On the other hand, equating the

total energy, (4.40), assumes one solid particle is totally transformed into a liquid particle,

and an accounting of the total thermodynamic profit is done assuming the kinetic barrier

can be overcome.

For the sake of a rough estimate in the present problem, (4.40) and (4.42) are equally fine,

differing just by a numeric factor of 3/2. It is worth noting, however, that for a sphere

83



the relative capillary contribution to the integral energy, the total energy, always has this

factor of 3/2 over the relative capillary contribution to the differential energy, the chemical

potential. For a cylinder (nanowire), this ratio becomes 2/1, so this distinction between total

and differential energy contribution is no longer small and is worth some discussion. First,

we note that for a finite-sized object (G = Gbulk + γA), the physical meaning of µ as always

is the change in G if we add one more atom/molecule to the object: µ ≡ ∂G
∂N

= µbulk +γ dA
dV

∂V
∂N

(= µbulk + 2γv/R in the case of a sphere, and µbulk + γv/R in the case of a cylinder), which

agrees with the result of using ∂µ/∂P = v and the Young-Laplace pressure, as they must.

We see that the chemical potential is no longer a size-independent quantity, but depends on

R, and in fact always diverges to +∞ as R→ 0 even if µbulk is very favorable, as illustrated

in Fig. 4.5(b). A reverse statement is that G(R) is just the integral of µ(R), as we build up

the object from R′ = 0 to the present size R′ = R. Initially, this integral may look hazardous

because of the 1/R′ singularity. Fortunately, it is a weighted integral, the weighting factor

is 4πR′2dR′ in the case of sphere and 2πR′dR′ in the case of cylinder. For sphere, we get∫ R
0 4πR′2dR′(2γv/R′)/

∫ R
0 4πR′2dR′ = 3γv/R, that is to say the averaged price from 0 to R is

3/2 higher than the going price at R. This can be directly seen already in Fig. 4.5(b), since

the previous stuff bought at lower R′ is more expensive than the stuff bought at the present

R. Similarly, for a nanowire,
∫ R

0 2πR′dR′(γv/R′)/
∫ R

0 2πR′dR′ = 2γv/R, so the averaged

price from 0 to R is twice as expensive as the going price. The philosophical point in judging

which is more reasonable, (4.40) or (4.42), in governing the melting point, is that you cannot

buy cheap stuff without buying the expensive stuff first. (where does this liquid particle of

just the right size in (4.42) come from...)

Despite of the error in neglecting surface pre-melting [55], our “spherical cow” approach is

still a resounding success because it gives the correct behavior of melting point suppression

versus particle size (∝ 1/R), as well as the correct order of magnitude for γS−1.04γL, which

is of the same order of magnitude as γSL.

For many metals, γS is close to but greater than γL + γLS.

With the above introduction of γLS, now we generalize surface energy to interfacial energy

(rigorously speaking, even surface is solid-vapor or liquid-vapor interface). Consider liquid-

solid energy γLS. For the moment assume diffusion is slow in solid and the solid surface

is flat. The liquid has surface energy (liquid-vapor interface) γL, and the solid has surface

energy (solid-vapor interface) γS. The angle formed between γL and γLS is called the contact
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Figure 4.6: (a) Water drop on glass. Taken from Wikipedia. (b) Cylindrical coordinate
frame.

angle, θ. From energy or force balance, we should have:

γS = γLS + γL cos θ. (4.43)

The above is called Young’s equation. θ expresses a relationship between γL and γS − γLS.

From one contact angle measurement, one could get the difference γS − γLS, but not the

absolute values.

Two remarks on Young’s equation: (a) it is derived as a force balance on a point, the contact

point. As such, body force such as gravity which is proportional to volume does not enter

into it directly. Thus, the same Young’s equation works if the solid surface is inclined or

even vertical, with the contact angle (defined as the angle of liquid meniscus to solid surface

at contact point) remaining the same - θ is a material constant. θ itself will not change,

although the shape of the overall droplet could change, due to gravity. (b) We only considered

balance of force components parallel to the solid surface. The component perpendicular to

surface, γL sin θ, is nonzero and not at equilibrium, because we assume solid diffusion is

slow. If significant time is allowed for solid-state diffusion, a cusp will in fact develop on

the solid surface. This balance of vertical capillary force is demonstrated in so-called grain

boundary grooving (Fig. 14.9 of [41]), when a GB meets perpendicular to a surface, and

surface diffusion has occurred for long enough to enable equilibrium of this vertical capillary

force. Let the grooving angle be φ, there is

2γS cos(φ/2) = γGB (4.44)
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when equilibrium is finally reached. In fact the above equation is how grain boundary energy

γGB is measured. (γS needs to be measured in previous experiments).

If we ignore the effect of gravity, the rest shape must be a truncated sphere. This is because

of the Young-Laplace relation ∆P = 2γ/R, where R is the local radius of curvature. Since

the fluid is quiescent (not flowing), if we ignore the hydrostatic pressure difference, the

pressure must be the same everywhere inside the fluid, which means the local curvature R−1

is the same everywhere. Mathematically this can be seen as PL(h) − Pext = γ
R1(h)

+ γ
R2(h)

,

where PL(h) = PL(0)− ρgh is hydrostatic pressure inside the quiescent liquid drop, and the

atmospheric pressure is assumed to be independent of h.

If γS − γLS = −γL, θ = 180◦. This means the liquid would not wet the solid, and would

rather be a stand-alone spherical droplet detached from the solid surface. You want your

raincoat surface to have this property.

If γS−γLS = γL, θ = 0◦. If γS−γLS ≥ γL, then on a horizontal surface, the liquid would spread

out and totally cover the horizontal surface with equal thickness because this is energetically

favorable. This is called complete wetting. It turns out that for most metals: γS− γLS > γL,

which means the solid metal likes to be covered completely by its own melt, instead of as

liquid domes or droplets on top. Later in discussing nucleation, we will see that this means

the nucleation barrier of solid→liquid phase transformation will be zero upon heating. Liquid

metals could sustain significant under-cooling before transforming to solid due to nucleation

barrier posed by γLS > 0, but solid metals seldom manifest significant superheating, because

the interfacial energy difference actually helps the nucleation of liquids on solid surface.

What if the surface is vertical, and γS − γLS > γL? The meniscus (Greek for crescent) is the

curved liquid surface in response to presence of the container, such as a vertical test tube.

In the case of complete wetting (γS−γLS > γL), there are two considerations. First, uniform

spread of liquid on the vertical surface is against gravity, unlike on a horizontal surface.

Secondly, one gains the same amount of interfacial energy reduction whether it is 1mm of

liquid covering the solid or 1µm liquid covering the solid surface. Because of gravity, you

want the surface covered with as thin layer of liquid as possible. Thus, what will actually

happen is that a layer of liquid molecular dimension thin will creep up and cover the vertical

solid surface in its entirety, and modify the effective “solid” surface energy from γS to γ∗S,

such that γ∗S = γLS +γL and the contact angle is exactly θ = 0◦. In the case of capillary tube

under complete wetting condition, this will cause the meniscus to have a negative curvature

of R = −D/2, which induces a negative pressure inside the liquid, which will pump up a
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liquid jet. From the height of the liquid jet, one can infer the liquid surface energy γL.

A rough estimation of the ability of a liquid monolayer (only a single molecule thick) to climb

up a vertical wall. Suppose γS−γLS−γL = 0.1 J/m2: this is the thermodynamic driving force

of a completely dry surface to be wetted, and 0.1 J/m2 is reasonable magnitude for such.

Previously in homework we have computed the molecular volume of one H2O molecule to be

30 Å3. So the area covered by one molecule is around 10 Å2. Then the adsorption energy

of one H2O molecule on such dry hydrophilic surface should be about 10−20 J or 0.0624 eV.

Sounds small (since a primary bond enegy is already ε ∼ 1eV), but how high can it climb

on the dry container wall? Since m = 18amu ≈ 2.9890 × 10−26 kg, it will climb up until

mgh = 10−20J, or h = 3.3456 × 104 m, the height of approximately 4 Mount Everest. This

in fact is not surprising, if we recognize that air pressure on Everest is about a third of sea

level pressure, and air molecule has kinetic energy kBTroom/2 in the z direction, or 0.0125

eV. kBTroom is really already a lot for gravity, and 10−20 J ≈ 5kBTroom.

Having said that, the 2nd monolayer will have a lot less adsorption energy than the 1st

monolayer because of longer distance to the wall, and will only climb up to say, half Mount

Everest. The 3rd monolayer may only climb up 500 m, and so on. This “solid surface” with

a few adsorbed liquid monolayers will have an effective “surface” energy γ∗S = γLS + γL as

far as the remainder of the bulk liquid is concerned.

When a cylindrical hollow tube of diameter D is inserted into liquid, the contact-angle

equation gives

R cos θ =
D

2
(4.45)

where we assumed the meniscus is part of a perfect sphere of radius R. The Young-Laplace

pressure in the fluid is then

∆P = P (h)− Pext = ρgh =
2γL

R
=

4γL cos θ

D
(4.46)

Depending on whether 0 ≤ θ < 90◦ or 90◦ < θ ≤ 180◦, a negative / positive Young-Laplace

pressure is generated, which either pumps up or pushes down a liquid jet of height h. Note

that γS, γLS also come into (4.46) via

cos θ =
γS − γLS

γL

(4.47)

Even though it appears that (4.47) may not always have legitimate real θ solution for certain
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(γS, γLS, γL) combination, in reality when this happens from the discussion above on “in-

visible monolayer” either γS is renormalized to γ∗S, or γLS is renormalized to γ∗LS, such that

θ = 0 or θ = 180◦ becomes legitimate solutions.

The molecular-scale monolayer comes up quite often in science. One is in the context of

Ben Franklin’s experiment at Clapham pond [56], and Langmuir-Blodgett film. The other is

so-called surface pre-melting phenomena, defined as the loss of long-range order in the top

few layers of atoms on a crystal, at T < Tbulkmelt: the most of the crystal still maintains

long-range order, but if one does electron diffraction only on the top few layers of atoms and

look at the structure factor, one sees a liquid-like arrangement.

Suppose β precipitate is in contact with phase α. Suppose in the case of a planar interface

(K = 0), the two have reached equilibrium:

µαi (Xα
0 , T, P

α) = µβi (Xβ
0 , T, P

β = Pα), (4.48)

where Pα is the “external” pressure. If α is vapor phase, there is then equilibrium vapor

pressure P eq
i (∞) of species i in α, in contact with β. Now imagine a curved interface

across which two phases try to reach equilibrium, and their interfacial energy γ is isotropic.

Everything is the same in β, but now with a curved interface, the Young-Laplace pressure

causes the chemical potential of i inside the precipitate to increase, which must be matched

by an equal raise of chemical potential of i outside:

2vβi γ

R
= kBT ln

P eq
i (R)

P eq
i (∞)

(4.49)

Similarly, if α is liquid or solid, there is equilibrium solubility Xα
i (∞) of species i in α, and

if the solution can be approximated as ideal for i, the solubility of i in α will be enhanced

by
2vβi γ

R
= kBT ln

Xα
i (R)

Xα
i (∞)

. (4.50)

The above can in turn drive diffusion in α, which makes larger β particles bigger, and smaller

β particles smaller.

In Wulff plot we focused on the inclination degrees of freedom, φ, since the vapor phase

and liquid phase (fluid) has random atomic arrangement with no intrinsic orientation (zero

dof). Crystal surface has two dofs, the inclination φ. Crystal-crystal interfaces are generally

more complicated, possessing 5 dofs. A crystal-crystal interface can be a grain boundary,
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if the two crystals are of the same structure, just rotated; or a phase boundary, if different

lattice structures and/or significantly different compositions. In addition to n (called two

inclination degrees of freedom), there are also three misorientation degrees of freedom in

how one crystal is rotated (RTR = I) with respect to the other. Let us represent this

misorientation by an abstract and generic angle θ. In the case of GB, if θ = 0, γ = 0 for all

inclinations. But this is not so for phase boundary: imagine Kossel on Kossel epitaxy with

θ = 0 but different lattice constants. There will be finite γ.

Epitaxy is a particular kind of thin-film deposition where the deposited material takes on

the same structure and orientation as the substrate (θ = 0). Thin-film deposition is less

constrained than some bulk solid-solid phase transformation such as alloy decomposition /

precipitation, because the added material comes from a fluid phase (vapor, liquid). Thus in

depositing a thin film, vertically there is a stress-free surface, so if the added material wants

to dilate vertically, it can do so without incurring elastic energy penalty. Laterally, there

is less constraint as well (a semi-coherent interface would be able to relax all long-ranged

elastic energy to zero).

Let us talk about GBs first. There are low-angle (θ < 10−15◦) GBs, special high-angle GBs

such as twin boundaries, and high-angle “random” GBs (see Fig. 3 of [57]). Near θ = 0 as

well as the special high-angle GBs, the grain boundary energy varies with ∆θ as:

∆γ = A|∆θ|(B − ln |∆θ|) (4.51)

which represents the cusps (vicinal boundaries are those that are few degrees off from special

high-angle GBs). This Read-Shockley formula is explained by so-called dislocation repre-

sentation of crystal-crystal interfaces. Because dislocations have 1/r like stress field, the

strain energy density is ∝ 1/r2, and so the energy stored near one such dislocation is∫ l
R0

2πrdr/r2 ∝ ln(l/R0), where R0 is some cutoff distance. The dislocation density on

the interface (unit 1/m) can be shown to be ρint ≡ 1/l ∝ |∆θ| > 0, thus the energy goes like

−|∆θ| ln(|∆θ|R0). Similar kind of argument can be made for φ-dependence: it is “cuspy”,

because crystallographically the vicinal boundaries must exist as long stretches of coherent

GBs, plus misfit steps.

Coherency means atoms on two sides of the interface match well geometrically, at the atomic

scale, an admittedly somewhat fuzzy concept. There are coherent interfaces, semi-coherent

interfaces, and incoherent interfaces. The above classification works for both phase bound-

aries and grain boundaries. In GBs, the special high-angle GBs are coherent (all atoms

89



along the interface are “good” material), the low-angle GBs and vicinal boundaries are

semi-coherent (long stretches of “good” material l − 2R0, interspersed by “bad” material

2R0), and the random high-angle GBs are incoherent (l ∼ 2R0, the dislocation cores overlap

and basically all materials along the interface are “bad”, with grotesquely misaligned bonds).

Example of coherent and incoherent twin boundaries shown in Fig. 3.12 of [47].

a0β

a0α

α

β

(a)

aβ

a0α

α

β

(b)

a0β

a0α α

β

(c)

(d) (e)

Figure 4.7: (a) 9 planes matching 9 planes, with zero elastic energy but huge average glue
energy (∝ γincoherentA), (b) 9 planes matching 9 planes, with small glue energy (∝ γcoherentA
where γcoherent ∝ εα− εαβ, but finite elastic energy (∝ δ2V β), (c) 9 planes matching 8 planes,
with smaller elastic energy than (b) and smaller glue energy than (a). It turns out that by
choosing appropriate matching, the total energy of (c) can be ∝ γsemicoherentA. (d) 51 planes
matching 50 planes, equivalent to (a), where dis-registry function d(x) is piecewise linear.
(e) 51 planes matching 50 planes, equivalent to (c), where d(x) is sigmoidal.

Consider a phase boundary between α and β, with same crystal structure and orientation

(θ = 0), but different equilibrium lattice constants (aα0 and aβ0 ). How might a β particle be

embedded in α, or epitaxially grow on α? Define misfit strain δ = aβ0/a
α
0 − 1. Let us first

suppose the misfit strain is small, say 1%. There are a few limiting possibilities, illustrated

in Fig. 4.7. Consider a model of Kossel crystal on Kossel crystal, and let us suppose that
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the energy per bond εα = εβ > εαβ, so α and β wants to phase separate. Let us define elastic

energy to be energy stored in the blue and red springs, and “glue” energy to be energy stored

in the interfacial green springs. In (a), the elastic energy is zero, but the glue energy is only

zero at the center and gets worse and worse further out. If one defines dis-registry function

d(x) to be the offset between red and blue atoms at the interface (xred−xnearestblue)/a
α
0 , then

d(x) is linear / piecewise linear function in x, which incurs huge interfacial energy penalty on

average. In fact, (a)’s interface will not be very different from general incoherent interfaces in

terms of energy, since around half of the green bonds are grotesquely dis-registered, defined

by d(x) > 1/4. In such situation expect (a)’s interfacial energy to be γincoherent ∼ 1 J/m2, or

∼ 0.1 eV per interfacial atom.

In (b), there will be finite elastic energy (∝ δ2V β) to compress β, but the interfacial energy

becomes much smaller than γincoherent (∝ γcoherentA ∝ (εα − εαβ)A). Typical γcoherent is

about 0.1 J/m2 (ranges from 1 − 200 mJ/m2). For fully coherent precipitates (θ = 0)

like Guinier-Preston zones in Al-4% Ag (Fig. 3.39 of [47]), and tertiary γ′ particles in Ni-

based superalloys, since V β’s are small (tens of nanometers), the elastic energy is not overly

expensive, and the comfort of γcoherent is well worth the effort of compressing or dilating the

precipitate volumetrically. The shape of these fully coherent particles, if not spherical, tends

to be “blocky”, with aspect ratio not too far from 1, determined mainly by the Wulff plot.

As the fully coherent precipitate particle gets larger, however, the ∝ δ2V β energy becomes

more and more expensive, and at one point there will be coherency loss, when the body is no

longer willing to keep up the elastic strain for the sake of the glue. Misfit dislocations will be

injected into the interface, which are either nucleated afresh or gathered from the surround-

ing of the originally fully coherent particle. By tuning the density of misfit dislocations ρmisfit

appropriately, one can eliminate long-range elastic pain that permeates through the precip-

itate volume, although short-range elastic pain on the lengthscale of l = 1/ρmisfit ∝ 1/δ, will

still persist. The dis-registry function d(x), instead of a linear function in [−l/2, l/2] as in

(a), will be a sigmoidal function, whose width 2R0 (R0 is the dislocation core radius) is fixed

and do not change with l. Alternatively, if one uses (a) as the reference state (stress-free in

the body, huge pain in the glue), the (a)→ (c) transformation can be represented by inject-

ing an array of misfit dislocations of distance l plus compensating infinitesimal “coherency

dislocations” of the opposite sign (Fig. B.8(b) of [41]).

Fig. 4.7(d) is the same situation as Fig. 4.7(a), and Fig. 4.7(e) is the same as Fig. 4.7(c),

except we now have 51 α planes matching 50 β planes, and we use real misfit dislocation

solution instead of cartoon. Notice that most of the green bonds in Fig. 4.7(e) are “happy”
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- maybe 40 out of the 50 green bonds have d(x) < 0.1, and only a few green bonds in Fig.

4.7(e) are grotesquely dis-registered and in extreme pain. It should be clear that the glue

pain in Fig. 4.7(e) is much smaller than in Fig. 4.7(d). To achieve the relaxation from Fig.

4.7(d)→(e), local elastic energy is necessary, but not long-range compression of V β. The

lumped sum of glue energy near the core (smaller than (a)) and elastic energy (smaller than

(b)) will be defined as γsemicoherentA, where

γsemicoherent = γcoherent + U |δ|(W − ln |δ|), (4.52)

same as in the Read-Shockley formula for GBs [58]. From this we can thus infer that

coherency loss should occur at

γsemicoherentA = γcoherentA+ δ2V β → U |δ|(W − ln |δ|)A = δ2V β (4.53)

hc ≡
V β

A
∝ W − ln |δ|

|δ|
. (4.54)

The formula above also governs coherency loss in hetero epitaxy. For instance Ge (free-

standing Germanium lattice constant aGe
0 = 5.64613Å) on Si (free-standing Silicon lattice

constant aSi
0 = 5.43095Å), whose δ = 0.04: we expect the first tens of layers of Ge atoms on

Si substrate will be fully coherent, but when that critical deposition thickness hc is reached,

there will be a transition from (b) → (c).

We see that γsemicoherent−γcoherent saturates at large δ, when the misfit dislocation cores start

to overlap and one can no longer make out individual misfit dislocations, but a jumbled mess

of grotesquely dis-registered green bonds (d(x) > 1/4). Typically, when δ > 0.2, there is

no longer much difference between semi-coherent and incoherent interfaces. γsemicoherent is

around 200-500 mJ/m2.

In above we have considered β having the same structure as α, θ = 0, and there is only

lattice constant mismatch. In such case, forming fully coherent precipitate (on all sides) is

possible at small sizes. But if β has different crystal structure from α, forming fully co-

herent precipitate is generally impossible at any sizes. It is however still possible to form

some coherent or semi-coherent interfaces between α and β, if the orientation of β is care-

fully chosen, in so-called special orientation relationship. The Wulff plot for such a given

orientation relationship then may look like Fig. 3.40 of [47], where a particular interfacial

inclination is greatly favored over all others, which then gives a plate-like morphology (Fig.

3.42 of [47]), with broad faces being this special coherent/semicoherent interface, bounded
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by narrow strips of high-energy incoherent interfaces.

Generally speaking, an orientation relationship is denoted like

(001)tetragonal ‖ (001)FCC, [100]tetragonal ‖ [100]FCC, (4.55)

if the precipitate is a tetragonal ordered compound, with [001]tetragonal being its c-axis (Fig.

3.41 of [47]). Since it is embedded in a cubic matrix, there are two other different but

equivalent orientation variants:

(001)tetragonal ‖ (010)FCC, [100]tetragonal ‖ [100]FCC, (4.56)

(001)tetragonal ‖ (100)FCC, [100]tetragonal ‖ [010]FCC. (4.57)

There are three degrees of freedom in orientation relationship, 2 in plane orientation match-

ing, and 1 in axis matching (in (4.55), [100]tetragonal must belong to (001)tetragonal plane, and

[100]FCC must belong to (001)FCC plane, and one performs in-plane rotation to match them).

Orientation relationship can be determined by selected area electron diffraction and contains

the same amount of information. (4.56),(4.57) would give different set of diffraction peaks

from (4.55), and therefore are distinct orientation variants. On the hand, changing [100]FCC

in (4.55) to [010]FCC or [1̄00]FCC or [01̄0]FCC (4 ways to perform 90◦ rotation in-plane after

plane matching has been achieved) would not change the diffraction peaks, and therefore

do not represent distinct orientation variants. Orientation relationship like (4.55) does not

tell you the exact inclination of the interface (although strongly hinting it is near the two

planes) - to determine that one must go to the imaging mode.

When HCP precipitate comes out of FCC matrix, it is possible to have a habit plane of

coherent or semi-coherent interfaces, plus short incoherent interfaces on the side as dictated

by the Wulff plot (Fig. 3.40 of [47]), forming plate-like (Widmanstätten) precipitate mor-

phology. In this case, we would be matching the basal plane of hcp with close-packed plane

of FCC, as in

(0001)HCP ‖ (111)FCC, [21̄1̄0]HCP ‖ [11̄0]FCC (4.58)

As another example, when BCC interfaces with FCC, say in a Nb-Cu multilayer, there are

two well-known possible orientation relationships:

Kurdjumov − Sachs : (110)BCC ‖ (111)FCC, [11̄1]BCC ‖ [01̄1]FCC, (4.59)
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Nishiyama−Wasserman : (110)BCC ‖ (111)FCC, [001]BCC ‖ [1̄01]FCC, (4.60)
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Chapter 5

Elastic Energy Effects

Bulk solution thermodynamics is all about X, T, P . There is nothing in bulk solution thermo

that defines shape/orientation (or size, for that matter, as long as it is “large enough”).

Three factors control shapes and sizes of microstructures / nanostructures: (a) capillary

energy, (b) elastic energy, (c) kinetics. In this chapter we briefly discuss about (b). Because

both (a) and (b) are energies and they always add together in driving kinetics, we can

already assert now that for “larger” objects, minimizing elastic energy is more important

than minimizing capillary energy, whereas for “smaller” objects, minimizing capillary energy

is more important than minimizing elastic energy. Since capillary energy ∝ A is usually

positive (interface as energetic “overhead”), capillary energy will tend to drive things to

“coarsen”, that is, small things merge together to form larger things to reduce the interfacial

energy overhead. This can happen by for instance solute diffusion in the matrix. On the

other hand, we will see that (b) could sometimes drive microstructures to “refine” or “split”,

as well as to “organize” into patterns. The basic reason is that ∆Gelastic ∝ V βδ2: by

refining the microstructure and mix-and-matching different strain variants, one could reduce

the effective δ averaged over a transformed volume.

For a fully coherent precipitate, the total elastic energy goes as C̄δ2V β. C̄ depends on the

elastic constants of both α and β. If the elastic constants are the same between the ma-

trix and the precipitate, and furthermore are isotropic, and if the transformation strain is

isotropic as well, then it can be shown that C̄ is independent of the shape of the precipi-

tate. But if the elastic constants are different/anisotropic, or if the transformation strain is

anisotropic (δxx 6= δyy 6= δzz), C̄ will also depend on the shape of the precipitate. It turns

out that the disk shape confers some advantage over the spherical shape. See Fig. 3.48
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of [47]. Imagine there is a disk-shape hole in a matrix with normal in z, convince yourself

that δzz, δxz, δyz transformation strains in the hole are easier to accommodate (softer or

more compliant, take less elastic energy) than δxx, δyy, δxy transformation strains, because

δzz, δxz, δyz take advantage of “lever-like” action of the hole, while δxx, δyy, δxy cannot

(jacking up the hole is geometrically softer than stretching the hole). One naively would

expect ∆Gelastic ∝ V β(Exδ
2
xx + Eyδ

2
yy + Ezδ

2
zz) by symmetry, if δxz = δyz = δxy = 0, and

Ex,Ey,Ez are like the Young’s modulus in three directions. It turns out that by taking the

disk shape, the Ezδ
2
zz term can be significantly reduced (geometrical softening), and then

the elastic energy becomes dominated by the V β(Exδ
2
xx + Eyδ

2
yy) part. V β(Exδ

2
xx + Eyδ

2
yy)

can then be further reduced by choosing the orientation of the precipitate (“orientational

softening”) or equivalently the z-plane of the disk. Most cubic metals are the softest in 〈100〉
and hardest in 〈111〉, so there will be three variants of fully coherent disks if elastic energy

is dominant (capillary energy of fully coherent precipitate tends to favor blocky shape). The

[100], [010], [001] oriented disks can capitalize on the soft direction (Ex = Ey = Ez = E〈100〉)

to accommodate δxx, δyy more cheaply.

For larger precipitates or different crystal structures, full coherency can no longer be main-

tained. An Eshelby operation of inserting an object into the hole, where the object is

larger/smaller than the hole as shown in Fig. 3.49 of [47], is necessary, if no long-range

diffusion is possible. (If long-range mass transport by diffusion is allowed, the elastic stress

can be plastically relaxed to zero, by for instance plating atoms to an outer free surface in

diffusional creep, so the object exact fits in the hole, and there is no elastic energy and only

interfacial energy). If the interface is semi-coherent or incoherent, it will be “shear-weak”,

so it can be considered “greased”, which means the interface binds α,β vertically but hori-

zontally they can easily slide with respect to each other. One could also say, at least ideally,

that “friction” is zero on incoherent or semi-coherent interfaces, and infinite on coherent

interfaces. This would significantly change ∆Gelastic versus the fully coherent “shear-strong”

interface case. In the case of such zero-friction Eshelby interfaces with hydrostatic dilation

δxx = δyy = δzz = δ and isotropic elasticity, Nabarro has solved the total elastic energy

(section 19.1.3 of [41]) to be

∆Gelastic = V β · 6µδ2E
(
c

a

)
(5.1)

for a stiff ellipsoid (x/a)2 + (y/a)2 + (z/c)2 = 1 embedded in a compliant isotropic matrix of

shear modulus µ, and the ellipsoid is larger than the hole by δ. The dimensionless function

E(0) = 0, E(1) = 1 and E(∞) = 3/4 [59]. For small x, E(x) ≈ 3πx/4. Thus, spheres
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(c/a = 1) and needles (c/a � 1) are not that much different in elastic energy per volume,

but disks (c/a� 1) are extremely cheap in elastic energy, per volume. Since V β = 4πa2c/3,

∆Gelastic ∝ ac2 for a thin disk.

The results for thin disk can be rationalized by the following. According to elementary

elasticity solution, there is a stress amplification factor a/c right in front of a disk-shape

(penny-shaped) hole, like in a lever. Thus, if the stiff ellipsoid expands by strain δ, the

matrix material right in front would sustain strain δa/c, with associated strain energy density

∝ δ2a2/c2. However, the spatial extent of such highly stress region is very small. In the

radial direction, the extent is only the local radius of curvature R = (d2x/dz2)−1 = c2/a.

The circumferential length is 2πa, so the total volume of such highly stressed region is only

∝ c4/a. So the total elastic energy stored in the matrix is just ∝ ac2. Since the interface is

incoherent, even εxx, εyy at the center of the disk can be relaxed, as the interface is “greased”.

The remarkably simple (5.1) allows us to do some analysis. The total thermodynamic driving

force for phase transformation:

∆G = ∆Gsoln + ∆Gcapillary + ∆Gelastic (5.2)

We see ∆Gelastic is positive, as usually is ∆Gcapillary (except in the case of surface or GB pre-

melting), so the latter two terms usually impede phase transformation. In a temperature-

driven transformation:

∆Gsoln(T ) ≈ ∆Ssoln(Te)(Te − T ) (5.3)

where ∆Ssoln is the entropy of transformation from homogeneous solution thermo, and Te is

the temperature at which homogeneous solution thermo predicts the transformation would

happen, if without the contraints of interfaces (such as very large objects) and elastic inter-

actions (free-standing solid, or liquid,gas). We also note that ∆Gsoln ∝ V β. So the cheaper

is ∆Gelastic per volume, the better. A blob of β would thus like to split into smaller disks

with higher aspect ratios, to reduce the elastic cost per volume. Such spatial refinement (at

least in one direction) will however be counterbalanced by the increase in interfacial energy.

In above we have only considered hydrostatic transformation strain, which involves only one

strain variant for β. Many phase transformations could involve shear transformations of
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several equivalent variants, for instance in cubic→tetragonal transformation:

εvariant1 = δ


−1 0 0

0 1
2

0

0 0 1
2

 , εvariant2 = δ


1
2

0 0

0 −1 0

0 0 1
2

 , εvariant3 = δ


1
2

0 0

0 1
2

0

0 0 −1


(5.4)

corresponds to tetragonal precipitates of different orientation relationships with respect to

the surrounding matrix. These precipitates act like electric dipoles in electromagnetism:

they interact with each other via long-ranged stress fields, and so there are favorable mutual

arrangements. (Previously we have only talked about a single precipitate in an infinite

matrix; now we are talking about precipitate-precipitate interactions).

An extreme example of elasticity-stabilized fine microstructure and microstructural self-

organization is the twinned martensite plate in steels. At high temperature steel is FCC

(austenite, γ), whose solubility of carbon interstitials is large. At low temperature, the

iron-rich phase in steel is BCC (ferrite, α) if the carbon atoms manage to leave to form

cementite Fe3C. If however the cooling rate −dT/dt is large, the carbon may not get the

chance to leave, in which case body-centered-tetragonal (bct, martensite, α′) phase may

form, which is supersaturated in carbon, with local tetragonal strains (Fig. 24.3 of [41]).

Because cooling is so fast and diffusion is sluggish (that even carbon did not manage to

leave), α′ is formed purely by highly collective displacements (mainly shearing) of atoms,

without diffusion. Such diffusionless shear-dominant phase transformation is generally called

martensitic transformation. Before and after martensitic transformation, the atomic registry

sustains a deterministic change (1st atomic neighbor may become 2nd atomic neighbor,

but it will be the same way for all atoms within a single variant, unlike in a diffusive

transformation). The particular diffusionless shear-dominant transformation in steel is called

the Bain transformation, proposed by American metallurgist Edgar Bain who worked at US

Steel in Pittsburgh. It is pretty closely described by (5.4), with δ ≈ 0.2, although the

actual transformation (δzz = −0.2, followed by lateral expansion δxx = δyy = 0.13, and√
2× 0.8 ≈ 1.1314) is not exactly volume-preserving.

The reason for the mind-boggling nanostructure in a twin-accommodated martensite plate

is this: a single variant growing as a disk along its shear directions is fine, it incurs very

little elastic energy, as long as its aspect ratio c/a is small. However, unlike in ordinary alloy

decomposition/precipitation reactions (γ → α+cementite), where just a finite volume frac-

tion fα < 1 will become precipitate and then the system is happy, here as temperature cools

all the austenites want to transform: γ → α′, fα′ = 1, without the help of carbon diffusion.
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So the transformed region must thicken to convert the adjacent unhappy austenites. But it

cannot thicken indefinitely as just a single variant. In (5.1), if you double the thickness you

double the elastic energy price, not for just the newly added region, but the old one as well.

(the total elastic energy pricetag actually quadruples since ∆Gelastic ∝ ac2). What can the

martensite do? The surrounding austenites want to convert, but the elastic energy of adding

onto this existing martensite variant has simply become too high.

This martensite variant then comes up with an ingenious idea of collaborating with his other

two alter-egos (in fact one at a time - inside one martensite plate: γ → α′variant1 + α′variant2).

As far as the austenite is concerned, it does not really matter which of the three variants it

is converted into: there is the same ∆Ssoln(Te)(Te−T ) solution thermodynamic benefit to be

gained. Co-transforming into two finely-spaced variants together does involve the additional

overhead of interfacial energy: so both bct variants choose to grow in the twin plane that

they share, across which they are twin related, so the interfacial energy overhead can be

minimized (coherent twin boundary is the cheapest of all interfaces that can separate the

two variants). They also choose to appear in different volume fractions within one martensite

plate:

ε̄plate = wεvariant1 + (1− w)εvariant2. (5.5)

And here is a crucial trick: it turns out that by choosing the weight w judiciously (turns out

to be 2/3), it is possible to for the strain fields of the two variants to largely cancel each other.

In fact, by periodically stacking the two variants c1/a, c2/a, c1/c2 = (2/3)/(1/3) = 2 into a

composite plate (the martensite plate), it is possible to create a martensite plate of length

c′ � a and aspect ratio c′/a, where there is basically zero elastic stress over the lengthscale

of c′, despite the fact that δ ≈ 20%, a huge transformation strain. This is something a single

shear variant can never do. He can grow laterally as a single c/a � 1, but he can never

thicken. To thicken without incurring exorbitant elastic energy, he must enlist the help of

his alter-ego.

The broad side (length c′) of this composite plate is called the habit plane, with normal z′.

Mathematically, it is called an invariant plane, because there is no macroscopic distortion

in the plane or rotation of the plane before and after the co-transformation: εx′x′ = εx′y′ =

εy′y′ = 0. This can be achieved by tuning w and z′ normal (the martensite plate “chooses

its own hatching ground”). In the case of steel, the habit plane is irrational - it is not a

crystallographic plane of the γ or α′ phase. A great triumph in the development of the

phase transformation theory was Wechsler, Lieberman and Read were able to predict in

1953 the habit plane inclination of twin-accommodated martensite plate in steels to within
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1◦ from experimental observation [60] based on elastic energy argument alone, with no fitting

parameter. The composite martensite plate does have finite macroscopic strains εx′z′ , εy′z′ ,

as well as dilation εz′z′ (which are geometrically softened because c′ � a): those in turn

stimulate secondary organizations of the martensite plates.

To rigorously work through the above assertions requires quite elaborate matrix formalism,

but there is a simple analogy to packing a suitcase. Imagine you have a suitcase of toys called

Transformer BlocksTM. These blocks are initially cubic, and pack well in your suitcase. But

when you bring the suitcase on a train, suddenly they decide to transform, to either of two

shear variants: εvariant1
xy = −εvariant2

xy = 1, with equal pleasure. Clearly, if they all decide

to transform to one variant, you suitcase will burst due to excessive elastic energy. It is

however, possible to have all Transformer BlocksTM transformed, half to variant 1 and half

to variant 2. If you pack them in a careful way (variant 1 in one row, variant 2 in other row,

and repeat), you can still fit them all inside your suitcase, incurring very little elastic energy

on average. There are jagged edges in this composite, but there is only localized elastic

energies near the suitcase, and there is very little pain inside the body. You may also decide

to stack 2 variant1 rows + 2 variant2 rows + 2 variant1 rows + ... This arrangement has the

merit of reducing the number of internal twin boundaries, by half. However, now the jagged

edges are thicker, and the elastic pain penetrates a bit deeper into the body. So a finer

microstructural organization of a multi-variant system reduces elastic energy but increases

interfacial energy, while coarser microstructural organization reduces interfacial energy but

increases elastic energy. The optimal microstructural lengthscale is then a compromise of

the two effects. In steels, the twin laminar thickness is governed by the competition between

twin boundary energy and elastic energy, and it turns out that tens of nanometers bi-layer

spacing achieves the best compromise.

We thus see that elastic energy can promote microstructures to self-organize over a very long

lengthscale, and sometimes even forming hierarchical structures. The root cause is that in

most solid-solid phase transformations, there is shear transformation strain. Unlike hydro-

static transformation strain, shear transformation strain by nature tends to have multiple

variants (shear transformation this way is as pleasurable as shear transformation some other

way). A single shear variant may never grow very big under zero external load, constrained

in a solid. But two shear strains can partly cancel each other’s long-range elastic field, and

grow bigger together in a particular arrangement. Thus elastic interactions promote collab-

oration between shear variants and partial cancellation of shear transformation strain over

a fine lengthscale. In addition to twin-accommodated martensite, there are dislocation ac-
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commodated martensite, where dislocation plasticity produces the so-called lattice-invariant

shear, that is superimposed onto the transformation shear strain, to enable fitting “into the

suitcase”: γ → α′variant1 +α′variant1plastic. Because of the many possible plastic strains that can

be generated by dislocation slip, dislocation accommodated martensite is more “flexible” and

“variable shaped” than twin-accommodated martensite, but is less mathematically elegant.

Kinetically, martensitic transformation happens very fast: the transformation front moves

locally with nearly the speed of sound. Unlike in diffusional transformations, where one may

need to wait minutes to hours for a certain transformation to go from 10% transformed to

90% transformed, martensitic transformation is almost “instantaneous”, that is, holding at

a certain temperature and waiting very long does not get a lot more transformed.

The supersaturated carbon in α′ and the finely-spaced twin boundaries hardens the steel

greatly (Fig. 19.20 of [1]). Martensitic transformation is technologically important, because

one can harden steels a lot without expensive alloying elements (both iron and carbon are

abundant), by simply quenching (i.e. fast-cooling) below Ms, the martensite start tempera-

ture (typically ∼300◦C). After martensitic transformation is finished (below Mf , the marten-

site finish temperature), the material is so hard and still has considerable residual stress

(remember this is low temperature and plastic flow is not as expedient as at higher temper-

atures when diffusion can happen), that it is prone to cracking. To improve the ductility,

a tempering processing step usually ensues, where the temperature is raised to an interme-

diate level, to allow small-scale plastic flow to happen to relieve the internal stress, as well

as allowing some supersaturated carbon to precipitate out as ε-carbide (hexagonal, Fe2−3C),

η-carbide (orthorhombic, Fe2C) or cementite (orthorhombic, Fe3C). Tempering improves the

ductility without sacrificing the strength too much.

Martensitic transformation is also the basis for shape memory alloys (SMA) such as Ni-Ti,

used in medical equipment. A stent can be inserted into blood vessel, and upon heating,

returns to a pre-set shape to open up the blood vessel. An associated super-elasticity ef-

fect (same as pseudo-elasticity effect) can be used to make cell phone antennas, actuators,

graspers, endoscope etc. Macroscopically, pseudo-elasticity entails energy dissipation [61],

but unlike plasticity does not lock in another stress-free shape. Microscopically, pseudo-

elasticity is based on deformation twinning, where one variant of transformation shear is

converted into another variant of transformation shear, and shape change is accomplished

(at finite stress) by varying the volume fraction of one variant. The shape change is reversible

(but with dissipation) because there is no secondary process (like two slip systems intersect

to form Lomer-Cottrell lock in general dislocation plasticity) or high-order processes that
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strongly locks in the inelastic strain and make the reversed path almost impossible.
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Chapter 6

Interfacial Mobility

As an introduction to kinetic factors, let us consider what can be accomplished by short-range

diffusion, essentially one atom deciding to jump across an interface. Consider the cartoon

Fig. 3.23(a) of [47] showing the GB of a pure metal. Suppose there are n1 atoms per unit

area (unit atoms/m2) in grain 1 ready to make a jump to grain 2, with success rate given by

ν1 exp(−Q1→2/kBT ) as in transition state theory. Similarly, there are n2 atoms per unit area

in grain 2 ready to make a jump to grain 1, with success rate given by ν2 exp(−Q2→1/kBT ).

The total speed of GB motion would then be

v = Ω (n2ν2 exp(−Q2→1/kBT )− n1ν1 exp(−Q1→2/kBT )) . (6.1)

(From now on we will use v to denote vector velocity, v to denote magnitude of velocity, and

Ω to denote volume). Q2→1 and Q1→2 are related:

Q1→2 = G∗ −G1, Q2→1 = G∗ −G2 = Q1→2 −∆G, ∆G ≡ G2 −G1. (6.2)

If G2 > G1, then the boundary should move to the right and v is positive. The above

assumes there is only one microscopic pathway to go from 1 to 2, and going from 2 to 1 uses

the same pathway in reverse. In reality there can be multiple microscopic pathways, but

so-called principle of detailed balance will make the result qualitatively the same.

Suppose the GB is flat, then G2 = G1, and we must have v = 0. That is to say, the rule of

kinetics must be consistent with the laws of thermodynamics. So there must be n1ν1 = n2ν2,
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and we can define the equilibrium exchange flux:

Jexchange = n1ν1 exp(−Qexchange/kBT ), Qexchange = G∗ −G1. (6.3)

Now consider a small elevation inG2, due to for instance a curved GB with radius of curvature

towards grain 2. The same elevation in free energy can achieved also by an elastic stress - as

far as the jumping atoms are concerned it does not matter how ∆G = G2−G1 is generated,

“money is money”. Then, we have:

v = Ω (n2ν2 exp(−(Qexchange −∆G)/kBT )− n1ν1 exp(−Qexchange/kBT ))

= ΩJexchange(exp(∆G/kBT )− 1)

≈ ΩJexchange

kBT
∆G, (6.4)

if ∆G is finite but � kBT . Recall that in the case of Young-Laplace pressure, ∆G = Ω∆P ,

so we get:

v =
Ω2Jexchange

kBT
∆P = M∆P, (6.5)

where M is called the boundary mobility.

Mobility is always the ratio between a velocity and a force (unit J/m) for discrete moving

objects, or a force density (J/m3) in the case of continuous moving boundaries. For the

mobility concept to be applicable, the driving force must be sufficiently small, so it is in the

so-called linear-response regime, where the response (velocity, flux, current etc.) is linearly

proportional to the driving force. Probably the best known example of mobility is that of a

spherical microbead embedded in viscous liquid:

v = MF =
F

6πηR
, (6.6)

where F is a persistent dragging force, η is the liquid viscosity and R is the bead’s radius, be-

cause Einstein encountered this formula, initially derived by Stokes, in his study of Brownian

motion in 1905. A previously unexpected connection between mobility

M =
D

kBT
(6.7)

and D, diffusivity of microbeads was revealed in Einstein’s 1905 study. In fact, Ω2Jexchange in

our (6.5) can already be identified as the “diffusivity” D∗ of the GB location if we consider
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fluctuations in the exchange flux will cause the location of a unit-area GB to perform random

walk with mean squared displacement 2D∗t [62].

Atom hops are thermally activated. To extract the effective activation energy, one could plot

ln(MkBT ) with respect to 1/T , and the slope would be

− ∂(Qexchange/kBT )

∂(1/T )
= −Hexchange

kB

, Qexchange = Hexchange − TSexchange, (6.8)

where Qexchange is the activation free energy, Hexchange is the activation enthalpy, and Sexchange

is the activation entropy, between the saddle state and 1 (or 2) at equilibrium.

It turns out that solutes can have a huge effect on interfacial mobility. GBs in pure metals

can move many orders of magnitude faster than GBs in alloys. This is because impurities

like to be trapped inside GBs, where there is larger “free volume”. Reciprocally, they exert

a “frictional” force on GB motion, like dusts for cogs in the wheel. Since random GBs have

larger free volume, their mobilities are more susceptible to alloying (see Fig. 3.27 of [47],

just 0.006 wt% of tin is able to reduce the mobility of random GBs in high-purity lead by

factor of 104!). Thus, one important reason for alloying is to stablize the microstructure, i.e.

grain size. Grain size is really key for many properties, for instance grain size contributes to

the overall strength by Hall-Petch relation σ(D) = σ0 + kD−1/2. Without control of grain

size, one has no control over microstructure.

Let us consider the problem of grain growth kinetics. One should realize that a polycrystal is

at best a metastable system thermodynamically. It is favorable to evolve the microstructure

to have coarser and coarser grains, to reduce internal boundaries and capillary energy. But

exactly how does this occur and at what rate?

One starts by considering the GB triple junctions (triple lines in 3D). If γ is isotropic, the

equilibrium dihedral angle should be 120◦. Let us assume the triple junction mobility is

much more facile than GB mobility, that is to say let us assume the triple junction moves

as if instantaneously so the total force on the triple junction is always zero and the dihedral

angle is always 120◦, and only the GB mobility effectively impedes grain growth. Let us

compare a grain with N sides and N triple junctions to a polygon with N vertices. The

sum of the interior angles of any N -sided polygon is (N − 2)π. Compare this to the sum

of dihedral angles 2Nπ/3, we see that (N − 2)π < 2Nπ/3 if N < 6. Therefore if N < 6,

there must be some dihedral angles that will include the polygon interior angle at the same

vertex, associated with which are concave inward GB segments that will shrink the grain,
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due to positive Young-Laplace pressure. On the other hand, if N > 6, then there must exist

polygon angles which includes the dihedral angle, so the corresponding GB segments are

convex outward, and will tend to grow the grain. We also expect the smaller grains to have

less number of sides, while the larger grains have more sides. Thus, smaller grains with small

number of sides will tend to shrink, and the larger grains with larger number of sides will

tend to expand.

In fact, consider columnar grains (so-called 2D grain growth), we have the von Neumann-

Mullins equation (Chap. 15 of [41])

dA

dt
=
∑
sides

∫
dlv = −

∑
sides

∫
dlM(γκ) = −Mγ

∑
sides

∫
dlκ = −Mγ

∑
sides

∫ dl

R

= −Mγ
∑
sides

∫
dθ = −Mγ(2π −N × π/3) =

Mγπ

3
(N − 6), (6.9)

which was recently generalized to 3D by MacPherson and Srolovitz [63]. Therefore, the

average grain size of surviving grains would go as dĀ
dt

= MΩπ
3

(N̄ −6). 1 In a self-similar grain

growth, we expect the lengthscale of microstructure to change with time, but not topological

characteristics, so we expect N̄ is constant, then Ā = Ā0 + kt, and then we expect the grain

size to grow as D̄ =
√
D̄2

0 + kt.

The above is an example of parabolic kinetics: the grain size growth rate is fast at beginning

when the lengthscale is small, but slows down as the lengthscale coarsens. If we sacrifice a

bit of rigor, there is an alternative derivation that is perhaps physically more illuminating.

We say that

dD̄

dt
∝ v ∝ M

γ

R
∝ M

γ

D̄
→ d(D̄2)

dt
∝ Mγ → D̄2 = D̄2

0 + kt, (6.10)

with k ∝Mγ.

Even though as time goes on the growth rate slows down, such microstructural evolution may

still not desirable. How can we shut down grain growth completely at some desired grain size

D̄desired? It turns out that with small second-phase particles such as oxide, sulfide and silicate

inclusions, we can pin down GB motion, with so-called Zener pinning mechanism. Consider

1There are several ways to prove/interpret this. See for example p. 378 of [41]. A simpler way is
to define area-weighted average: Ȳ ≡

∑
i YiAi/

∑
iAi, where the vanished grains have Ai = 0. Thus

Ā ≡
∑
iA

2
i /
∑
iAi,

˙̄A = 2
∑
iAiȦi/

∑
iAi = 2

∑
iAi

MΩπ
3 (6−Ni)/

∑
iAi = 2MΩπ

3 (N̄ − 6). We get an extra
factor of 2, but still linear growth in Ā(t).
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a situation where the interface between inclusion and matrix is completely incoherent, and

therefore the inclusion does not care about the orientation of matrix. When GB intersects

the inclusion, the grain boundary area is reduced by πr2, and thus the total energy is reduced

by γπr2 compared to when the GB is detached from the inclusion. The detachment occurs

over a lengthscale r, so the maximum pinning force is estimated to be Fmax ∝ γr. A more

precise calculation is to say that F = 2πr sin θ · γ cos θ, where 2πr sin θ is the circumferential

length of intersection, and γ cos θ is because the GB must be perpendicular to the inclusion

surface. The total drag force is maximized at θ = 45◦, and Fmax = πγr.

Consider volume fraction f � 1 of these oxide inclusions, in random dispersion (often f

is between 10−2 and 10−3). The mean distance between two nearest-neighbor inclusions

is l ∝ rf−1/3. So one grain boundary of area A ∝ D2 can make contact with at most

Ninc ∝ D2/l2 = f 2/3D2/r2 inclusions. The maximum force exerted by these particles against

motion of one GB is thus ∝ f 2/3D2/r2 ·γr, which is γf 2/3/r per GB area (call it the “pinning

pressure”, which can be ± that is always against the direction of motion). Contrast this

with the original driving force:

dD̄

dt
∝ M

(
γ

D̄
− γf 2/3

r

)
, (6.11)

we see that the growth can be arrested when D̄ reaches D̄stall = rf−2/3. Ninc used above

is an upper bound, a more conservative estimate would be N ′inc ∝ fD2/r2, if we assume

the GB is a random flat plane, that is not trying to bend to “touch” the particles. Then

we would derive the growth can be arrested at D̄ = D̄stall ∝ rf−1. Either D̄stall = rf−1

or rf−2/3, we see that for a fixed volume fraction f , the finer the particles (and thus more

numerous), the more potent is Zener pinning, since smaller grain size can be stabilized. In

oxide dispersion strengthened (ODS) steels, the (Y,Ti,Al,Mg)-O particles is often <10nm

in diameter and are very potent GB pinners. The flip side to this is that if the material is

exposed to high temperature, and diffusion of oxygen and solutes is allowed in the matrix,

then these particles would coarsen: r ↑ while the volume fraction f is constant. Then as

the oxide particles coarsen, grain growth would also happen, and very soon your material

becomes garbage. The point made here is that the stabilities of microstructures are inter-

related: if one kind of microstructure is destabilized, it is likely to impact the stability of

other microstructures.

In above, the GBs move in the direction of positive (concave) curvature. Is it possible for the

GBs to move in the direction of negative (convex) curvature? (see Fig. 3.26 of [47]). Yes, if
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the thermodynamic driving force contains more terms than just the Young-Laplace pressure.

In the case of recrystallization, a heavily worked material leaves a great amount of dislocation

debris inside the grain. Most of these dislocation content is statistically stored, that is to say

having no net Burgers vector, such as dense arrays of dislocation dipoles. These content can

be eliminated when a GB sweeps across, working like a trash collector and incinerator. The

thermodynamic driving force in this case is the elimination of dislocation core energy and

short-range elastic energy associated with the dislocation dipoles. The boundary is convex

because the γ is actually trying to keep up:

dD̄

dt
∝ M

(
Gdislocation

V
− γ

D̄

)
. (6.12)
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Chapter 7

Nucleation, Growth and Coarsening

Imagine a homogeneous matrix phase α. Nucleation means the appearance of something

quite different from α in a localized region. If we use order parameter η(x) (could be local

density, for example, in the case of liquid-solid transition) to describe the whole system,

we have η(x) = ηα uniformly before the nucleation, and η(x) = ηβ in small regions of x

after the nucleation, where ηβ differs from ηα by a finite amount. In other words, nucleation

are disturbances to η(x) which are large in amplitude and small in spatial extent. In a

multi-component system, the concentration field c(x) is often a natural choice for the order

parameter field η(x); however associated with chemical changes there can be structural,

electrical and magnetic changes as well.

Growth means enlargement of the η(x) = ηβ spatial domain. Nucleation and growth is

Nature’s strategy to accomplish all first-order phase transitions. In contrast, in second-order

phase transitions such as spinodal decomposition and order-disorder transformation, the sys-

tem does not necessarily need to go through a nucleation stage. In that case, disturbances to

η(x) which are infinitesimal in amplitude and large in spatial extent can increase in amplitude.

Nucleation and growth can be regarded as involving two players: the matrix phase α, and a

single contiguous region of β. In the coarsening stage, there will be three or more players,

where multiple β regions interact, sometimes mediated by the matrix.

Referring back to (5.2), let us first discuss about ∆Gsoln, the bulk/volumetric/solution free

energy. ∆Gsoln has two characteristics: (a) ∆Gsoln ∝ V β, the volume of transformed region.

(b) In temperature-driven first-order transitions, ∆Gsoln ∝ ∆T ≡ Te − T , where Te is the

bulk equilibrium temperature between α and β, if only solution thermodynamics is taken
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into account.

α β
α+β

X2

α

β

X2

Gsoln

T

∆Gsoln

∆G0

∆T

∆X

Te

µ2α

µ1α
µ2β

µ1β

X0Xα Xβ

(a)

rr*

∆Gsoln∝ r3

∆Gcapillary∝ r2
∆G

∆G*

r

∆Gsoln∝ r3

∆Gcapillary
∝ r2

∆G

∆T > 0:
nucleation
possible

∆T < 0:
nucleation
impossible

(b)

Figure 7.1: (a) Solution thermodynamics driving force for nucleation of β precipitate in α
matrix. (b) Total thermodynamics driving force for nucleation, ∆T > 0 versus ∆T < 0.

To illustrate this in a multi-component system, consider precipitation reaction α(X0) →
α(Xα) + β(Xβ) in a binary alloy, driven by ∆T as shown in Fig. 7.1(a). ∆X ≡ X0 −Xα is

called solute supersaturation. The supersaturation is linearly proportional to ∆T for small

∆T , as shown on the phase diagram. Let us consider how a small β domain of volume V β

and Nβ atoms can be nucleated inside an infinite α matrix. NβXβ
1 type-1 atoms and NβXβ

2

type-2 atoms are needed to constitute the nuclei. Let us assume Ωα
1 = Ωβ

1 = Ωα
2 = Ωβ

2 = Ω

for simplicity, so we do not have to consider elastic energy for the moment (the Eshelby

“hole” is exactly the same size as the precipitate). We need to take NβXβ
1 type-1 atoms

and NβXβ
2 type-2 atoms from the matrix (now in supersaturated composition X0), which

requires NβXβ
1 µ

α
1 (X0) +NβXβ

2 µ
α
2 (X0) free energy. When these atoms are remixed and form

the β phase, the energy becomes NβXβ
1 µ

β
1 + NβXβ

2 µ
β
2 , so the solution driving force in this

initial stage of phase transformation is

∆Gsoln = NβXβ
1 (µβ1 − µα1 (X0)) +NβXβ

2 (µβ2 − µα2 (X0)) (7.1)

Note that although µβ1 (Xβ) = µα1 (Xα) and µβ2 (Xβ) = µα2 (Xα) by definition, the solute-

depleted matrix composition Xα is nowhere to be had at the beginning stage of precipitation.
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Compared to the supersaturated matrix composition which is what we have now, there is

µβ1 6= µα1 (X0) and µβ2 6= µα2 (X0). We see that ∆Gsoln ∝ Nβ ∝ V β. From the graphical

construction in Fig. 7.1(a), we also see that ∆Gsoln ∝ ∆X ∝ ∆T . Thus, we can define

solution driving force per transformed volume gs ≡ −∆Gsoln/V
β. And we know that gs ∝

∆T .

Ignoring elastic energy for the moment (it should be zero for purely diffusional transformation

with Ωα
1 = Ωβ

1 = Ωα
2 = Ωβ

2 = Ω), we have

∆G = −gsV β +
∫
γdA (7.2)

If γ is isotropic, the best shape for ∆G for a given V β is a sphere. Thus,

∆G = −gs
4πr3

3
+ γ4πr2. (7.3)

The first term is proportional to r3, the second term is proportional to r2. For a normal

system with positive surface/interfacial energy γ, the second term is positive. Thus, for

small nuclei sizes, the total energy always increases with increasing r, due to Young-Laplace

pressure and the prevalence of surface effects (large surface-to-volume ratio) at small nuclei

sizes. This means when an atom attaches to a small nuclei, it always find the small nuclei

“unattractive”, and would preferentially detach. The only reason we see small nuclei at

all is because according to the Boltzmann distribution, the probability of seeing Nβ-cluster

∝ exp(−∆G(Nβ)/kBT ), that even if ∆G(Nβ) is very unattractive there is still finite chance

(though very small) of finding it.

If gs > 0 (∆T > 0), however, there exists a critical radius as shown in Fig. 7.1(b) where

∆G(Nβ) finally starts to go down with additional atom attachment: Nβ → Nβ + 1. This

saddle-point configuration or critical nuclei occurs at size

0 = −gs4πr∗2 + 8πr∗γ → r∗ =
2γ

gs
. (7.4)

Thus, r∗ ∝ (∆T )−1. The smaller the undercooling, the larger the critical nuclei needs to be.

Plugging r∗ = 2γ/gs back into (7.3), we get

∆G∗ = −gs
4π(2γ/gs)

3

3
+ γ4π(2γ/gs)

2

= −32πγ3

3g2
s

+
16πγ3

g2
s
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=
16πγ3

3g2
s

. (7.5)

Two observations can be made: (1) ∆G∗ ∝ (∆T )−2, which is a strong dependence: when

∆T is small, ∆G∗ diverges and there is no chance. (2) The volumetric ∆Gsoln contribution is

negative, the capillary ∆Gcapillary is positive, and right at r∗ the former is always 2/3 of the

latter. This is generically true for any maxr−ar3 +br2. Nβ is related to r as Nβ = 4πr3/3Ω,

if we assume 1 and 2 have the same volume.

If gs < 0 (∆T < 0), then ∆G is a monotonically increasing function of β size. Equilibrium

distribution (fluctuation) of β cluster sizes can be achieved in this case, whose concentration

should be C(Nβ) = Ω−1 exp(−∆G(T,Nβ)/kBT ) where c = Ω−1 is the atom concentration.

Typically in metals c ∼ 1029/m3. C(Nβ) here is monotonically smaller for larger cluster sizes.

This means β-like cluster shows up occasionally, but quickly decompose by Nβ → Nβ − 1,

which is energetically more favorable than Nβ → Nβ + 1.

Now imagine ∆T is suddenly switched from negative to positive. The energy landscape

changes at every r, which is significant especially for r > r∗. This system is like a leaky

kettle: it cannot reach true thermodynamic equilibrium unless all the water is leaked (all α

transformed into β). But we are interested in the leaking process. Consider Nβ → Nβ + 1:

it is still energetically punishing at small sizes, but less so than originally, so one should see

more larger clusters by and by. But this cannot happen immediately. Some time is needed to

see changes in the cluster size distribution C̃(Nβ, t). This is because atom attachment takes

time. It takes some some time after the −∆T → ∆T switch for the original C(Nβ) to develop

into C̃(Nβ, t) distribution that has significant quasi-steady state value at r∗. This waiting

time for the C̃(Nβ, t) distribution to transform significantly is called the incubation time tinc.

After tinc the nucleation rate will approach a quasi-steady state value, if the supersaturation

and α volume are held constant.

A crude estimate for the nucleation rate N (unit 1/m3/s) is the following. The quasi-

steady state C̃(Nβ∗, t) value should look something like Ω−1 exp(−∆G∗/kBT ), which is the

average number of critical sized nuclei per volume. We multiply this by the frequency

scale of atom attachment, Γ. This would give the number of newly generated super-critical

nuclei per volume per time. These super-critical nuclei are likely to grow larger and larger,

since Nβ → Nβ + 1 by then would start to reduce energy rather than increase energy. Of

course, the critical sized nuclei needs to be resupplied to maintain quasi-steady state value.

To solve this whole problem consistently requires the so-called Master Equation (Chap.
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19 of [41]) approach, which will give some dimensionless prefactor on the nucleation rate

(Zeldovich factor) that is on the order of 10−1. Brushing over such niceties, N may be

modeled phenomenologically as:

N = ΓΩ−1 exp(−∆G∗/kBT ). (7.6)

Γ for liquid→solid transitions is approximately a constant, 1011/s. This means that in order

to reach a “significant” nucleation rate Nsignificant = 1/cm3/s with homogeneous nucleation,

∆G∗ needs to be about 78kBT . Taking the melting point of Cu, TM = 1357.77K as the

temperature scale, this means ∆G∗ ≈ 9 eV.

Γ in solid→solid transitions should be proportional to the inter-diffusivity D̃, since solute

partition (more type-2 atoms flowing into the nuclei while more type-1 atoms flowing into

the matrix) is needed. Thus, Γ is also a strong function of T , roughly with ln Γ versus 1/T

giving (hfV +hmV )/kB, the vacancy formation enthalpy plus vacancy migration enthalpy. Since

exp(−∆G∗/kBT ) is a growing function of ∆T (with sharp thresholding behavior), while Γ

is a decreasing function of ∆T , N (∆T ) should have a maximum at some (∆T )best
nucleation. If

∆T < (∆T )best
nucleation the saddle point is too high, if ∆T > (∆T )best

nucleation the rate of atom

attachment is too low.

(7.5) shows that the interfacial energy γ appears in cubic power in ∆G∗. In solid→solid

transformation, since coherent interfaces have γ = 1− 200 mJ/m2 while semicoherent inter-

faces has γ = 200 − 500 mJ/m2, the precipitate will try everything it can (adjusting shape

and orientation relationship) to minimize the interfacial energy. Sometimes it even means

precipitating out metastable phases first, such as GP zones, which have lower gs but lower

γ as well due to coherent interfaces. When the GP zones grow large enough, it will then

transform to the more stable precipitate β later with associated coherency loss transition:

α→ GP→ β, in a two-step process.

From homework, we have seen that if there is a pre-existing rigid boundary (for example

mold wall in casting liquid→solid), the total volume and interfacial energy of the spherical

cap solid is:

V β =
4πr3

3

(2 + cos θ)(1− cos θ)2

4
, ∆Gcapillary = 4γπr2 (2 + cos θ)(1− cos θ)2

4
, (7.7)

where r is the radius of curvature of the spherical cap, θ is the contact angle: γML =

γ cos θ + γMS, M stands for mold wall in the case of solidification (solid spherical cap grows
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on mold wall), and γ ≡ γSL here. Since both the volume and capillary energy are scaled

by the same factor (2 + cos θ)(1 − cos θ)2/4, the activation energy of such heterogeneous

nucleation on the mold wall is simply:

∆Ghet = S(θ)∆Ghom, S(θ) =
(2 + cos θ)(1− cos θ)2

4
. (7.8)

When θ = 30◦, ∆Ghet is only 1.286% of ∆Ghom. When θ = 10◦, ∆Ghet is only 0.017%

of ∆Ghom! (and ∆Ghet then goes into the exponential). Thus, heterogeneous nucleation

is usually much more likely than homogeneous nucleation. The only way homogeneous

nucleation rate has been measured was by breaking up the liquid into tiny droplets supported

on amorphous substrate [64]. In such cases undercooling as large as 200K has been observed.

Most metals has γS > γLS + γL, which means the solid metal likes to be covered completely

by its own melt, instead of as liquid domes or droplets on top. The contact angle θ = 0, and

S(θ) = 0. So no super-heating is typically seen in melting. The solid surface disorders and

the surface liquid layer thickens as soon as the thermodynamic melting point TM is reached.

Next we discuss about growth, which is defined as enlargement of the η(x) = ηβ domain

after nucleation. This enlargement can either be accomplished by glissile motion of the αβ

interface that involves shear (think gliding motion of [112̄]a0/6 partial dislocation on a FCC

twin interface), in which case it is called a military transformation; or it could be accom-

plished by randomized atom jumps across the interface, in which case it is called a civilian

transformation. In a military transformation, the nearest-neighbor relation between atoms

is either unchanged (first-nearest-neighbor on the left becomes first-nearest-neighbor on the

right), or if changed (first-nearest-neighbor on the left becomes second-nearest-neighbor on

the left), change in a deterministic and uniform way for all atoms of the same precipitate.

The atoms move as a group with no individuality, and thus the whole variant will tend to

carry large shape strain. Martensitic transformations (chapter 5) and deformation twinning

are examples of military transformations. Because of the collectivity of the transformation

mechanism (large activation volume [65]), the speed of military transformation is either es-

sentially zero if the driving force is insufficient, or exceedingly fast when the driving force

reaches the threshold (the moving speed of αβ interface approaches speed of sound in some

martensitic transformations). Such kinetics is sometimes called “athermal”, which means

the growth speed - when the interface moves - does not depend sensitively on temperature.

In contrast, the atomic nearest-neighbor relations are disrupted in a randomized and nonuni-

form way before and after a civilian transformation. Instead of “thinking and acting” as a
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group, each atom “thinks and acts on its own”. There can be shape strain as well (in the

Eshelby sense, chapter 5), but they tend to be smaller in magnitude and of a more hydro-

static character. This is because without the constraint of keeping nearest-neighbor relation

and moving as group, the randomized atomic jumps may relax away some shear strain. As

we have seen, both the rate of short-range diffusion (interfacial migration) and long-range

diffusion (interdiffusion for solute partitioning) are very sensitive to temperature, but are

less sensitive to the driving force (linear response means flux/rate is proportional to driving

force, such exponent of 1 is much less than the more collective military shear transforma-

tions, due to the small activation volume of diffusion [65]). It does not take a great driving

force beyond the critical nucleus to grow in a civilian fashion (in linear response, if the driv-

ing force is halved, the flux/growth speed is halved - there is no sharp threshold), but the

speed of growth when it is growing depends quite sensitively on temperature. Such growth

kinetics is called “thermally activated” growth. The words “athermal” and “thermally acti-

vated” growth can be confusing: in reality every process is thermally activated, it is just that

there are quantitative differences in the driving force and temperature dependencies due to

differing degree of collectivity [65].

Because both short-range and long-range diffusions alter nearest-neighbor relations in a ran-

dom fashion, a 100% pure military transformation cannot involve diffusion, and must be

completely displacive. Military transformation is therefore sometime also called displacive

transformation, and civilian transformation called diffusional transformation. Many phase

transformations are of mixed military/civilian character: there may be large collective shear

displacements, but diffusion is also necessary. For example, austenite→bainite transforma-

tion in steel at intermediate temperatures involve large collective shear displacements indi-

cated by the appearance of surface reliefs [66], but diffusion must also have occured due to so-

lute partitioning detected experimentally. This is in contrast to austenite→ferrite or pearlite

transformation at higher temperatures which is completely civilian, or austenite→martensite

transformation at lower temperatures which is completely military. As John Wyrill Chris-

tian remarked, “the main categories of transformation are called military and civilian, but

rigid classifications is not required since soldiers may sometimes be out of step and civilians

may sometimes form paramilitary organizations!” (p.6 of [67]).

Growth in civilian transformation can be interface controlled or diffusion controlled, depend-

ing on where the free energy is mostly spent on: driving interfacial migration or long-range

diffusion. (Here the term “diffusion controlled” means long-range diffusion). Consider the

quasi-1D binary system shown in Figure 3.67 of [47] as an example. Let us assume the
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precipitate β is essentially pure type-2 atoms, so the motions of type-2 atoms drives the

kinetics. Let us define the composition profile in α to be Xα(x). At x = ∞, the matrix is

in supersaturation: Xα(x = ∞) = X0. Right at the interface x = xi, it takes a limiting

value Xα(xi) = Xα
i , which is smaller than X0 since the supersaturation is being drained to

grow β. On the other hand, Xα
i must be larger than Xα

e , of α(X0)→ α(Xα
e ) + β(Xβ

e ) in the

equilibrium phase diagram. This is because the jumping across of type-2 atoms over the αβ

interface requires some chemical potential driving force as well. Based on our assumption,

Xβ
e = p2 (pure 2), the composition profile in β is Xβ(x) = p2 uniformly. Mimicking what

we have done for grain boundary migration (chapter 6), we can write down:

v = M
µα2 (Xα

i )− µβ2 (p2)

Ω
(7.9)

where
µα2 (Xα

i )−µβ2 (Xβ
e )

Ω
has the unit of pressure, and M is the mobility of this continuous

boundary (unit m2s/kg).

We note that µβ2 (p2) = µα2 (Xe), so the total driving force µα2 (X0)−µβ2 (p2) = µα2 (X0)−µα2 (Xe)

can be decomposed into µα2 (X0)− µα2 (Xα
i ) plus µα2 (Xα

i )− µα2 (Xe), the former used to drive

long-range diffusion, the latter used for jumping across the interface. In fact, if α is an ideal

solution, then

µα2 (X2) = µα◦2 + kBT lnX2, µα2 (X2 + ∆X)− µα2 (X2) ≈ kBT

X2

∆X. (7.10)

So the driving forces are approximately

∆interfaceµ2 ≈
kBT

Xα
e2

(Xα
i2 −Xα

e2), ∆diffusionµ2 ≈
kBT

Xα
e2

(X02 −Xα
i2). (7.11)

If during quasi-steady state growth, X02 −Xα
i2 � Xα

i2 −Xα
e2, then the growth will be called

interface controlled, since most the free energy driving force is spent on driving interface

migration. On the other hand, if X02−Xα
i2 � Xα

i2−Xα
e2, then it is called diffusion controlled

since most the free energy driving force is spent on driving long-range diffusion. If X02−Xα
i2

is comparable to Xα
i2 −Xα

e2, the growth will be called under mixed control.

Mass conservation of type-2 atoms inside the α phase is expressed as:

∂tc2 = ∂x(D̃∂xc2) (7.12)
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in the lab frame. The flux at the interface coming from α is JL
2 = −D̃∂xc2(xi), so D̃∂xc2(xi)dt

type-2 atoms are arriving from the right per unit area in dt. With a moving interface of

velocity v, on the other hand, Ω−1(1 − Xα
i2)(vdt) type-2 atoms will be needed to build up

the β phase from α. So one must have:

(v/Ω)(1−Xα
i2) = D̃∂xc2(xi). (7.13)

Such boundary condition relating flux at boundary to moving boundary velocity is called

the Stefan problem. Type-1 atom also need to escape (since phase β is “intolerant” of type-1

atoms) via bulk flux in α. So generally we will have the Stefan boundary condition

v(cβe − cαi ) = D̃∂xc
α. (7.14)

Let us first consider diffusion-controlled growth: cαi ≈ cαe , in which case

v =
D̃∂xc

α

cβe − cαe
(7.15)

the denominator is given by bulk phase diagram. Imagine a planar front of β has just been

nucleated inside α at t = 0. To estimate v from (7.15), we need an order-of-magnitude

estimate for ∂xc
α. Since it takes some time for the information “here is a precipitate plate”

to propagate outward by diffusion, we may infer that

∂xc
α ∝ c0 − cαe

lD
=

∆c

lD
, lD ≡

√
6D̃t, (7.16)

where the numerator is supersaturation, and denominator is the diffusion length. Plugging

the above into (7.15), we see that

v ∝

√
D̃

t

∆c

cβe − cαe
. (7.17)

Several comments can be made regarding this moving planar front: (1) the growth speed

is not constant, it slows down as t−1/2. (2) the thickness of the precipitate lP =
∫
vdt ∝√

D̃t ∝ lD, so the size of the precipitate (type-2 atoms rich) scales with the size of the

diffusion-affected depleted zone in the matrix (type-2 atoms poor), which makes sense from

a mass-conservation point of view. (3) We know the supersaturation ∆c is proportional to

∆T , thus the larger ∆T the larger the thermodynamic driving force for diffusion; however,
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the kinetics of diffusion is slowing down with larger ∆T , so the growth speed v(∆T ) actually

peaks at some intermediate ∆T . This is similar to the nucleation rate N (∆T ), except

N (∆T ) has a sharp threshold, while v(∆T ) is initially linear in ∆T .

The above discussion would hold true to t =∞ if there is only one precipitate nucleated in

an infinite matrix. In reality, multiple precipitates can be nucleated at different places, and

they would grow pretty much independently until their lD’s, their “spheres of influence” the

depleted zones, start to overlap (Fig. 5.17 of [47]). Thus commences coarsening, a global

war between different precipitate for the possession of type-2 atoms. It is usually a fight to

the death, unless D̃ is shut off by external control of the temperature.

The above may be applied to marching of the broad face of a precipitate plate. Let us now

analyze marching of the edge of a precipitate plate. The edge may be approximated by a

semi-circle with radius of curvature r (Fig. 5.19 of [47]). This growth then differs thermo-

dynamically from growth of the the broad face which has r = ∞, in that the growth will

be working against the Young-Laplace pressure ∆P = γΩ/r. There is less thermodynamic

incentive for type-2 atom to join the edge compared to the broad face. On the other hand,

this is compensated by the larger “view angle”: the broad face can only pick up solutes from

the front, while a promontory-like edge can pick up solutes from any angle within π. So edge

growth is diffusion kinetically facilitated. The edge also tends to be incoherent interfaces,

which facilitates atom attachment. Such thermodynamic/kinetic balance will eventually

determine the optimal r that gives the maximum edge growth speed.

Assuming the growth is still diffusion controlled (plenty of atom attachments/detachments

at the αβ interface), the equilibrium solubility of type-2 atom in α just outside the edge is

enhanced by:

X̃α
e2 = Xα

e2 exp(
γΩ

rkBT
) ≈ Xα

e2(1 +
γΩ

rkBT
) (7.18)

according to the Gibbs-Thomson effect. Thus, the effective supersaturation that drives

diffusion in α is reduced:

∆̃X2 ≡ X02 − X̃α
e2 = X02 −Xα

e2(1 +
γΩ

rkBT
) = (X02 −Xα

e2)(1− Xα
e2

X02 −Xα
e2

γΩ

rkBT
). (7.19)

If we define

r∗ ≡ Xα
e2

X02 −Xα
e2

γΩ

kBT
=

γΩ

µα2 (X0)− µα2 (Xα
e )

(7.20)
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the above can be simplified to

∆̃X2 = ∆X2(1− r∗

r
). (7.21)

In fact, r∗ is exactly the critical nucleus size of nucleating a cylinder in supersaturated α,

when in Nβ → Nβ+1 the reduction in bulk free energy is exactly balanced by the increase in

chemical potential due to Young-Laplace pressure. Diffusion would stop if r = r∗, ∆̃X2 = 0.

Indeed, if r < r∗, the edge would not grow but retreat, and emit type-2 atoms rather than

absorbing type-2 atoms.

To estimate the steady-state edge growth speed, we convert (7.15) to 2D radial coordinate,

v =
D̃∂rc

α

cβe − cαe
(7.22)

and assume

∂rc
α ∝ ∆̃c

r
=

∆̃X2

rΩ
=

∆X2(1− r∗

r
)

rΩ
(7.23)

since in radial diffusion, there is now an intrinsic lengthscale r. cαe in the denominator should

really be c̃αe , but since the difference between cβe and cαe is much larger than the difference

between c0 and cαe , this distinction is less important than in the numerator and can be

ignored. So we see that:

v ∝ D̃∆c2

cβe2 − cαe2
× 1

r
(1− r∗

r
) (7.24)

which is maximized when r = 2r∗. We note that vmax ∝ D̃∆c2
4(cβe2−c

α
e2)r∗

, which is proportional to

(∆T )2 for small ∆T . At large ∆T , the temperature dependence in D̃ kicks in, which means

vmax will have a maximum at some intermediate ∆T .

We note that vmax is a constant of time. So the edge would cut into α with constant speed.

The broad face would grow after that, with slower and slower speed. Like in evolution, the

fastest moving edge has the advantage in survival because it can imbibe the full supersatu-

ration in α. The slower moving edges with r < 2r∗ or r > 2r∗ would gradually be “snuffed

out” due to the broad-face growth of the faster moving plates, which drain away the su-

persaturation and make the slower moving precipitate edges move even slower. So Nature

selects an optimal lengthscale, an optimal tip/edge curvature in this case. If r is too small,

there is not enough thermodynamic driving force for diffusion; if r is too big, the solutes

have to diffuse too long from the matrix, so kinetically the growth becomes too slow. Such
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thermodynamic/kinetic balance is quite generic. The same argument not only selects the

edge curvature of precipitate plates in solid-solid transformation, but also the tip curvature

of dendrite arms in solidification, and the lamellae thickness in eutectic reaction.

Let us now consider the opposite situation of interface-controlled growth. During such

growth, the supersaturation holds all the way up to the interface (spatially uniform in α

but temporally decreasing): Xα
2 (x) = Xα

i2, and the growth speed is simply:

v = M
kBT

ΩXα
e2

(Xα
i2 −Xα

e2). (7.25)

One might wonder how could long-range diffusion be easy, when type-2 atoms trekked many

lattice spacings to get to the interface, but short-range diffusion (interfacial migration) is

hard, where the type-2 atoms just need to make one or several atomic jumps to get to

the other side. The answer is that there might be structural difficulties like the one shown

at FCC/HCP interface in Fig. 3.68 of [47]. Also, there might be interfacial chemistry

at play, different from bulk solution chemistry. Rare solute elements (may not be type-2)

of ppm-level bulk concentration could segregate to the interface, and significantly decrease

interfacial mobility. For example, just 0.006 wt% of tin is able to reduce the mobility of

random GBs by factor of 104! (chapter 6). These segregated elements may exert strong

barrier/trapping forces on type-2 atoms, that the type-2 atoms just find it very difficult

to go across the interface, despite being so close to the target phase. (In human history

there is no shortage of soldiers who trekked thousands of miles just to die in front of a

wall.) The last reason for interface-controlled growth is that some phase transformations

do not require long-range diffusion. For example, in the so-called massive transformation,

α and β have the same composition but different structures. No solute partitioning and

long-range diffusion is needed. All that is needed in massive transformation is for atoms to

jump across the interface, i.e. short-range diffusion. In that case, the growth speed v would

be approximately a constant.

We are now ready to study the well-known Johnson-Mehl-Avrami-Kolmogorov equation

[68, 69, 70, 71], which combines nucleation and growth rates to give the total volume frac-

tion of transformed β as a function of time. There are two simplifying assumptions in the

Avrami equation: (a) the nucleation rate N is constant in untransformed α, and (b) the

growth speed v is constant. As we have seen from previous models of N and v, in binary

systems N ,v depend on the local supersaturation and the geometry, and may or may not

be constant temporally or spatially. (a) and (b) are probably more appropriate for mas-
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sive transformations such as liquid↔solid, solid→solid transitions of elemental materials,

recrystallization, etc. Because the assumptions (a) and (b) are simple and lead to analytical

solutions, the Avrami equation is a good starting model.

Even with the simplifying assumptions (a) and (b), there are many confusing or mathemati-

cally incorrect derivations of the Avrami equation in textbooks. A correct derivation is given

by John Cahn, in the so-called time-cone approach. Consider as starting point a 1D system:

d = 1. A long nanowire that undergoes phase change would be a good example [72]. Initially,

the wire is completely α. Assumption (a) states that if (x, x + dx) is α at time t, there is

probability dP = Ndxdt that (x, x + dx) will contain one super-critical β nucleus at time

t+ dt, which can grow from that point on. Implicit in (a) is the assumption that the critical

nucleus size r∗ is so small compared to the wire length, that it can be practically regarded

as 0. We just declare some previously-α point on x to be β at certain time, the probability

of this declaration is proportional to the space-time volume dxdt. Assumption (b) is about

growth: it says that once a point has been declared β, it will encroach on surrounding points

and convert them into β, with spreading velocity v. Such conversion will stop if and only

if the surrounding point is already β, when the time cones of two β nuclei meet. Lastly,

assumption (a) states that once a point has been declared β, it will stay β forever, with no

new nucleation probability associated with it. These assumptions are illustrated graphically

as overlapping time cones in Fig. 21.1 of [41].

Aided by the graph, it is easy to prove that both the necessary and sufficient condition for a

point (x, t) to stay α is that all points in the reverse time cone has refrained from nucleation.

The probability of this refrainment can be calculated by sequential interrogation of different

time slices: t = (0,∆t), (∆t, 2∆t), ..., (t − ∆t, t). In the first time slice t = (0,∆t), the

probability of nucleation at different spatial points are uncorrelated. The probability that a

particular space-time volume element ∆t×∆x of the first time slice refrains from nucleation

is 1 −N∆t∆x ≈ exp(−N∆t∆x), so the total probability that no nucleation occurs within

the first time slice of the reverse time cone is

exp(−N∆t∆x) exp(−N∆t∆x)... exp(−N∆t∆x) = exp(−Nw(t = 0)∆t) (7.26)

where w(t = 0) is width of the reverse time cone at t = 0. If there is no nucleation in the

first time slice1, we may ask what is the probability that there is also no nucleation in the

second time slice. The answer is exp(−Nw(t = ∆t)∆t), so the probability of no nucleation

1If there is nucleation in the first time slice, the proper followup question becomes more complicated
because one cannot nucleate again in the transformed region; fortunately we are not asking that question.
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in the first two time slices is just exp(−Nw(t = 0)∆t) exp(−Nw(t = ∆t)∆t). We keep

asking these “no nucleation” questions sequentially: if any slice says “yes nucleation”, it is

game over for (x, t) to remain as α. The probability that the entire reverse time cone has

refrained from nucleation is therefore

Pα(x, t) = exp(−N (w(t = 0) + w(t = ∆t) + ...+ w(t−∆t))∆t) = exp(−NV), (7.27)

where V is the total space-time volume of the reverse time cone. In 1D, V =
∫ t

0(2vt′)dt′ = vt2.

In 2D, we have circles whose radius grows as vt, so V =
∫ t

0 π(vt′)2dt′ = πv2t3/3. In 3D, we

have spheres whose radius grows as vt, so V =
∫ t

0 4π(vt′)3/3dt′ = πv3t4/3. Thus in 3D, we

expect the volume fraction of α to decay with time as

fα = Pα(x, t) = exp(−πN v3t4/3), (7.28)

and the volume fraction of β would increase with time as

fβ = 1− exp(−πN v3t4/3). (7.29)

In short times, fβ grows as πN v3t4/3. In long times, fβ approaches 1. The shape of fβ(t)

looks like a sigmoidal function.

Note that the time origin of (7.29) should be right after the incubation time tinc, when

C(Nβ) cluster size distribution has developed into C̃(Nβ, t) distribution that has significant

quasi-steady state value at r∗, and the nucleation rate is abruptly reaching quasi-steady-state

value. If one uses −∆T → ∆T quench as the time origin, there should be a time shift

fβ =
[
1− exp(−πN v3(t− tinc)

4/3)
]
H(t− tinc). (7.30)

where H() is the Heaviside step function.

A time-temperature-transformation (TTT) diagram is a contour plot of fβ in time-temperature

space. Typically, two contour lines are drawn, fβ = 0.01 and fβ = 0.99. Using the Avrami

equation, the TTT contours can be drawn:

t0.01 =

(
3 ln 0.99

−πN v3

)1/4

, t0.99 =

(
3 ln 0.01

−πN v3

)1/4

(7.31)

If one draws the contour plot in ln(t)-T space, the two contour lines would shift by a constant
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horizontal amount at different temperatures.

The shape of the TTT contours typically looks like a left-pointing nose. This is because both

N and v peak at intermediate ∆T ’s, so the product N v3 also peaks at some intermediate

∆T . At small ∆T , ∆G∗ is so large that nucleation takes a long time. At large ∆T , diffusion

become sluggish.

The TTT diagram aids design of heat treatment. If one wants to form β as a strengthening

phase, one could take hold at ∆T near the nose, to minimize the time of treatment (long

holding times tie down capital equipment, and increase energy cost). Vice versa, if one want

to rapidly quench a liquid to form a glass, one would want to avoid the crystallization - one

could then design the minimal quench rate dT/dt on the TTT diagram, so one could avoid

the nose.

There are actually two kinds of TTT diagrams. One is for isothermal heat treatment, where

the temperature is held fixed during transformation. The other is for continuous cooling,

where T (t) is a continuous curve (typically a straight line). The Avrami TTT curves (7.31)

are for isothermal treatment. However, the isothermal TTT diagram and continuous cooling

TTT diagram share some common features. For order-of-magnitude estimates, the two may

be used interchangeably.

In the Johnson-Mehl-Avrami model, one did not specify what happens after two β time-cones

meet, except saying that “once β, always β”. However, as we have seen before, there can be

multiple β variants. For example, if ordered intermetallic compound β precipitates out from

disordered random A-B solid solution α, the ordering may be ABABAB (β1) or BABABA

(β2) on the site lattice. β1 and β2 are clearly degenerate in energy. The interface between

β1 and β2: ABABAB|BABABA, is called the anti phase boundary (APB). Just like grain

coarsening, where some orientation variant grains grow in size whereas others disappear,

different β phase variants may also compete with, and later literally “eat” each other, even

though different variants have the same bulk free energy Gsoln a priori.

The Johnson-Mehl-Avrami model does not have enough physical ingredients to resolve re-

alistic coarsening processes in multi-component multi-phase alloys. This is because the β

nuclei in Johnson-Mehl-Avrami does not carry depletion zone with it in the matrix, which

is a very important feature that also give rise to non-constant velocity v. Indeed, in a two-

phase precipitation reaction α→ β+α′, v will approach zero and fβ will approach fβe when

the supersaturation is spent, and there will be finite volume fraction of α′ left in the end.

The Avrami equation (7.29) really is only physically appropriate for α → β, where α can
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be transformed to β 100% with constant v, such as massive transformations and recrystal-

lization. Nonetheless, a vertically rescaled Avrami equation fβ = fβe (1 − exp(−ktn)) may

be still a reasonable fitting form to fit the degree of completion of many transformations,

including technological transformations [73] like the replacement of vinyl records by CDs in

the marketplace, or the spreading of an infectious disease. To extract the Avrami exponent

n, one may plot ln(− ln(1− fβ(t)/fβ(∞))) versus ln t.

Let us consider a two-phase alloy, where the total β volume fraction has already approached

a constant, fβe . That is to say, there is on average not much more supersaturation to be had

in the matrix, and type-2 atoms must come mainly from other β-precipitates. If we label

the particles by i, there is

∑
i

4πr3
i

3
= const,

∑
i

r2
i ṙi = 0. (7.32)

The mean-field approximation assumes each particle of radius ri sees the same environment,

which means ṙi will be a deterministic function of ri only. If we assume the background has

uniform concentration c̄2 (note c̄2 is different from the initial supersaturation c02, since now

we are at a late coarsening stage), and we insert a spherical particle inside, we can use the

previous result of (7.24) for diffusion-controlled growth. The only difference is the critical

radius is now

r∗ ≡ cαe2
c̄2 − cαe2

2γΩ

kBT
=

2γΩ

µα2 (c̄2)− µα2 (cαe2)
(7.33)

instead of (7.20), since there are two principal radii of curvature for a spherical particle,

instead of one for a cylindrical edge. So from (7.24) we have

ṙi =
aD̃(c̄2 − cαe2)

(cβe2 − cαe2)
× 1

r
(1− r∗

r
) =

aD̃2γΩcαe2
(cβe2 − cαe2)kBTr∗

× 1

r
(1− r∗

r
) (7.34)

where a is a dimensionless constant. Thus
∑
i r

2
i ṙi = 0 requires

∑
i

(ri − r∗) = 0 → r∗ =

∑
i ri∑
i 1

(7.35)

so r∗ can be interpreted as the average particle radius. For ri < r∗, the particle will shrink.

For ri > r∗, the particle will grow. We may rewrite it as:

ṙi =
bD̃

ri
(

1

r∗
− 1

ri
) (7.36)
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where b ≡ 2aγΩcαe2
(cβe2−c

α
e2)kBT

is a constant lengthscale.

We can model the particle size distribution:

dC ≡ f(r, t)dr (7.37)

to be the concentration (#particles/m3) of β particles with radius between r and r + dr.

Using the same argument as counting “red Ferraris”, but now in r-distribution space instead

of x-real space, one gets

∂tf = −∂r(f(r, t)ṙ) = −∂r
(
bD̃

r
(

1

r∗
− 1

r
)f(r, t)

)
(7.38)

While we can initialize the particle size distribution f(r, t = 0) any way we like, over long

time the distribution will approach a self-similar attractor distribution (Fig. 15.5 and 15.6

of [41]) of the form:

f(r, t) → 1

r∗4(t)
g

(
r

r∗(t)

)
, (7.39)

like in the Boltzmann transform and self-similar solutions of the diffusion equation. The

reason for the prefactor is because of the normalization condition

fβe =
∫ ∞

0
drf(r, t)

4πr3

3
= const, (7.40)

assumed for the coarsening stage.

If we define r̃ ≡ r/r∗(t), then the (r̃, t)↔ (r, t) mapping goes as F (r̃, t) = F (r/r∗(t), t), so:

∂rF = r∗−1∂r̃F, ∂tF = DtF + (∂r̃F )(−r̃ṙ∗/r∗), (7.41)

where

∂tF ≡
∂F

∂t

∣∣∣∣∣
r

, DtF ≡
∂F

∂t

∣∣∣∣∣
r̃

. (7.42)

So (7.38) becomes

−4r∗−5g(r̃)ṙ∗ − r∗−5ṙ∗r̃∂r̃g = −bD̃r∗−1∂r̃(r
∗−6bD̃r̃−1(1− r̃−1)g(r̃)), (7.43)

so

r∗2ṙ∗ = bD̃
∂r̃(r̃

−1(1− r̃−1)g(r̃))

4g + r̃∂r̃g
(7.44)
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The left-hand side depends only on t, the right-hand side depends only on r̃, so both must

be constant. We thus have:

r∗3(t)− r∗3(0) = kbD̃t. (7.45)

This is called Lifshitz-Slyozov-Wagner (LSW) model [74, 75]. The shape of the self-similar

particle size distribution is shown in Fig. 15.5 of [41]. It has an abrupt cutoff at r = 1.5r∗.

We see that the LSW coarsening rate is ∝ γcαe2D̃. Thus three strategies can be used to reduce

the rate of coarsening (p. 316 of [47]). (a) Low interfacial energy: Ni-based super-alloys γ (fcc

random solid solution) / γ′ (ordered Ni3Al) are used in aircraft engines and power turbines,

and need to be high-T creep-resistant. The γ/γ′ interfaces are coherent with exceptionally

low interfacial energies, 10-30 mJ/m2. Furthermore, the misfit strain can be fine tuned to

essentially zero by changing alloy composition, so the coherency loss during deformation -

which increases γ - may be reduced. The creep-rupture life of such zero-misfit alloy can

be increased by a factor of fifty compared to 0.2%-misfit alloy. (b) low solubility cαe2 in the

matrix: oxygen has low solubility in most metal phases, and would like to precipitate out

as stoichiometric oxide. Oxide dispersion strengthened (ODS) steels take advantage of this

to become creep-resistant. (c) low diffusivity: pure cementite (Fe3C) in steel coarsen very

quickly because C diffuse interstitially, which is much faster than substitutional diffusion that

relies on vacancies. Adding additional alloying elements M that form more stable carbides of

the form FexMyCz than cementite would have two effects: (i) it ties down C so cαeC is lower,

(ii) the diffusion of these metallic alloying elements is substitutional, which is much slower

than C diffusion, which slows down coarsening.

If the kinetics of coarsening is interface controlled, then

ṙi = M
µα2 (c̄2)− µα2 (cαe2)− 2γΩ

ri

Ω
(7.46)

we can also define a critical radius

r∗ =
2γΩ

µα2 (c̄2)− µα2 (cαe2)
(7.47)

and

ṙi = 2γM
(

1

r∗
− 1

ri

)
. (7.48)

Thus
∑
i r

2
i ṙi = 0 requires

r∗ =

∑
i r

2
i∑

i ri
. (7.49)
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Following similar procedure as LSW model, it can be shown that

r∗2(t)− r∗2(0) = kγMt, (7.50)

after the particle size distribution has fallen into a self-similar attractor. This parabolic

kinetics of coarsening is no different from grain growth, which is also interface controlled.

Thus, whether it is long-range diffusion controlled or short-range diffusion controlled will

lead to difference in the coarsening exponent by 1.
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Chapter 8

Solidification

Solidification means liquid→solid transformation. Much has already been discussed about

solidification in the previous chapters, such as nucleation theory, so only new aspects are

discussed here. First of all, solidification involves much larger heat of transformation ∆H

than most solid→solid transformations, so heat conduction may need to be taken into account

in solidification kinetics. This intuitively makes sense, since how long a bottle of water freezes

fully into ice when you put it outside of your window in the winter obviously may depend

on how fast the bottle, the ice and the water conducts heat, and how much latent heat is

in the water→ice transformation. From Onsager relation, one can derive the heat transport

equation:

∂tT = α∇2T, (8.1)

which looks the same as the mass transport equations, where α is the thermal diffusivity

(unit m2/s). Typically, αsolid > αliquid, Dliquid ∼ 10−4αliquid, Dsolid ∼ 10−8αliquid at the

melting point (p.285 of [76]). Note that αliquid is somewhat lower than the corresponding

solid, whereas liquid’s mass diffusivity is much higher than the corresponding solid. For

this reason, long-range and short-range mass diffusion are relatively facilitated in liquids

compared to heat diffusion, so we may not regard solidification of liquids as an isothermal

process in a system. In contrast, many solid→solid transformations (interface controlled or

long-range mass diffusion controlled) can be practically considered to be isothermal due to

the low heat of transformation and high thermal diffusivity in solids (Dsolid ∼ 10−8αliquid,

and interfacial mobility which is short-range mass diffusion may follow the same general

trend as Dsolid, so mass transport is even more of an issue in solid→solid transformations,

such as interface-controlled grain growth).
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It is instructive to consider how a planar solid-liquid interface may maintain its stability in

a non-isothermal situation. Let us assume (a) it is pure liquid → pure solid, so no solute

partitioning and long-range mass transfer are needed, and (b) atom attachment/detachment

at the interface is facile, so the solidification is not interface controlled (imagine a market

on the interface where there is no trading fee/tax, there is a lot of trading, and there is

no cheating and no trading fraud - then prices would have reached their “fair” values given

the constraints of the far-field supply and demand). Then the velocity of the interface

is controlled by how quickly the latent heat can be conducted away by long-range heat

diffusion, a Stefan problem very much like the precipitate growth problem, except α, T are

used instead of D̃, c2. Also, Ti ≡ T (xi) = Te at the interface, i.e. the interface follows an

isotherm contour (if Young-Laplace pressure can be ignored for initial coarse lengthscale -

see later when lengthscale is refined) since (b) means no under-cooling is needed to drive

interfacial motion.

If the solid is connected to external heat sink, for example if the solid was originally nucleated

heterogeneously on the mold wall and maintains connection to the mold, then heat will be

conducted away from the interface via the solid. In that case, it can be shown that the

planar interface should be stable. This is because if a bulge develops on the solid, the T

contour line would move further from the sink at the bulge and closer to the hotter zone,

which means less heat is conducted away into the solid, so the bulge will move slower than

the rest of the interface until the bulge vanishes.

If on the other hand if heat is conducted away from the interface via the liquid, the planar

interface will not be able to maintain morphological stability. This may happen if the solid is

nucleated homogeneously or heterogeneously (around a floating oxide particle, for instance)

away from the mold wall, or if a nuclei originally nucleated on the mold wall is swept into the

liquid by convective current. In that case, if the interface develops a bulge, the T contour

line would move closer to the heat sink, develops a larger heat current locally that conducts

away the latent heat, which further accelerates the growth of this bulge. Eventually, a

thermal dendrite will develop. After the primary dendrite arm grows long enough, the

lateral surface of the dendrite arm may become unstable again, and offshoots secondary

and tertiary dendrite arms. These dendrite arms typically follow crystallographic directions

(〈100〉 in cubic metals and 〈11̄00〉 in hcp metals) which impart it some additional interfacial

mobility advantage.

Just like precipitate edge growth, there is an optimal radius of curvature r of the dendrite

tip for maximizing the dendrite velocity. The rate heat is conducted away is ∝ r−1, since the
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isotherm contours have this lengthscale. On the other hand, too narrow r gives large Young-

Laplace pressure to grow against: the thermodynamic driving force thus scales as 1− r∗/r,
where r∗ is the critical nucleus for homogeneous nucleation. This thermodynamics-kinetics

v ∝ r−1(1 − r∗/r) trade-off leads to roptimum = 2r∗ for the winning dendrite. The slower

moving dendrites will be stopped by the secondary and tertiary arms of the faster moving

dendrite.
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Figure 8.1: (a) A typical eutectic phase diagram. (b) Scheil-Gulliver solution of the con-
centration profile, when there is no diffusional mixing in solid, but complete mixing by
convection in liquid.

Since Dliquid ∼ 10−4αliquid, when the liquid is not perfectly pure and contains just a small

amount of solutes, the nature of the solidification kinetics may change from heat diffusion

controlled to mass diffusion controlled. Consider a typical binary phase diagram with an

eutectic point at TE. The melting temperature of pure 1 is Tmelt; the maximum solubility

of 2 in the solid phase is Xmax (from now on the scalar X symbol stands for X2), and the

eutectic liquid composition is XE. For simplicity we assume that both the liquidus and the

solidus are straight lines: dXα
e /dT = XE/(TE − Tmelt), dX

β
e /dT = Xmax/(TE − Tmelt), where

α stands for liquid and β stands for solid.

The partition coefficient k is defined as k ≡ Xβ
e /X

α
e = Xmax/XE. If k < 1, then the solid

phase “hates” solutes and wants to eject them into the liquid. An enriched liquid on the

other hand can sustain a bit more cooling before decomposing again. In the discussions that

follow we are going to assume that atom attachment/detachment at the solid/liquid interface
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is easy, so interfacial mobility is not the controlling factor of interface speed. When this is the

case, the solid and the liquid should reach thermodynamic equilibrium right at the interface,

which is to say Xβ(x = xi) = Xβ
e (Ti), X

α(x = xi) = Xα
e (Ti), µ

β
2 (xi) = µα2 (xi), namely the

compositions at the interface follow some Ti cut of the equilibrium phase diagram where Ti

is the temperature right at the interface (if the interface is planar or if the Gibbs-Thomson

effect can be ignored).

We are going to study unidirectional solidification (directional solidification), which is an in-

dustrially important process to make single-crystal turbine blades, high-purity semiconduc-

tors etc. Consider a bar of liquid x ∈ (0, L). A heat sink is placed at x = 0, so the solid phase

will grow from the left x < xi, with composition profile Xβ(x < xi, t). The liquid phase is

retreating on the right x > xi with composition profile Xα(x > xi, t). xi(t = 0) = 0, and the

interfacial velocity is v ≡ ẋi. For simplicity, we will assume Ωα
1 = Ωα

2 = Ωβ
1 = Ωβ

2 = Ω. The

initial liquid composition (average composition of the alloy) is Xα(0 < x < L, t = 0) = X0.

We also note that while the concentration profile sustains a tie-line jump at the interface,

the temperature profile T (x) should be continuous in value across the interface and takes

value Ti at the interface.

Three limiting scenarios will be considered: (a) plenty of diffusional mixing in the solid (thus

plenty of diffusional mixing in the liquid as well since Dα ∼ 104Dβ), (b) no diffusional mixing

in the solid, but complete mixing by convection in the liquid, and (c) no diffusional mixing

in the solid, but partial mixing by diffusion in the liquid.

In scenario (a), full diffusional equilibrium is achieved in both α and β due to the slow-

moving interface and quasi-static cooling. Heat is removed so slowly from the system that

the bar may be considered isothermal. In this case, both the solid phase and the liquid phase

have plenty of time to diffuse and therefore take a uniform composition: Xβ(x < xi) = Xβ,

Xα(x > xi) = Xα, and Xβ and Xα must also be equilibrated across the interface, thus

Xβ(x < xi) = Xβ
e (Ti), X

α(x > xi) = Xα
e (Ti), i.e. the uniform compositions are just those

indicated by the phase diagram at mutual equilibrium. Since heat diffusivities are larger than

the mass diffusivities, the heat diffusion lengths are longer than the mass diffusion lengths,

therefore the temperature must be uniform as well, T (x) = Ti. In Fig. 8.1(a), the first solid

that forms has composition kX0, coming out at Ti = Tmelt +X0(TE−Tmelt)/XE. The solutes

in the region now occupied by the solid get ejected into the liquid, making it richer. The

richer liquid can cool down a bit further, before a new solid, also a bit richer, comes out

and attaches to the interface. However, since we assume diffusion is “fast” in the solid (or

at least given enough time to happen to completion) compared to motion of the interface,
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this richer solid gets homogenized with the original kX0 solid, and the entire uniform solid

gets a bit richer. This process repeats, and the uniform liquid and solid compositions just

“slide down” the liquidus and solidus lines in Fig. 8.1(a), until two possible eventualities. If

X0 < Xmax, the maximum solid solubility in β, then the last drop of liquid should disappear

at Ti = Tmelt + X0(TE − Tmelt)/Xmax > TE, with uniform solid composition Xα = X0 just

before the disappearance. If X0 > Xmax, however, then the last drop of liquid disappears

at TE. Just before TE, the uniform α region has composition Xmax, which occupies volume

fraction fβ = (XE − X0)/(XE − Xmax), and the uniform liquid region has composition XE

which occupies volume fraction fα = (X0 −Xmax)/(XE −Xmax). This fα liquid region will

turn into an eutectic solid (some γ/β precipitate-in-matrix microstructure) below TE at the

end of the bar.

Scenario (a) is the easiest to understand but rarely happens in practice because solid-state

diffusion is slow, Dβ ∼ 10−4Dα, therefore it might take extremely long time to reach uniform

composition in the solid part. In many cases, it is more appropriate to assume there is no

diffusional mixing in the solid during solidification: the solid keeps the composition that it

first came out with. Mixing in the liquid by diffusion is much easier, and can be further aided

by convective mixing, such as vigorous stirring (what you do if you want to dissolve sugar in

water). So one may consider the (b) scenario, which is no mixing in the solid, but full mixing

in the liquid. Then we have: Xβ(x < xi) and Xα(x > xi) = Xα. Again we assume interfacial

mobility is not an issue, so two sides of the flat interface reach thermodynamic equilibrium

at the interfacial temperature Ti: X
β(x = xi) = Xβ

e (Ti) = kXα
e (Ti), X

α = Xα
e (Ti). Now

imagine the interface moves by dxi = vdt. The original Xαdxi in the region will be replaced

by the new Xβ
e (Ti)dxi = kXαdxi, so solutes will be ejected into the liquid. Due to the fast

mixing, the ejected solutes “instantaneously” gets dispersed everywhere in the entire fluid.

Define solid volume fraction fβ ≡ xi/L and liquid volume fraction fα = 1 − fβ, we have

dfβ = −dfα = dxi/L. Mass conservation requires that

(kXα −Xα)dxi + (L− xi)dXα = 0 ↔ (1− k)Xαdfα + fαdXα = 0 (8.2)

The above is just a special limit of the Stefan problem. Then we have (1 − k)d ln fα +

d lnXα = d ln((fα)1−kXα) = 0, or (fα)1−kXα = const. At time 0, the entire region is fluid,

fα(t = 0) = 1, Xα(t = 0) = X0, so we get const = X0 and

Xα = X0(fα)k−1, Xβ(xi) = kX0(fα)k−1 = kX0

(
1− xi

L

)k−1

. (8.3)
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The above is called the Scheil-Gulliver equation. The solution is plotted in Fig. 8.1(b).

With k < 1, we see that both Xα and Xβ(x) are monotonically increasing function of x.

Because there is no diffusional mixing in the solid, the solid composition at the interface is

richer than in scenario (a) for the corresponding xi. As a result, the liquid composition is also

pushed higher. Indeed, the Scheil-Gulliver equation shows that the liquid composition would

diverge as fα → 0. In reality this does not happen because as soon Xα hits XE at Ti = TE,

the liquid cannot enrich further and must undergo eutectic decomposition α→ β+ γ. From

the Scheil-Gulliver equation we see that fα = (XE/X0)1/(k−1) portion of the bar at the end

will have β + γ eutectic microstructure. No matter what is X0 ∈ (0, XE), the last drop of

liquid in scenario (b) always solidifies at TE with composition XE.

From Fig. 8.1(b), we see that unidirectional solidification (heat sink at x = 0) drives large

amount of solutes to the end of the bar. This is ultimately because the solid “hates” solutes

(k = 1) and keep pushing them into the liquid. This leads to a general idea for purification.

We could for instance cut out the last 10% of the bar in Fig. 8.1(b) after it solidifies. The

remaining 90% of the bar will have an average composition X̄ considerably less than X0, say

X̄ = rX0, where r < 1 is some reduction factor. This shorter bar can then be remelted into

a homogeneous liquid, and unidirectional solidified again. Since (8.3) is linear in X0, all that

is going to happen is that we replace X0 by rX0, and the process repeats itself self-similarly

in the shorter bar. Then after n passes, the average composition will be just rnX0 (the bar

is also shorter, 0.9nL). If say r = 0.25, just 5 passes will make the bar (still 59% of the

original length) a thousand times purer on average than the original bar!

In the semiconductor industry very high-purity Si is needed as a base material before in-

tentional doping by ion implantation or diffusion. The amount of undesired solutes may

need to be restricted below ppm level or lower in the base material. Zone refinement is a

process invented by W. G. Pfann [77] whereby a hot zone is repeatedly passed though a bar

of materials, locally melting the bar and giving solutes in the solid an opportunity to go into

the liquid, and pass them on and “sweeping” them towards the end of the bar. Even though

different in details and mathematically more complicated [78], the general idea is the same

as the Scheil-Gulliver equation. Zone refinement also gives a nearly exponential dependence

of the average purity on the number of passes.

Finally, let us consider scenario (c), where diffusional mixing in the liquid is allowed, but

there is no convective mixing. As we mentioned before, diffusion is a very effective means

of mass transport at small lengthscales, but it gets progressively more sluggish at longer
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lengthscales (in contrast, convective mixing does not suffer from this “longer-gets-lazier”

shortcoming). Imagine that at the beginning, a small sliver of kX0 solid come out, and

there is excess solute Xα(x > xi) = X0 + ∆Xα(x − xi, t) built up in the liquid in front of

the interface. ∆Xα(x − xi, t), which is a decreasing function of x, may be called the “bow

wave”, if we think of xi as the tip of a moving boat on a lake. When xi is small, the spatial

extent of the bow wave is small, so it is relatively easy for the solutes to get away from the

solidification front by diffusion. But as time goes on, the spatial extent of the bow wave gets

longer and longer, and diffusion gets progressively more sluggish. As a result, solutes build

up in the bow wave, so the bow wave not only gets fatter in spatial extent but also larger in

amplitude. Starting out from kX0, Xβ(xi) then gets larger and larger progressively as well,

but it can’t exceed X0 which is the liquid feedstock composition.

In fact, because of the longer-gets-lazier property of diffusion inside the bow wave, it is

possible to reach steady state in scenario (c), meaning the solid that comes out no longer

change composition with xi and time. Steady-state propagation is not feasible in scenarios (a)

and (b), which have some kind of global mixing and therefore are always sample-size aware.

Because diffusion is “short-sighted”, it is possible to establish a steady-state propagation

in (c) where the interfacial velocity ẋi = v is a constant, and the local condition of the

steady-state-propagating bow wave is L-independent.

In any steady-state propagation there must be Xβ(xi) = X0, since what feeds into the bow

wave must be what is left behind, composition wise. So there must be Xα(xi) = k−1X0

due to the interfacial equilibrium assumption. Thus during steady-state propagation, the

interfacial temperature must be pinned at Ti = Tmelt + X0(TE − Tmelt)/Xmax. The diffusion

equation that governs the bow wave in liquid phase is

∂tX
α = Dα∂2

xX
α (8.4)

where Dα is conceptually similar to interdiffusivity in solids. The Stefan boundary condition

is

(k−1 − 1)X0v = −Dα∂xX
α(xi). (8.5)

The following exponential-decay form

Xα(x) = (k−1 − 1)X0 exp
(
xi − x
w

)
+X0 (8.6)

would satisfy Xα(xi) = k−1X0 and Xα(∞) = X0 boundary conditions. Plugging it into the
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PDE, we need

(k−1 − 1)X0 exp(
xi − x
w

)
v

w
= Dα(k−1 − 1)X0 exp(

xi − x
w

)
1

w2
, (8.7)

or the characteristic bow wave width

w =
Dα

v
. (8.8)

Fortunately, this choice of w also satisfies the Stefan boundary condition:

(k−1 − 1)X0v = −Dα · (k−1 − 1)X0 exp(
xi − x
w

)
−1

w

∣∣∣∣
x=xi

. (8.9)

Thus indeed (8.6) is a valid steady-state solution.

In reality, v is controlled by the rate of heat removal. When the solidification is complete

and one does a chemical analysis of the solid bar, in the initial x ∈ (0, xstart) section of the

bar, where xstart ∝ w, the solid composition is below X0. In the final x ∈ (xfinish, L) section

of the bar where L− xfinish ∝ w, the solid composition will be higher than X0 as the richer-

composition bow wave “crashes” to the end of the liquid container. For x ∈ (xstart, xfinish)

the solid composition is approximately X0.

If X0 > Xmax ≡ kXE, the maximum solubility in the solid, then obviously a steady state

cannot be established, since α cannot accept so much solutes. In this case, we could envision

the bow wave amplitude build up, until the apex hits XE, at which point an eutectic zone

develops.

Up to now in (a),(b),(c) we have assumed the planar interface can be maintained in unidi-

rectional solidification. Recall that in the solidification of pure liquids, as long as heat is

conducted away from the liquid, dT/dx > 0, the planar interface would be stable, because

a bulge in the solid would get closer to hotter liquid zones and will soon be molten away.

With the compositional degree of freedom added in and with composition-dependent melt-

ing temperatures, the problem can be more complicated. For (a) and (b), since the liquid

composition is uniform, dT/dx > 0 in the liquid would still guarantee stability of the planar

interface. For (c), it turns out that dT/dx not only needs to be positive, it need to be

greater than a critical value, dTe/dx. Otherwise fingers can form: the solid finger/dendrite

will attempt to break away from the rich liquid layer and chases after the cleaner X0 liquid

beyond thickness w.
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The basic idea is that as one falls off the bow wave in the liquid, the solute concentration

becomes less, and so the equilibrium temperature Te gets higher (liquidus line in Fig. 8.1(a)).

One can compute the rate of equilibrium temperature increase as

dTe
dx

=
dTe
dXα

· dX
α

dx
=

TE − Tmelt

XE

· (k−1 − 1) exp(
xi − x
w

)
−X0

w

∣∣∣∣
x=xi

=
X0(Tmelt − TE)(k−1 − 1)

XEw
. (8.10)

Even if dT/dx > 0 and the real temperature is increasing as one goes into the liquid, if the

real temperature does not increase as fast as Te does, the real temperature in the liquid could

still fall below the freezing temperature for that local composition. This is called constitutional

supercooling. The term means that even though the temperature is apparently increasing

as one goes deeper into the liquid, dT/dx > 0, still the liquid is being supercooled due

to the negative compositional gradient. Constitutional supercooling in effect says that in

a multi-component liquid, what is important is not the absolute magnitude of dT/dx, but

the difference d(T − Te)/dx, as one leaves the solid/liquid interface. It is like in a society

with no inflation (pure system), a raising salary year by year means improved standard of

living; but in a society with inflation (alloy, where the equilibrium temperature changes

with composition and therefore position), one has to get a raise year by year that beats the

inflation, in order to have real improved standard of living. When d(T − Te)/dx < 0, one is

“beat by inflation” and fingering instability and breakup of the planar interface may happen.

One way to think about it is that new solids may now be able to grow independently in the

liquid’s diffusion layer, breaking up the planar interface. These dendrites may sharpen their

tips to get a kinetic advantage, but eventually the Young-Laplace pressure becomes too large

to grow against. The classic thermodynamics-kinetics v ∝ r−1(1 − r∗/r) trade-off applies

here as well, and the optimal dendrite tip radius would be roptimum = 2r∗.

The same argument may apply to diffusion-limited growth of planar solid-solid interfaces.

Without a large enough dT/dx to stabilize the planar interface (very difficult to achieve

in solids due to the large thermal diffusivity), the planar precipitate-matrix interface will

spontaneously break up into fingers. There is also an optimal wavelength selection for such

fingering, balancing capillary energy with growth kinetic advantage gained by the fingers.

Such diffusional instability and fingering kinetics are generally called the Mullins-Sekerka

instability [79, 80]. The basic reason for such instability is that the β phase needs to eject

solutes, and the quicker the accumulated solutes can diffuse away the faster β can grow.

Therefore the dendrites form and chase after low-concentration but high-supersaturation
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(by low tempertaure) matrix regions, to dispense away the solutes accumulated at the tip.
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Chapter 9

Point defects: Climb, Anelasticity,

Strain aging

Point defects such as vacancies and interstitials affect macroscopic behavior of materials.

This is very clear from radiation damage of materials[81], where high-energy radiation knocks

atoms off their lattice, and create out-of-equilibrium concentrations of vacancies and other

point defect and defect clusters, which in turn causes swelling and embrittlement. Below,

we will outline some other prominent effects caused by the point defects.

Consider a single edge dislocation of Burgers vector b ⊥ ξ, which is embedded in a material

cylinder of radius R. Imagine the half plane of the dislocation extend by ∆h, which requires

∆N = b∆h/Ω atoms to be attached to the dislocation core, translating the local fields (local

dilation, shear, stres, energy density) associated with the dislocation by ∆h. We are going to

assume these atoms attached to the core to be plucked out the perfect lattice, thus creating

∆N vacancies in the lattice. For pedagogical purpose we will take the rigid-framework

assumption for the crystalline site lattice:

V (NA, NV) =
NA +NV

NA

V (NA, 0), (9.1)

which means the formation volume of vacancy is the same as the formation volume of an

atom:

ΩA = ΩV = Ω. (9.2)
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In this case, the cylinder would uniaxially expand with averaged strain

ε =
∆NΩb̂b̂T

Vcylinder

(9.3)

over the entire cylinder, due to the climb (if this is hard to visualize, imagine a rectanglar

block instead of a cylinder). If there is far-field stress on the cylinder, it would do work

∆NΩTr(b̂b̂Tσ) = b∆hTr(b̂b̂Tσ) (9.4)

which agrees with the climb component of the Peach-Koehler force (2.86). This mass action

would also increasing the free energy by ∆NgfV (only vibrational entropy included) and the

configurational entropy by −(∆N)kB lnXV , assuming the ∆N vacancies are sufficiently far

away from the dislocation that the vacancies do not feel the dislocation’s own stress field

(these “thermally emitted vacancies” have “fully escaped” from the dislocation). So when

this process reaches equilibrium, we would have

ΩTr(b̂b̂Tσ) = gfV + kBT lnXV (9.5)

and we get

XV = X0
V exp(ΩTr(b̂b̂Tσ)/kBT ) (9.6)

where X0
V is our usual thermal equilibrium vacancy concentration (say, from the canonical

surface vacancy source) without the dislocation and without the stress.

The above derivation describes a mass action, which can have a reciprocal effect, on the

vacancy concentration, and on the dislocation. (Just like Newton’s 3rd law: for each action,

there is an equal and opposite reaction). The effect on the vacancy concentration is that

near an edge dislocation that is biased by stress, the equilibrium vacancy concentration will

be either elevated (if Tr(b̂b̂Tσ) is tensile), or suppressed (if Tr(b̂b̂Tσ) is compressive). The

dislocation core offers a market to create/annihilate vacancies, just like the surface does. We

note this elevation/suppression effect is independent of the sign of b (whether the half plane

is pointing “up” or “down”), but not the sign of σ, which makes sense. A tensile stress

should create more “atomic-scale porosity”, which are the vacancies.

The effect of the vacancy concentration on the dislocation is that there will be an additional

osmotic force, in addition to the well-known Peach-Koehler force (2.86), if the vacancy

concentration near the dislocation core (but still far enough that the vacancy/dislocation has
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negligble elastic interactions - if truly ΩV = Ω then there will not be any elastic interaction,

that they can be considered separate entities) is different from the (9.6) value. So the force

per unit length of dislocation is

dF

dl
= (b · σ)× ξ +

kBT (ξ × b)

Ω
ln
XV

X0
V

. (9.7)

To see the above vector form, we note that strain×volume created by dislocation translation

δx is (dlξ× δx)bT (a canonical edge dislocation has b̂ = ex, the extra half plane in +ey and

ξ = ez), and so the extra volume created is Tr((dlξ×δx)bT ) = b · (dlξ×δx) = δx · (b×dlξ),

and the number of vacancies emitted by the moving dislocation core is

∆N =
δx · (b× dlξ)

Ω
. (9.8)

To appreciate how large the osmotic force is, we know that

kBTroom

Å
3 = 4.14GPa (9.9)

so with Ω = 11.8Å
3

in Cu, we get

kBTroom

Ω
= 350MPa (9.10)

so with XV
X0
V

= 2, we will need the equivalence of 243 MPa of Peach-Koehler force to balance

the osmotic force that would otherwise drive the edge dislocation “up” in y. So this is not

a small effect.

Friction between two bodies is well known effect, but internal friction within a single solid

body is a little bit less well known, which characterizes how much the solid deviates from

perfect elastic body. Internal friction can be characterized by a torsion balance [82]. This

instrumentation, and the more general machinery of Dynamic Mechanical Analysis (DMA)

spectroscopy, studies small-stress dynamical behavior of materials. Unlike plasticity which

is large-stress nonlinear behavior, the DMA spectroscopy is linear-response but focusing on

frequency space characteristics. Consider the following partition:

ε = εe + εi (9.11)

where εi is the inelastic strain, also called stress-free strain, transformation strain. To appre-
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ciate this concept of transformation strain, consider the state of affairs of carbon interstitials

in α-iron. Without carbon,α-iron would be perfectly cubic. With carbon, it is not necessarily

so. The carbon can sit at edge centers or face centers, which are actually equivalent (octa-

hedral site), so we only need consider edge center. Clearly, if the carbon is on [100]-bond,

there will be uniaxial dilation in x. The only reason that ferrite (with carbon) is still cubic

is because the three populations of carbon interstials have equal concentration:

cxC = cyC = czC (9.12)

However, if somehow we can accomplish a population bias, then that configuration will no

longer be cubic, and will have a transformation strain with respect to the cubic state. We

can model this transformation strain as

εi = a


cxC −

cxC+cyC+czC
3

0 0

0 cyC −
cxC+cyC+czC

3
0

0 0 czC −
cxC+cyC+czC

3

+ b(cxC + cyC + czC)I (9.13)

the second term above is irrelevant in the present discussion, because we presume the total

carbon concentration in DMA experiment is unchanged.

To develop a model for torsion balance, we note that the amount of torsion θ ∝ ε, and

to achieve apparent acceleration θ̈ requires force ∝ mθ̈ ∝ σ = Gεe, where G is the shear

modulus, so the basic kinematic equation is

ε̈ = kGεe = ε̈e + ε̈i (9.14)

where k depends on the geometry. In above, the only question is how ε̈i depends on Gεe. If

we assume that

ε̇i =
G

ν
εe (9.15)

where ν is an apparent “viscosity” that relates the inelastic strain rate with
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Appendix A

Review of Bulk Thermodynamics

Equilibrium: given the constraints, the condition of the system that will eventually be

approached if one waits long enough.

Example: gas-in-box. Box is the constraint (volume, heat: isothermal/adiabatic, permeable/non-

permeable). One initialize the atoms any way one likes, for example all to the left half side,

and suddenly remove the partition: BANG! one gets a non-equilibrium state. But after a

while, everything settles down.

Atoms in solids, liquids or gases at equilibrium satisfy Maxwellian velocity distribution:

dP ∝ exp

(
−m(vx − v̄x)2

2kBT

)
dvx, 〈v2

x〉 =
kBT

m
. (A.1)

kB = 1.38× 10−23 J/K is the Boltzmann constant, it is the gas constant divided by 6.022×
1023. If I give you a material at equilibrium without telling you the temperature, you could

use the above relation to measure the temperature.

But in high-energy Tokamak plasma, or dilute interstellar gas, the velocity distribution could

be non-Gaussian, bimodal for example. Then T is ill-defined. Since entropy is conjugate

variable to T , entropy is also ill-defined for such far-from-equilibrium states.

Equilibrium is however yet a bit more subtle: it is possible to reach equilibrium among a

subset of the degrees of freedom (all atoms in a shot) or subsystem, while this subsystem is

not in equilibrium with the rest of the system.
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This is why engineering and material thermodynamics is useful for cars and airplanes. Imag-

ine a car going 80 mph on highway: the car is not in equilibrium with the road, the axel

is not in equilibrium with the body, the piston is not in equilibrium with the engine block.

Yet, most often, we can define temperature (local temperature) for rubber in the tire, steel

in the piston, hydrogen in the fuel tank, and apply equilibrium materials thermodynamics

to analyze these components individually.

This is because of separation of timescales. The atoms in condensed phases collide

much more frequently (1012/second) than car components collide with each other. Thus,

it is possible for atoms to reach equilibrium with adjacent atoms, before components reach

equilibrium with each other.

Define “Type A non-equilibrium”, or “local equilibrium”: atoms reach equilibrium with

each other within each representative volume element (RVE); the RVE may not be in

equilibrium with other RVEs.

For “Type A non-equilibrium”, we can define local temperature: T (x), and local entropy.

In this course, we will be mainly investigating “Type A non-equilibrium”, and study how the

RVEs reach equilibrium with each other across large distances compared to RVE size. Type

B non-equilibrium, such as in Tokamak plasma, or radiation knockout in radiation damage,

can be of interest, but is not the main focus of this course.

Consider a binary solid solution composed of two types of atoms, N1, N2 in absolute numbers

(we prefer to use absolute number of atoms instead of moles in this class). Helmholtz free

energy F ≡ E − TS = F (T, V,N1, N2): dF = dE − TdS − SdT is a complete differential.

For closed system dN1 = dN2 = 0, the first law says dE = δQ − PdV , where PdV is work

(coherent energy transfer) and δQ is heat (incoherent energy transfer via random noise).

For open system, dE = δQ− PdV needs to be modified as

dE = δQ− PdV + µ1dN1 + µ2dN2 (A.2)

µ1, µ2 are the chemical potentials of type-1 and type-2 atoms, respectively. To motivate

the additional terms µ1dN1 +µ2dN2 for open systems, consider a process of atom attachment

at P = 0, T = 0. And for simplicity assume for a moment N2 = 0 (just type-1 atoms).

In this case, before and after attaching an additional atom, kinetic energies K are zero.

E = U + K = U(x1,x2, ...,x3N1). U(x1,x2, ...,x3N1) is called the interatomic potential
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function, a function of 3N1 arguments. For some materials, such as rare-gas solids, it is

a good approximation to expand U(x1,x2, ...,x3N1) ≈
∑
i<j uij(|xj − xi|), where i, j label

the atoms and run from 1..N1, and uij(r) is called the pair potential (energy=0 reference

state is an isolated atom infinitely far away). Clearly then, E will change, since there is

one more atom in the sum, within interaction range from the previous set of atoms. Since

P = 0, PdV = 0. In order to maintain T = 0, δQ = 0. To do this there must be an

“intelligent magic hand” to drag on the atom to have a “soft landing”. The energy input by

the “intelligent magic hand” is coherent energy transfer, δQ = 0 (if not convinced, consider

a layer of atoms adding on top of solid by a “forklift” - the added layer will move like a

piston - no heat is needed). Also, the “intelligent magic hand” or “forklift” accomplishes

so-called “mass action” (addition or removal of atoms), and is different from traditional PdV

work, which describes a process of changing volume without changing the number of atoms.

And thus µ1 is motivated. In fact, from this microscopic idea experiment we have derived

µ1(T = 0, P = 0) =
∑
j uij(|xj − xi|)/2 when xj runs over lattice sites.

A well-known pair potential is the Lennard-Jones potential:

uij(r) = 4εij

[(
σij
r

)12

−
(
σij
r

)6
]
, (A.3)

which achieves minimum potential energy −εij when r = 21/6σij = 1.122σij. For an atom

inside a perfect crystal lattice, its number of nearest neighbors (aka coordination number) is

denoted by Z. For instance, in BCC lattice Z = 8, in FCC lattice Z = 12. To further simplify

the discussion, we can assume the pair interaction occurs only between nearest-neighbor

atoms, and the Lennard-Jones potential is approximated by expansion uij(r) = −εij +

kij(r− 21/6σij)
2/2 (perform a Taylor expansion on Lennard-Jones potential and truncate at

u = 0).

The simplest model for a crystal is a simple cubic crystal with nearest neighbor springs

uij(r) = −εij + kij(r− a0)2/2 (Kossel crystal), where a0 is the lattice constant of this simple

cubic crystal. With Z nearest neighbors (Z = 4 in 2D and 6 in 3D), µ(T = 0, P = 0) =

−Zε/2.

From dimensional argument, we see µ is some kind of energy per atom, thus on the order of

minus a few eV (eV=1.602 × 10−19J), in reference to isolated atom. To compare, at room

temperature, thermal fluctuation on average gives kBTroom = 4.14 × 10−21J ≈ 0.0259 eV =

eV/40 per degree of freedom.
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Second law says TdS = δQ when comparing two adjacent equilibrium states (integral form

is S2 − S1 =
∫

any quasi−static path connecting 1−2 δQ/T ). Thus

dF (T, V,N1, N2) = −PdV − SdT + µ1dN1 + µ2dN2 (A.4)

We thus have:

P = −∂F
∂V

∣∣∣∣∣
T,N1,N2

, S = −∂F
∂T

∣∣∣∣∣
V,N1,N2

, µ1 =
∂F

∂N1

∣∣∣∣∣
T,V,N2

, µ2 =
∂F

∂N2

∣∣∣∣∣
T,V,N1

. (A.5)

(T, V,N1, N2) describes the outer characteristics of (or outer constraints on) the system, and

(A.4) describes how F would change when these outer constraints are changed, and could

go up or down. But there are also inner degrees of freedom inside the system (for example,

precipitate/matrix microstructure, which you cannot see or fix from the outside, and can

only observe when you open up the material and take to a TEM). When the inner degrees

of freedom change under fixed (T, V,N1, N2), the 2nd law states that F must decrease with

time.

From theory of statistical mechanics it is convenient to start from F , since there is a direct

microscopic expression for F , F = −kBT lnZ, where Z is so-called partition function [83,

84]. Plugging into (A.5), one then obtains direct microscopic expressions for P , the so-called

internal pressure (or its generalization in 6-dimensional strain space, the stress tensor σ, in

so-called Virial formula), as well as S, µ1, µ2. This then allows atomistic simulation people to

calculate so-called equation-of-state P (T, V,N1, N2) and thermochemistry µi(T, V,N1, N2), if

only the correct interatomic potential U(x3(N1+N2)) is provided. The so-called first-principles

CALPHAD (CALculation of PHAse Diagrams) [85] is based on this approach, and is now a

major source of phase diagram and thermochemistry information for alloy designers (metal

hydrides for hydrogen storage, battery electrodes where you need to put in and pull out

lithium ions, and catalysts). Since atomistic simulation can access metastable states and

even saddle-points, there is also first-principles calculations of mobilities, such as diffusivities,

interfacial mobilities, chemical reaction activation energies, etc. So F is important quantity

computationally.

For experimentalist, however, most experiments are done under constant external pressure

instead of constant volume (imagine melting of ice cube on the table, there is a natu-

ral tendency for volume change, illustrating the concept of transformation volume). For

discussing phase change under constant external pressure, we define Gibbs free energy
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G ≡ F + PV = E − TS + PV . The full differential of G is

dG = V dP − SdT + µ1dN1 + µ2dN2 (A.6)

so

V =
∂G

∂P

∣∣∣∣∣
T,N1,N2

, S = −∂G
∂T

∣∣∣∣∣
P,N1,N2

, µ1 =
∂G

∂N1

∣∣∣∣∣
T,P,N2

, µ2 =
∂G

∂N2

∣∣∣∣∣
T,P,N1

. (A.7)

The above describes how a homogeneous material’s G would change when its T, P,N1, N2

are changed, which could go up or down. If the system has internal inhomogeneities that

are evolving under constant T, P,N1, N2, however, then G must decrease with time. Internal

microstructural changes under constant T, P,N1, N2 that increase G are forbidden.

Also,

d(E + PV ) = δQ+ V dP + µ1dN1 + µ2dN1 (A.8)

so if a closed system is under constant pressure, the heat it absorbs is the change in the

enthalpy H ≡ E + PV = G + TS. H is also related to G through the so-called Gibbs-

Helmholtz relation:

H =
∂(G/T )

∂(1/T )

∣∣∣∣∣
N1,N2,P

. (A.9)

Putting ∆ before both sides of (A.9), the heat of transformation ∆H is related to the free-

energy driving force of transformation as

∆H =
∂(∆G/T )

∂(1/T )

∣∣∣∣∣
N1,N2,P

. (A.10)

Now we formally introduce the concept of thermodynamic driving force for phase transfor-

mation. Consider two possible phases φ = α, β that the system could be in. Both phases

have the same numbers of atoms N1, N2, the same T and P . Consider pressure-driven phase

transformation, dGα = V αdP , dGβ = V βdP . Suppose V α > V β, when we plot Gα and Gβ

graphically on the same plot, we see that at low pressure, the high-volume phase α may win;

but at high pressure, the low-volume (denser phase) β will win. As a general rule, when P

is increased keeping T fixed, the denser phase will win. So liquid phase will win over gas,

and typically solid phase will win over liquid. Consider for example Fig. A.1(a). Density

ranking: ε > γ > α. For fixed T,N1, N2, there exists an equilibrium pressure Peq where the
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Phase Diagram of H2O
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Figure A.1: (a) Figure 1.5 of Porter & Easterling [47]. (b) Phase diagram of pure H2O:
the solid-liquid boundary has negative dP/dT , which is an anomaly, because ice has larger
volume than liquid water.

Gibbs free energy curves cross, at which

Gα(Peq, T,N1, N2) = Gβ(Peq, T,N1, N2). (A.11)

At P > Peq, the driving force for α → β is ∆G ≈ (V α − V β)(P − Peq). Vice versa, at

P < Peq, the driving force for β → α is ∆G ≈ (V α− V β)(Peq−P ) (by convention, we make

the driving force positive). P−Peq (Peq−P ) may be called the overpressure (underpressure),

respectively.

We could also have temperature-driven transformation, keeping pressure fixed: dGα =

−SαdT , dGβ = −SβdT . So G vs T is a downward curve. The question is which phase

is going down faster, Gα or Gβ. The answer is that the state that is more disordered (larger

S) will go down faster with T ↑. So at some high enough T there will be a crossing. Liquid

is going down faster than solid, gas is going down faster than liquid, with T ↑ holding P

constant. For a fixed pressure, there exists an equilibrium temperature Teq where the Gibbs

free energy curves cross, at which

Gα(P, Teq, N1, N2) = Gβ(P, Teq, N1, N2). (A.12)

Consider for example solid↔liquid transformation. In this case, Teq = TM(P ), the equilib-

rium bulk melting point. α=liquid, β=solid, Sα > Sβ. At T > Teq, the more disordered
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phase is favored, and the driving force for β → α transformation, which is melting, is

∆G ≈ (Sα − Sβ)(T − TM). Vice versa at T < Teq, the more ordered phase is favored, which

is solidification, and the driving force for α → β is ∆G ≈ (Sα − Sβ)(TM − T ). Because we

are doing first-order expansion, it is OK to take Sα−Sβ to be the value at TM. However, at

TM we have Eα + PV α − TMS
α = Hα − TMS

α = Hβ − TMS
β = Eβ + PV β − TMS

β, we have

Sα − Sβ = (Hα −Hβ)/TM. Hα −Hβ is in fact the heat released during phase change under

constant pressure, and is called the latent heat L. So we have

∆G ≈ L

TM

|TM − T |. (A.13)

|TM − T | is called undercooling / superheating for solidification / melting. We see that the

thermodynamic driving force for phase change is proportional to the amount of undercooling

/ superheating (in Kelvin), with proportionality factor L
TM

= ∆S. Later we will see later

why a finite thermodynamic driving force is needed, in order to observe phase change within

a finite amount of time. (If you are extremely leisurely and have infinite amount of time,

you can observe phase change right at Teq).

solid/liquid: melting, freezing or solidification. liquid/vapor: vaporization, condensation.

solid/vapor: sublimation, deposition. At low enough pressure, the gas phase is going to

come down in free energy significantly, that the solid goes directly to gas, without going

through the liquid phase.

Thus, typically, high pressure / low temperature stabilizes solid phase, low pressure / high

temperature stabilizes gas phase. The tradeoff relation can be described by the Clausius-

Clapeyron relation for polymorphic phase transformation (single-component) in T − P

plane. The question we ask is that suppose you are already sitting on a particular (T, P )

point that reaches perfect equilibrium between α, β,

Gα(N1, N2, T, P ) = Gβ(N1, N2, T, P ) (A.14)

in which direction on the (T, P ) plane should one go, (T, P )→ (T+dT, P+dP ), to maintain

that equilibrium, i.e.:

Gα(N1, N2, T + dT, P + dP ) = Gβ(N1, N2, T + dT, P + dP ) (A.15)

Gα(N1, N2, T, P )− SαdT + V αdP = Gβ(N1, N2, T, P )− SβdT + V βdP. (A.16)
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So:

−SαdT + V αdP = −SβdT + V βdP. (A.17)

and the direction is given by

dP

dT
=

Sα − Sβ

V α − V β
=

L

T (V α − V β)
. (A.18)

The above equation keeps one “on track” on the T − P phase diagram. It’s like in pitch

darkness, if you happen to stumble upon a rail, you can follow the rail to map out the whole

US railroad system. The Clausius-Clapeyron relation tells you how to follow that rail. L is

called “latent heat”. V α − V β is the volume of melting/vaporization/sublimation, you may

call it the “latent volume”.

In above we have only considered the scenario of so-called congruent transformation α↔ β,

where α and β are single phases with the same composition. We have not considered the

possibility of for example α ↔ β + γ, where γ has different composition or even structure

from β. To understand the driving force for such transformations which are indeed possible

in binary solutions, we need to further develop the language of chemical potential.

The total number of particles is N ≡ N1 + N2. Define mole fractions X1 ≡ N1/N , X2 ≡
N2/N . Since there is always X1 + X2 = 1, we cannot regard X1 and X2 as independent

variables. Usually by convention one takes X2 to be the independent variable, so-called

composition. Composition is dimensionless, but it could be a multi-dimensional vector if

the number of species C > 2. For instance, in a ternary solution, C = 3, and composition

is a 2-dimensional vector X ≡ [X2, X3]. Composition can spatially vary in inhomogeneous

systems, for instance in an inhomogeneous binary solution, X2 = X2(x, t). In order for

α↔ β+γ to happen kinetically, for instance changing from X2(x) = 0.3 uniformly (initially

α phase) to some region with X2(x) = 0.5 (in β phase, “solute sink”) and some region with

X2(x) = 0.1 (in γ phase, ‘solute source”). This requires would require long-range diffusion

of type-2 solutes over distances on the order of the sizescale of the inhomogeneities, which

is called solute partitioning.

We can define the particle average Gibbs free energy to be g ≡ G/N = G(T, P,N1, N2)/(N1 +

N2). Like the chemical potentials, g will be minus a few eV in reference to isolated atoms

ensemble. It can be rigorously proven, but is indeed quite intuitively obvious, that g =

g(X2, T, P ), which is to say the particle average Gibbs free energy depends on chemistry

but not quantity (think of (N1, N2) ↔ (N,X2) as a variable transform that decomposes

149



dependent variables into quantity and chemistry). It is customary to plot g versus X2 at

constant T, P . It can be mathematically proven that µ1, µ2 are the tangent extrapolations

of g(X2) to X2 = 0 and X2 = 1, respectively. Algebraically this means

µ1(X2, T, P ) = g(X2, T, P ) +
∂g

∂X2

∣∣∣∣∣
T,P

(0−X2)

µ2(X2, T, P ) = g(X2, T, P ) +
∂g

∂X2

∣∣∣∣∣
T,P

(1−X2). (A.19)

It is also clear from the above that g(X2, T, P ) = X1µ1 +X2µ2, so

G(T, P,N1, N2) = N1µ1 +N1µ2 = N1
∂G

∂N1

∣∣∣∣∣
T,P,N2

+N2
∂G

∂N2

∣∣∣∣∣
T,P,N1

(A.20)

On first look, the above seems to imply that particle 1 and particle 2 do not interact. But

this is very far from true! In fact, µ1 = µ1(X2, T, P ), µ2 = µ2(X2, T, P ).

For pure systems: X2 = 0, g(X2 = 0, T, P ) = µ1(X2 = 0, T, P ) ≡ µ̃1(T, P ); or X2 = 1,

g(X2 = 1, T, P ) = µ2(X2 = 1, T, P ) ≡ µ̃2(T, P ). µ̃1(T, P ), µ̃2(T, P ) are called Raoultian

reference-state chemical potentials (they are not the isolated-atoms-in-vaccuum reference

states, but already as interacting-atoms). In this class we take the µ̃1, µ̃2 reference states to

the same structure as the solution, but in pure compositions (so-called Raoultian reference

states).

When plotted graphically, it is seen that g(X2) is typically convex up with µ1(X2, T, P ) <

µ̃1(T, P ) and µ2(X2, T, P ) < µ̃2(T, P ) (if not, what would happen?) This negative difference

is defined as the mixing chemical potential

µmix
i ≡ µi(X2, T, P )− µ̃i(T, P ), i = 1, 2 (A.21)

and mixing free energy

gmix ≡ X1µ
mix
1 +X2µ

mix
2 = g −X1µ̃1(T, P )−X2µ̃2(T, P ), Gmix = Ngmix (A.22)

respectively. Clearly, by definition, Gmix = 0 at pure competitions. gmix(X2, T, P ) can be

interpreted as the driving force to react pure 1 and pure 2 of the same structure as the

solution to obtain a solution of non-pure composition, per particle in the mixed solution.

∆G = −Ngmix(X2, T, P ) is in fact the chemical driving force to make a solution by mixing
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pure constituents.

It turns out there exists “partial” version of the full differential (A.6):

dg(X2, T, P ) = vdP − sdT +
∂g

∂X2

∣∣∣∣∣
T,P

dX2 (A.23)

dµi(X2, T, P ) = vidP − sidT +
∂µi
∂X2

∣∣∣∣∣
T,P

dX2 (A.24)

where

v1 ≡
∂V

∂N1

∣∣∣∣∣
T,P,N2

, v2 ≡
∂V

∂N2

∣∣∣∣∣
T,P,N1

, s1 ≡
∂S

∂N1

∣∣∣∣∣
T,P,N2

, s2 ≡
∂S

∂N2

∣∣∣∣∣
T,P,N1

,

e1 ≡
∂E

∂N1

∣∣∣∣∣
T,P,N2

, e2 ≡
∂E

∂N2

∣∣∣∣∣
T,P,N1

, h1 ≡
∂H

∂N1

∣∣∣∣∣
T,P,N2

, h2 ≡
∂H

∂N2

∣∣∣∣∣
T,P,N1

, ... (A.25)

Generally speaking, for arbitrary extensive quantity A (volume, energy, entropy, enthalpy,

Helmholtz free energy, Gibbs free energy), “particle partial A” is defined as:

ai ≡
∂A

∂Ni

∣∣∣∣∣
Nj 6=i,T,P

. (A.26)

The meaning of ai is the increase in energy, enthalpy, volume, entropy, etc. when an ad-

ditional type-i atom is added into the system, keeping the temperature and pressure fixed.

The particle-average a is simply

a ≡ A

N
=

C∑
i=1

Xiai. (A.27)

For instance, the particle average volume and particle average entropy

v ≡ V

N
= X1v1 +X2v2, s ≡ S

N
= X1s1 +X2s2, (A.28)

is simply the composition-weighted sum of particle partial volumes and partial entropies

of different-species atoms, respectively. While (A.27) relates all ai(X2, ..., XC , T, P )s to

a(X2, ..., XC , T, P ), it is also possible to obtain individual ai(X2, ..., XC , T, P ) from a(X2, ..., XC , T, P )
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by the tangent extrapolation formula:

ai(X2, ..., XC , T, P ) = a(X2, ..., XC , T, P ) +
C∑
k=2

(δik −Xk)
∂a(X2, ..., XC , T, P )

∂Xk

, (A.29)

where δik is the Kronecker delta: δik = 1 if i = k, and δik = 0 if i 6= k. Note in (A.29),

although the k-sum runs from 2 to C, i can take values 1 to C. (A.19) is a special case of

(A.29): for historical reason the particle partial Gibbs free energy is denoted by µi instead

of gi.

The so-called Gibbs-Duhem relation imposes constraint on the partial quantities when com-

position is varied while holding T, P fixed:

0 =
C∑
i=1

Xidai|T,P , (A.30)

For binary solution, this means

0 = X1dµ1|T,P +X2dµ2|T,P = X1dv1|T,P +X2dv2|T,P = X1ds1|T,P +X2ds2|T,P = ... (A.31)

The above can be proven, but we will not do it here.

The above is the general solution thermodynamics framework. To proceed further, we need

some detailed models of how g depends on X2. In so-called ideal solution:

µideal−mix
1 (X2, T, P ) = kBT lnX1, µideal−mix

2 (X2, T, P ) = kBT lnX2. (A.32)

And so

gideal−mix(X2, T, P ) ≡ kBT (X1 lnX1 +X2 lnX2), (A.33)

which is a symmetric function that is always negative (that is to say it always prefer mixing),

with −∞ slope on both sides. Ideal solution is realized nearly exactly in isotopic solutions

such as 235U - 238U. In such case, there is no chemical difference between the two species

(εAA = εBB = εAB), so the enthalpy of mixing is zero. The driving force for mixing is

entirely entropic in origin, because there would be many ways to arrange 235U and 238U

atoms on a lattice, whereas there is just one in pure 235U or pure 238U crystal (235U atoms

are indistinguishable among themselves, and so are 238U atoms). This can be verified from

the formula smix = −∂gmix/∂T , hmix = ∂(gmix/T )/∂(1/T ).
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We define excess as difference between the actual mix and the ideal-mix functions:

gexcess ≡ gmix(X2, T, P )− gideal−mix(X2, T, P ), µexcess
i ≡ µmix

i − kBT lnXi. (A.34)

Clearly, excess quantities for ideal solution is zero.

In so-called regular solution model,

gexcess(X2, T, P ) = ωX1X2, (A.35)

where ω is X2,T ,P independent constant. Using (A.19), we get

µexcess
1 = ωX2

2 , µexcess
2 = ωX2

1 . (A.36)

And so

µ1(X2) = µ̃1 + kBT lnX1 + ωX2
2 , µ2(X2) = µ̃2 + kBT lnX2 + ωX2

1 . (A.37)

It is also customary to define activity coefficient γi, so that

µi(X2, T ) ≡ µ̃i(T ) + kBT ln γiXi. (A.38)

Contrasting with (A.37), we see that in the regular solution model, the activity coefficients

are γ2(X2, T ) = eωX
2
1/kBT , γ1(X2, T ) = eωX

2
2/kBT .

When ω < 0, the driving force for mixing is greater than in ideal solution. When one uses

the formula s = −∂g/∂T , h = ∂(g/T )/∂(1/T ), we can see that the ideal-mixing contribution

is entirely entropic, whereas the excess contribution is entirely enthalpic if ω is independent

of temperature. In fact, it can be shown from statistical mechanics that

ω = Z ((εAA + εBB)/2− εAB) , (A.39)

where εAB is the Kossel spring binding energy between A-B (“heteropolar bond”), and εAA

and εBB are the Kossel spring binding energy between A-A and B-B (homopolar bonds).

Derivation of the regular solution model (this has been shown in MSE530 Thermody-

namics of Materials): arrange XAN A atoms and XBN B atoms on a lattice. The number
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of choices:

Ω =
N !

(XAN)!(XBN !)
(A.40)

Assume all these choices (microstates) have the same enthalpy:

H = −Z(XAN(XBεAB +XAεAA) +XBN(XBεBB +XAεAB))/2

= −NZ(2XAXBεAB +X2
AεAA +X2

BεBB)/2 (A.41)

in contrast to reference state of pure A and pure B

Href = −NZ(XAεAA +XBεBB)/2 (A.42)

so the excess is:

Hexcess = −NZ(2XAXBεAB +X2
AεAA −XAεAA +X2

BεBB −XBεBB)/2

= −NZ(2XAXBεAB −XAXBεAA −XBXAεBB)/2

= NZXAXB ((εAA + εBB)/2− εAB) = NωXAXB. (A.43)

According to the Boltzmann formula S = kB ln Ω, the entropy is

S = kB ln
N !

(XAN)!(XBN !)
≈ kB(N lnN −XAN lnXAN −XBN lnXBN)

= −NkB(XA lnXA +XB lnXB), (A.44)

using the Stirling formula: lnN ! ≈ N lnN − N for large N . S is the same as that in ideal

solution, because the regular solution model takes the “mean-field” view that all possible

configurations are iso-energetic. The regular solution model in the form of (A.35) is a well-

posed model with algebraic simplicity, but it may not reflect reality very well.

For positive ω, spinodal decomposition will happen below a critical temperature TC: a

random 50%-50% A-B solution α would separate into A-rich solution α1 and B-rich solution

α2 - see plots of g(X2, T ) at different T . We have studied this model in detail in MSE530.

For negative ω, although nothing will happen as seen from the regular solution model, in

reality order-disorder transition will happen below a critical temperature TC, where the

A-B solution starts to posses chemical long-range order (CLRO). A good example is β-

brass, a Cu-Zn alloy in BCC structure (Z = 8). See Chap. 17 of [41]. Cu and Zn atoms like

each other energetically, more than Cu-Cu, and Zn-Zn. Suppose XZn = 0.5, at T = 0, what
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would be the optimal microscopic configuration? Since F = E−TS, at T = 0 minimization

of F is the same as minimization of E = U , the system will try to maximize the number of Cu-

Zn bonds. Indeed, so-called long-range chemical order, that is, Cu occupying one sub-lattice

(’) and Zn occupying another sub-lattice (”), or Cu occupying sub-lattice ” and Zn occupying

sub-lattice ’ would give the maximum number of Cu-Zn bonds. The regular solution model

did not distinguish between the two sub-lattices, statistically speaking. In order to be able

to distinguish, let us define sub-lattice compositions X ′A + X ′B = 1, X ′′A + X ′′B = 1. Clearly

the overall composition

XA =
1

2
(X ′A +X ′′A), XB =

1

2
(X ′B +X ′′B). (A.45)

By defining sub-lattice compositions, we have effectively added one more “coarse” degree of

freedom to describe our alloy, the so-called η order parameter:

η ≡ 1

2
(X ′′B −X ′B). (A.46)

Cu50Zn50 taking the CsCl structure at T = 0 would have η = 0.5 or η = −0.5. Previously, the

regular solution model constrains η = 0 (because it does not entertain an η order parameter).

Now, with η, we would have

X ′′B = XB + η, X ′B = XB − η, X ′′A = 1−XB − η, X ′A = 1−XB + η. (A.47)

Still under the mean-field approximation (so called Bragg-Williams approach [86, 87] in

alloy thermochemistry), as the regular solution model, we can estimate the proportion of

A(’)-A(”) bonds:

pAA = X ′′AX
′
A = (1−XB − η)(1−XB + η), (A.48)

the proportion of B(’)-B(”) bonds:

pBB = X ′′BX
′
B = (XB + η)(XB − η), (A.49)

the proportion of A(’)-B(”) bonds:

pAB = X ′AX
′′
B = (1−XB + η)(XB + η), (A.50)
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the proportion of A(”)-B(’) bonds:

pBA = X ′BX
′′
A = (XB − η)(1−XB − η) (A.51)

among all the nearest-neighbor bonds in the alloy. Clearly, the above Bragg-Williams esti-

mation satisfies the sum rule constraint:

pAA + pBB + pAB + pBA = 1. (A.52)

The particle-average energy is thus just

h = −Z
2

(pAAεAA + pBBεBB + (pAB + pBA)εAB) (A.53)

From derivations of the regular solution model and discussions in the last semester, we

see that if we chose our reference state appropriately, then we can say εAA = 0, εBB = 0,

εAB = −ω/Z, to simplify the algebra:

h(XB, η) = ω(XAXB + η2). (A.54)

which we see is the same as the regular solution model if η = 0. The physics of the above

expression is that, if with CLRO and solute partitioning onto the two sub-lattices, one can

increase the number of A-B bonds from XAXB to XAXB + η2.

The entropy is just the sum of the entropies of the two sub-lattices (in other words, the total

number of possible microstates is the product of the numbers of microstates on ’ sublattice

and that on ” sublattice). Therefore:

s(XB, η) = −kB

2
(X ′A lnX ′A +X ′B lnX ′B +X ′′A lnX ′′A +X ′′B lnX ′′B). (A.55)

The free energy (of mixing) per particle is thus

g(XB, η) = ω(XAXB + η2) +
kBT

2
(X ′A lnX ′A +X ′B lnX ′B +X ′′A lnX ′′A +X ′′B lnX ′′B) (A.56)

with
∂g

∂η
= 2ωη +

kBT

2

(
− ln

X ′B
X ′A

+ ln
X ′′B
X ′′A

)
, (A.57)
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∂2g

∂η2
= 2ω +

kBT

2

(
1

X ′BX
′
A

+
1

X ′′BX
′′
A

)
. (A.58)

In a real material, both XB and η are fields: g(XB(x, t), η(x, t)). However, we note there is

a fundamental difference between XB and η. XB(x, t) is conserved:∫
dxXB(x, t) = const (A.59)

if integration is carried out in the entire space. Thus, when optimizing

G =
1

Ω

∫
dxg(XB(x), η(x)) (A.60)

we can not do an unconstrained optimization on g(XB): there has to be a Lagrange mul-

tiplier (the chemical potential) on the total free energy minimization. On the other hand,

there is no such constraint on η: we can do an unconstrained optimization with respect to η

(and indeed that is what Nature does). More involved discussions [41] show that XB is so-

called conserved order parameter, and evolve according to the so-called Cahn-Hilliard

evolution equation [88] (basically diffusion equation), whereas non-conserved order pa-

rameter like the CLRO evolve according to the so-called Allen-Cahn equation [89], in the

linear response regime.

For a given T,XB, we thus have

g(XB) = min
η
g(XB, η) (A.61)

at thermodynamic equilibrium. So:

ln
(XB − η)(1−XB − η)

(XB + η)(1−XB + η)
=

4ωη

kBT
(A.62)

We note that η = 0 is always a solution to above, i.e. it is always a stationary point in the

variational problem. But is η = 0 a minimum or a maximum? From (A.58) we note that at

high enough T , η = 0 would always be a free energy minimum. But as T cools down, at

TC(XB) =
−2ωXB(1−XB)

kB

(A.63)

g(XB, η) would lose stability with respect to η at η = 0, in a manner of 2nd order phase trans-

formation (for example, magnetization at Curie temperature). This is called order-disorder

157



transformation, where chemical long-range order emerges at a low enough temperature. In

particular, the highest temperature where chemical order may emerge is at XB = 0.5, where

the enthalpic driving force for two sub-lattice partition is especially strong:

T ∗C = − ω

2kB

. (A.64)

We also note that T ∗C exists only for ω < 0. If ω > 0, ∂2g
∂η2

> 0 always and η = 0 stays stable

global minimum. Thus the Bragg-Williams model is the same as the regular solution model

for ω > 0. The Bragg-Williams model gives only different results from the regular solution

model for ω < 0, and in that case for

T < TC(XB) = 4T ∗CXB(1−XB) (A.65)

only. At T < TC(XB), we have the CLRO at equilibrium:

ln
(XB + η)(1−XB + η)

(XB − η)(1−XB − η)
=

8ηT ∗C
T

, (A.66)

from which we can solve for η.

The above is called the Bragg-Williams approach, which is at the same level of theory (mean-

field approximation) as the regular solution model, and only gives different results (η 6= 0)

if ω < 0 and T < TC. There are certain solid-state chemistries where ω is very negative,

in which case CLRO is close to the maximum possible value for a large temperature range.

These are so-called line compounds (because off-stoichiometry solubility range is so low,

these phases appear as lines in T − X2 phase diagrams) or ordered phases, with formulas

like AmBn where m and n are integers. Many crystalline ceramics (oxides, nitrides, carbides

etc.) are line compounds, as the solubility range is typically very narrow besides the ideal

stoichiometry. In metallic alloys, these would be called intermetallics compound phases.

These phases are typically very strong mechanically (stability due to very negative ω), and

are used as strengthening phases (precipitates) to impede dislocation motion. There are

special symbols to denote these phases with long-range chemical order, such as L20 (bcc

based), L12 (fcc based), L10 (fcc based), D03, D019, Laves phases, etc.

There is still a higher-level of theory called the quasi-chemical approximation [90, 91],

originating from a series of approximations by Edward A. Guggenheim [83]. It proposes the

concept of chemical short-range order (CSRO): even in so-called random solid solution

(ω > 0, or ω < 0 but T > TC) which has no long-range chemical order, η = 0, the atomic
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arrangements may not be random as in the mean-field sense, and manifest “correlations”. For

example, a pair “correlation” means the probability of finding a particular kind of A-B bond

is larger than the product of average probabilities of finding A in a particular sublattice and

B in another sublattice. Beyond pair correlations, there are also triplet correlations, quartet

correlations, ..., in a so-called cluster expansion approach [85], each addressing an excess

probability beyond the last level of theory. Specifically, in the quasi-chemical approximation

one uses the pair probabilities pAA, pBB, pAB, pBA as coarse degrees of freedom. These are

valid order parameters, because at least in principle one could count the fraction of A(’)-

A(”), B(’)-B(”), A(’)-B(”), A(”)-B(’) bonds in a given RVE. These coarse-grained statistical

descriptors will take certain values, and one can formulate a variational problem based on

them.

pAA, pBB, pAB, pBA must satisfy sum rule (A.52). Therefore, in addition to XB, η, the

quasi-chemical approximation introduces three more degrees of freedom. In systems where

CLRO vanish, there is no statistical distinction between the two sub-lattices, so pAB = pBA,

in which case only two additional degrees of freedom from the quasi-chemical approach. The

quasi-chemical free energy reads:

g(XB, η, pAB, pBA, pBB) =
ω(pAB + pBA)

2
+

kBT

2
(X ′A lnX ′A +X ′B lnX ′B +X ′′A lnX ′′A +X ′′B lnX ′′B) +

ZkBT

2
(pBB ln

pBB

X ′BX
′′
B

+ pAB ln
pAB

X ′AX
′′
B

+ pBA ln
pBA

X ′BX
′′
A

+

(1− pBB − pAB − pBA) ln
1− pBB − pAB − pBA

X ′AX
′′
A

) (A.67)

with sub-lattice compositions X ′A, X ′′A, X ′B, X ′′B taken from (A.47) The actual chemical free

energy at local equilibrium is

g(XB) = min
η,pAB,pBA,pBB

g(XB, η, pAB, pBA, pBB) (A.68)

As a general remark, a compound phase would tend to manifest as sharp “needle” in g(XB),

which means small deviation from the ideal stoichiometry AmBn would cause large “pain”

or increase in g(XB), since A-A and B-B bonds must be formed (due to the host lattice

structure) which are much more energetically costly than A-B bonds.

Both spinodal decomposition and order-disorder transformation are 2nd-order phase trans-
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formations, defined by a vanishingly small jump in the order parameter, as one crosses the

transition temperature TC. In contrast, 1st-order phase transition are characterized by a

finite jump in order parameter. For instance, in melting, we can use the local density as

order parameter to distinguish between liquid and solid, or some feature of the selected area

electron diffraction (SAED) pattern. In either case, before and after melting, there is a finite

jump in this order parameter field (ρ(x, T−melt) = ρs but ρ(x, T+
melt) = ρl for some x). Thus,

melting is a 1st-order phase transitions. Also, consider an eutectic decomposition reaction:

l→ α+β, defined by (TE, X lE
2 , X

αE
2 , XβE

2 ). If one uses the local composition as the order pa-

rameter: then there is also a finite change (X2(x, TE+) = X lE
2 but X2(x, TE−) = XαE

2 or XβE
2 ,

for some x). In contrast, in the case of ω > 0 and spinodal decomposition α→ α1 +α2 which

is 2nd-order phase transformations, Xα2
2 −Xα1

2 ∝
√
TC − T . Whereas X2(x, T−C ) = Xα

2 uni-

formly T+
C , one sees only infinitesimal compositional modulations at T−C : X2(x, T−C ) = Xα1

2

or Xα2
2 . The amplitude of the concentration wave (concentration is our order parameter

here) is infinitesimal.

Common tangent construction: µα2 (Xα
2 , T ) = µβ2 (Xβ

2 , T ), µα1 (Xα
2 , T ) = µβ1 (Xβ

2 , T ) manifest

as common tangent between gα(X2) and gβ(X2) curves. This equation has two unknowns,

Xα
2 and Xβ

2 , and we need to solve two joint equations which are generally nonlinear (thus nu-

merical solution by computer may be needed). Show graphically how this may be established

for two phases α, β, rich in A and B, respectively, by diffusion. Since

dG = V dP − SdT +
C∑
i=1

µidNi, (A.69)

atoms/molecules will always migrate from high chemical potential phase/condition to low

chemical potential phase/condition.

Let us now investigate situations where a large-solubility phase (α) is in contact with a

line compound phase (β). The common tangent construction can be simplified in these

situations. Let us consider two limiting cases (a) and (b), where the gβ(X2, T ) needle is

“around” (a) X2 ≈ 0 and (b) X2 ≈ 1, respectively. (a) corresponds to an example of adding

antifreeze to water, where the liquid solution delays freezing due to addition of solutes. (b)

corresponds to an unknown solubility problem, which is to say how much can be dissolved

in α for a given temperature when it is interfaced with a precipitate β phase that is nearly

pure 2.

(a): people add antifreeze to say liquid water, to suppress the freezing temperature. How
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does that work?

In this case, gβ(X2, T ) is a needle “around” X2 ≈ 0 (the ice phase), whereas α is the liquid

phase. The first thing to realize is the solubility of B is typically lower in solids than in

liquids. Energetic interaction between atoms is more important in solids than liquids, since

atoms in solids are bit closer in distance, and also put a premium on periodic packing.

“Misfit” molecules B would feel much more comfortable living in a chaotic environment

like liquid, than in a crystal (think about societal analogies). To first approximation, we

can assume the ice crystals that first precipitates out as temperature is cooled is pure ice:

µice
H2O(X ice

B , T, P ) ≈ µ̃ice
H2O(T, P ).

The second thing to realize is that

µliquid
H2O ≈ µ̃liquid

H2O (T, P ) + kBT lnX liquid
H2O (A.70)

If the ≈ in above is =, then it is an ideal solution. Raoult’s law says that no matter what

kind of solution (solid,liquid,gas), as long as the solutes become dilute enough, the solvent

molecule’s chemical potential approaches that in an ideal solution. This is in fact also true

for the ice crystals, but X ice
B is so small that it’s not going to have any effect on H2O in ice.

For the liquid, we have

lnX liquid
H2O = ln(1−X liquid

B ) ≈ −X liquid
B . (A.71)

So the chemical potential of water in liquid solution is lowered by X liquid
B kBT due to the

presence of B in liquid. How much does that lower the melting point? (compared to what?)

µ̃liquid
H2O (T, P )− kBTX

liquid
B = µ̃ice

H2O(T, P ) (A.72)

Remember that T pure
melt is defined by

µ̃liquid
H2O (T pure

melt , P ) = µ̃ice
H2O(T pure

melt , P ). (A.73)

Perform Taylor expansion with respect to T :

−∆spure
melt(T − T

pure
melt ) = kBTX

liquid
B , (A.74)

we get

T pure
melt − T ≈

kBT
pure
melt

∆spure
melt

X liquid
B . (A.75)
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The pure liquid with larger entropy of melting will have less relative melting point suppression

(essentially steeper µi(T ) will be less sensitive). What is interesting about (A.75) is that the

potency of an antifreeze is independent of the chemical type of the antifreeze, at least when

only a tiny amount of antifreeze is added. When the solution is very dilute, the stabilization

of the solvent is entirely entropic.

Richard’s rule: simple metals have ∆spure
melt ≈ 1− 2kB. Water has ∆spure

melt ≈ 2.65kB.

Trouton’s rule: ∆spure
evap ≈ 10.5kB, for various kinds of liquids. Water has ∆spure

evap ≈ 13.1kB.

Now consider the opposite limit (b): in this case, gβ(X2, T ) is a needle around X2 ≈ 1. Then

for a given T , gβ(Xβ
2 , T ) ≈ µβ2 (Xβ

2 , T ) ≈ µ̃β2 (T ), and we just need to solve

µα2 (Xα
2 , T ) = µ̃β2 (T ) (A.76)

It can be shown mathematically, but is quite obvious visually, that the second equation

µα1 (Xα
2 , T ) = µβ1 (Xβ

2 , T ) for the solvent atoms becomes “unimportant” (still rigorously true,

just that whether we solve it or not has little bearing on what we care about - one can draw

a bunch of tangent extrapolations on gβ(Xβ
2 ) with slight differences in Xβ

2 , we can see huge

changes in µβ1 but little changes in µβ2 , due to the vast difference in extrapolation distances -

such equations are called “stiff” - stiff equations can make analytical approaches easier, but

general numerical approaches more difficult). So we have effectively reduced to 1 unknown

and 1 equation (or rather, we have decoupled a previously 2-unknowns-and-2-equations into

two nearly indepedent 1-unknown-and-1-equations).

Suppose α=simple cubic, β=BCC. Suppose α phase can be described by regular solution

with ω > 0 (see Fig. 1.36 of [47], there is an eutectic phase diagram and gα(Xβ
2 ) bulges out

in the middle):

µ̃α2 (T ) + kBT lnXα
2 + ω(1−Xα

2 )2 = µ̃β2 (T ) (A.77)

Rearranging the terms we get

Xα
2 = exp

(
− µ̃

α
2 (T )− µ̃β2 (T ) + ω(1−Xα

2 )2

kBT

)
(A.78)

The above can be solved iteratively. We first plug in Xα
2 = 0 on RHS, get a finite Xα

2 on the

LHS, then plug this new Xα
2 to RHS and iterate. From the very first iteration, however, we
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get

Xα
2 = exp

(
− µ̃

α
2 (T )− µ̃β2 (T ) + ω

kBT

)
(A.79)

and if Q(T ) ≡ µ̃α2 (T ) − µ̃β2 (T ) + ω � kBT , Xα
2 would be small and then the first iteration

would be close enough to convergence. µ̃α2 (T )− µ̃β2 (T ) is how much more uncomfortable it is

for a type-2 atom to be living in pure-2 α structure compared to pure-2 β structure. ω is still

how much more uncomfortable it is for type-2 atom to be living among a vast sea of type-1

atoms rather than among its own kind (at 0K, µ̃α2 = −Zαε22/2, ω = Zα(−ε12 +(ε11 + ε22)/2),

so µ̃α2 + ω = Zα(−ε12) − (−Zαε11/2), which corresponds to the process of squeezing out

a type-1 atom and placing it on a ridge, then inserting a type-2 atom into this sea of 1).

Thus Q(T ) is an energy that can be interpreted as how much more uncomfortable it is to

transfer a B atom from pure β phase to dilute α phase, excluding the configurational entropy

of B in α phase. Exponential forms of the kind e−Q/kBT are called Boltzmann distribution

in thermodynamics, and Arrhenius expression when one talks about rates in kinetics. It

says that even though some places are (very) uncomfortable to be at or somethings are

(very) difficult to do, there will always be some fraction of the population who will do those,

because thermal fluctuations reward disorder and risk-taking. A prominent feature of these

Boltzmann/Arrhenius forms, especially at low temperatures, is that kBT in the denominator

is a very violent term. A change in T by 100◦C can conceivably cause many orders of

magnitude change in the solubility.

The above train of thought can be extended to vacancies. A monatomic crystal made of

type-A atoms, but with the possibility of “porosity” inside (non-occupancy of lattice sites),

can be regarded as a fully dense A-B crystal with B identified as “Vacadium”. In this case,

εBB = εAB = 0, so ω = ZεAA/2, i.e. it is enthalpically costly to mix Vacadium with A, and

they would prefer to segregate if based entirely from enthalpy standpoint or at T = 0 K.

However, entropically A and Vacadium would prefer to mix. When you mix a block of pure

Vacadium (in β phase) with pure A in α (fully dense), the solubility of Vacadium in α would

be XV = e−Q/kBT . Also, when you are 100% Vacadium it does not matter what structure the

Vacadium atoms are arranged, so µ̃α2 (T )− µ̃β2 (T ) = 0 thus Q = ω = ZεAA/2. Q is called the

vacancy formation energy in this context. Physically, Q is identified as the energy cost to

extract an atom from lattice (break Z bonds) and attach it to an ledge on surface (form Z/2

bonds), in a Kossel crystal. In this class the above process is called the canonical vacancy

creation process. The canonical vacancy creation process creates porosity inside the solid,

making the solid appear larger than the fully dense state (social analogy would be “hype”).

Note that the canonical vacancy creation process is not an atomization process, where one
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extracts an atom and put it away to infinity.

An abstract view of phase transformation. Define order parameter η, which could be density,

structure factor, magnetic moment, electric polarization, etc. η is a scalar of your choice

that best reflects the nature of the problem (phase transition). The Gibbs free energy is

defined as G(N1, N2, ..., NC , T, P ; η). There are global minimum, metastable minima, and

saddle point. For example, at low temperature, for pure iron, both G(ηFCC) and G(ηBCC) are

local minima of G(η), but G(ηFCC) > G(ηBCC). To go from η1 = ηFCC to η2 = ηBCC, G(η)

must first go even higher than G(η1). This energy penalty is called the activation energy,

and η ∈ (η1, η2) is called the reaction coordinate. Define η∗ to be the position of saddle

point, we have

Q1→2 = G(η∗)−G(η1), Q2→1 = G(η∗)−G(η2). (A.80)

According to statistical mechanics, all possible states of η can exist, just with different

probability. The rate of transition, if one is at η1, to η2, is given by:

R1→2 = ν0 exp(−Q1→2

kBT
), (A.81)

where ν0 is some attempt frequency (unit 1/s), corresponding to the oscillation frequency

around η1 (imagine a harmonic oscillator coupled to heat bath). The rate of transition, if

one is already at η2, to η1, is given by:

R2→1 = ν0 exp
(
−Q2→1

kBT

)
. (A.82)

If G(η1) > G(η2), then Q1→2 < Q2→1, and R1→2 � R2→1 since Q’s are in the exponential,

and Q2→1 −Q1→2 = G(η1)−G(η2) is proportional to the sample size.

One can also express η as function of position, η(x), to represent an interface. Consider

the condition when FCC is in equilibrium with BCC: G(ηFCC) = G(ηBCC), and there is an

interface that separates them. η(x) is then a sigmoid-like curve, with characteristic width

defined as interfacial width. The interfacial energy arises because atoms in the interface are

neither FCC or BCC, and have energy density higher than either of them. This would lead

to a positive interfacial energy (Chap. 3)

The common tangent construction gives unique solution in composition when T, P is fixed.

If T, P come into play, however, then the game is richer. The single-component Clausius-

Clapeyron relation (A.18) can be generalized to C-component solutions. If we consider i in
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α of composition Xα ≡ [Xα
2 , ..., X

α
C ], or in β of composition Xβ ≡ [Xβ

2 , ..., X
β
C ], there needs

to be

µαi (Xα, T, P ) = µβi (Xβ, T, P ) (A.83)

to maintain mass action equilibrium (chemical equilibrium), to make sure atom i is “equally

happy” in α as in β. Let us investigate what dP/dT needs to be in order to maintain that

way, if Xα and Xβ are fixed (for instance two “compound” phases, or one compound phase

in contact with a large constant-composition reservoir): because we have

dµαi = vαi dP − sαi dT, dµβi = vβi dP − s
β
i dT. (A.84)

To maintain (A.83), we need

dP

dT
=

sαi − s
β
i

vαi − v
β
i

=
hαi − h

β
i

T (vαi − v
β
i )
, (A.85)

the latter equality is because if α, β are already at chemical equilibrium for i at a certain

(T, P ), there is:

µαi = hαi − Tsαi = µβi = hβi − Ts
β
i . (A.86)

Consider for example, the equilibria between pure liquid water (β) and air (α): air is a

solution. Then one has:
dP

dT
≈ hαi − h

β
i

T (vαi )
(A.87)

since vαi is larger than vβi by a factor of 103. For the air solution N = (N1, N2, N3, ...Nc), we

have

V ≈ NkBT

P
→ vi ≡

∂V

∂Ni

∣∣∣∣∣
Nj 6=i,T,P

=
kBT

P
. (A.88)

Thus
dP

dT
≈ hαi − h

β
i

T (kBT/P )
,

d lnP

d(1/T 2)
≈ −∆hi

kB

. (A.89)

So:

ln
P eq

P eq
ref

≈ ∆hi
kB

(
1

Tref

− 1

T

)
, (A.90)

when temperature is raised, the equilibrium vapor pressure goes up.

Notice that the gas phase always beats all condensed phases at low enough (but still positive)

pressure. One can thus draw a lnP -T diagram, and down under it is always the gas phase.
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This is because chemical potential in the gas phase goes as

µgas
i (Xgas, T, P ) ≈ kBT lnXiP + µ̃gas

i (T, 1atm), (A.91)

which goes to −∞ as P → 0, whereas chemical potentials in condensed phases are bounded.

(The physical reason for going to −∞ as P → 0 is that the entropy of gas blows up as

kB ln v). Thus, all condensed phases (liquid,solid) become metastable at low enough pressure

(see water phase diagram, Fig. A.1 (b)). Another way of saying it is that there always exists

an equilibrium vapor pressure for any temperature and composition, which may be small but

always positive, below which components in the liquid or solid solution would rather prefer

to come out into the gas phase (volatility).

However, they are two manners by which vapor can come out. When you heat up a pot

of water, at say 80◦C, you can already feel vapor coming out if you stand over the pot,

and maybe see some steam, but it’s very peaceful evaporation process. However, when the

temperature reaches 100◦C, there is a very sharp transition. Suddenly there is a lot of

commotion, and there is boiling. What defines the boiling transition?

The commotion is caused by the presence of gas bubbles, not present before T reaches Tboil.

The boiling transition is defined by P eq = 1 atm, the atmospheric pressure. Before T < Tboil,

there may be P eq > P ambient
H2O , so the water molecules would like to come out. But they can

only come out from the gas-liquid interface, not inside the liquid, so the evaporation action is

limited only to the water molecules in the narrow interfacial region < 1nm. This is because

any pure H2O gas bubbles formed inside would be crushed by the hydrostatic pressure AND

surface tension. But when P eq > 1 atm, pure H2O gas bubbles can now nucleate inside the

liquid. These bubbles nucleate, grow, and eventually rise up and break. At T > Tboil the

whole body of liquid can join the action of phase transformation, not just the lucky few near

the gas-liquid interface. Thermodynamically, there is nothing very special about the boiling

transition, but if you look at the rate of water vapor coming out, there is a drastic upturn at

T = Tboil. So the boiling transition is a transition in kinetics. The availability of nucleation

sites is important for such kinetic transitions. In the case of boiling, the nucleation sites

are likely to be the container wall (watch a bottle of coke). Without the heterogeneous

nucleation sites, it is possible to significantly superheat the liquid past its boiling point,

without seeing the bubbles.

One can have superheating/supercooling because of the barriers to transformation. The
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amount of thermodynamic driving force in a temperature-driven phase transformation is:

∆G ≡ µαi − µ
β
i ≡ ∆µi ≈ ∆seq

i ∆T =
∆heq

i

T eq
∆T (A.92)

if the reaction coordinate is identified as mass transfer from one phase to another (η1 state:

Nα
i + 1 in α, Nβ

i in β; η2 state: Nα
i in α, Nβ

i + 1 in β). To drive kinetics at a finite speed,

the driving force (thermodynamic potential loss or dissipation) must be finite. (Chap. 2)
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Appendix B

Spinodal Decomposition and Gradient

Thermodynamics Description of the

Interface

First-order phase transition is characterized by finite jump in the order parameter ηα → ηβ

as soon as T = T±e (the nucleation rate may be very small, but theoretically suppose one

waits long enough one can witness this finite jump at T±e ). For example, melting of ice

at P = 1atm is a first-order transition because as soon as T rises up to 0.0001◦C and

melting can occur, there is a finite density change from ice to liquid water, and there is an

obvious change in the viscosity as well. Also spatially, the transition from η(x) = ηα to

η(x′) = ηβ typically occurs over a very narrow region: the shortest distance between x and

x′ (interfacial thickness w) is typically less than 1nm. Previously, we assigned a capillary

energy γ to this interfacial region without discussing this region’s detailed structure. Such

“sharp interface” view, where one ignores the detailed interfacial structure and represent it

as a geometric dividing surface, is sufficient for most first-order phase transition problems.

If one is really interested in the physical thickness of this interfacial region however, one

must use so-called gradient thermodynamics formulation [88] to be introduced below, where

the capillary energy
∫
γdA in the sharp-interface representation is replaced by a 3D integral

involving a gradient squared term
∫
K|∇η(x)|2d3x with K > 0. The above replacement

makes sense intuitively, since the interfacial region is characterized by large gradients in

η(x), absent in the homogeneous bulk regions of α or β. Nucleation and growth is a must

for all first-order phase transitions, where large change (ηα → ηβ) occurs in a narrow region
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(the interface) even during nucleation.

In contrast, second-order phase transition is characterized by initially infinitesimal changes

over a wide region. These initially infinitesimal changes appear spontaneously in the system

and grow with time, without going through a nucleation (large change in a small region)

stage. For example, in the paramagnetic (α)→ferromagnetic (α1,α2) transition of pure iron

as T is cooled below Tc = 1043K (the Curie temperature, also called the critical point), both

the spin-down α1 and the spin-up α2 phase have very small magnetic moments: ηα1 = −m,

ηα2 = m, with m ∝ (Tc − T )1/2. Microscopically, going from α1 to α2 near Tc would

involve the flipping of a very small number of spins. So the high-temperature paramagnetic

phase, and the two low-temperature ferromagnetic phases are very similar to each other

near Tc: |ηα − ηα1|, |ηα − ηα2| ∝ (Tc − T )1/2, where η is the magnetic moment. The breakup

of a uniform paramagnetic domain into multiple ferromagnetic domains upon a drop in

temperature below Tc is spontaneous and instantaneous and does not require a nucleation

stage: it is growth, off the bat. In other words, no under-cooling is required for observing

the start of second-order phase transition within a given observation period. The growth

happens essentially instantaneously at T = T±c . Although, to see the growth and coarsening

to a certain amplitude would require time.

The way a system can accomplish second-order transition vis-à-vis first-order transition is

best illustrated using the binary solution example: gsoln(X2, T ) ≡ Gsoln(N1, N2, T )/(N1+N2).

Suppose Ω1 = Ω2 = Ω, we may define specific volume free energy as

gv(c2) ≡ Ω−1gsoln(X2 = c2Ω) (B.1)

so the bulk solution free energy for a homogeneous system is just

Gsoln =
(∫

d3x
)
gv(c2). (B.2)

gv(c2) is the same function as gsoln(X2) after horizontal and vertical scaling. So the tangent

extrapolation of gv(c2) to c2 = 0 (corresponding to X = p1) would give Ω−1µ1, and tangent

extrapolation of gv(c2) to c2 = Ω−1 (corresponding to X = p2) would give Ω−1µ2. c2(x) is

our order parameter field η(x) here. For an inhomogeneous system, the solution free energy

should intuitively be written as

Gsoln =
∫
d3xgv(c2(x)). (B.3)
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Using the above as reference, the total free energy then looks like:

G =
∫
d3x(gv(c2(x)) +K|∇c2(x)|2) +Gelastic (B.4)

where the gradient squared term replaces the capillary energy
∫
γdA. Gelastic = 0 if Ω1 =

Ω2 = Ω. (B.4) is a unified model that can be used to investigate both finite interfacial

thickness in first-order transitions [88], as well as second-order transitions [92]. Since K > 0,

the model (B.4) punishes sharp spatial gradients, the origin of interfacial energy. On the

other hand if all changes occur smoothly over a large wavelength with small spatial gradients,

then G approaches Gsoln. Since Gsoln is the driver of phase transformation (gradient/capillary

and elastic energies are typically positive), let us consider what Gsoln wants to do first.

For a closed system, c2 is conserved:∫
d3xc2(x) = const (B.5)

which means it is possible to partition the solutes, but it is not possible to change the

total amount of solutes in the entire system. For instance, if one starts out with a uniform

concentration c2(x) = cα2 , a partition may roughly speaking occur as:

cα2 = fα1cα1
2 + fα2cα2

2 , (B.6)

where volume fraction

fα1 =
cα2

2 − cα2
cα2

2 − cα1
2

, fα2 = 1− fα1 =
cα2 − cα1

2

cα2
2 − cα1

2

(B.7)

of the region has c2(x) = cα1
2 and c2(x) = cα2

2 , respectively, separated by sharp interfaces.

The solution free energy of the partitioned system is then

Gsoln =
(∫

d3x
)

(fα1gv(c
α1
2 ) + fα2gv(c

α2
2 )) (B.8)

compared to the unpartitioned and uniform original system (
∫
d3x) gv(c

α
2 ).

Local stability means Gsoln is stable against small perturbations in c2(x). The necessary and

sufficient condition for local stability is that

∂2gv
∂c2

2

> 0. (B.9)
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If ∂2gv
∂c22

< 0, a small partition with cα1
2 ≈ cα2 ≈ cα2

2 would be able to decrease Gsoln. For

example, with cα2
2 = cα2 + ∆c, cα1

2 = cα2 −∆c, fα1 = fα2 = 1/2, one has

Gsoln∫
d3x

=
1

2
gv(c

α
2 −∆c) +

1

2
gv(c

α
2 + ∆c) = gv(c

α
2 ) +

1

2

∂2gv
∂c2

2

(cα2 )(∆c)2 + ... (B.10)

which would be lower than uniform gv(c
α
2 ) if ∂2gv

∂c22
< 0. A sinusoidal perturbation

c2(x) = cα2 + a(t) sin(k · x) (B.11)

would also have equal amount of “ups and downs”, and would thus also reduce Gsoln. The

reason sinusoidal perturbation is preferred (at least initially) compared to the step function

between cα2 − ∆c and cα2 + ∆c is that it minimizes the gradient energy by spreading the

gradients around. Therefore if ∂2gv
∂c22

< 0, its amplitude a(t) will increase with time. This is

the trick behind spinodal decomposition, or more generally second-order phase transitions,

which can reduce the system free energy without nucleation. Nucleation is not needed here

because the system’s initial state does not have local stability. The loss of local stability is

induced by temperature, i.e.

∂2gv
∂c2

2

(cα2 , T
+
C ) > 0,

∂2gv
∂c2

2

(cα2 , T
−
C ) < 0 (B.12)

thus
∂2gv
∂c2

2

(cα2 , TC) = 0. (B.13)

During initial growth of the sinusoidal profile in the unstable composition range, the solutes

appears to diffuse up the concentration gradient (Fig. 5.39 of [47]). According to the

phenomenological Fick’s 1st law J2 = −D̃∇c2, this would mean a negative interdiffusivity

D̃(c2) < 0. This is in fact not surprising, because D̃ (from D1, D2) contains thermodynamic

factor 1 + d ln γ2
d ln c2

, which can be shown to be X2(1−X2)
kBT

∂2g
∂X2

2
and thus have the same sign as

∂2g
∂X2

2
. When ∂2g

∂X2
2

is negative, D̃ is negative. This means that at the most fundamental level,

diffusion is driven by the desire to reduce free energy or chemical potential, and not by the

desire to smear out the concentration gradient.

Mathematically, while a positive diffusivity tends to smear out the profile (the shorter the

wavelength, the faster the decay of the Fourier component amplitude), a negative diffusivity

would tend to increase the roughness of the profile. The growth of very-small wavelength

fluctuations in spinodal decomposition will be punished by the gradient energy, though.
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Thus an optimal wavelength will be selected initially, which can be tens of nms. Later,

after the compositions have deviated largely from cα2 , the microstructural lengthscale may

further coarsen, although the interfacial lengthscale will sharpen. Because α1 and α2 do not

come out of a nucleation and growth process, but amplification of sinusoidal waves of certain

optimal wavelength, they lead to unique-looking interpenetrating microstructures.

In contrast to spinodal instability, in a first-order phase transition the system’s initial state

has never lost its local stability. At T = T+
e , one is in a globally stable uniform composition,

which means

gv(c
α
2 , T

+
e ) < fα1gv(c

α1
2 , T+

e ) + fα2gv(c
α2
2 , T+

e ) (B.14)

for small and large deviations |cα2
2 − cα2 | alike (thus a globally stable system must be locally

stable, but not vice versa). Then at T = T−e , c2(x) = cα2 becomes locally stable only, which

means small deviations would still induce the system energy to go up, but large deviations

may induce the system energy to go down. Thus, small perturbations like (B.11) would decay

and die, but large enough perturbations may survive. The chance survival of large enough

perturbations/fluctuations in the order-parameter field is just nucleation.

(B.4) can be used to estimate interfacial thickness w in the following manner. Since ∇c2 ∝
(cβ2 − cα2 )/w inside the interface, the gradient energy integral scales as K(cβ2 − cα2 )2/w, so the

wider the interface the better for the gradient energy. On the other hand, right at T = Te,

gv(c2) of the first term connects two energy-degenerate states gv(c2 = cβ2 ) = gv(c2 = cα2 ),

with a bump g∗v − gv(cα2 ) in between. The solution free energy first term thus gives an excess

∝ (g∗v − gv(cα2 ))w, that punishes wide interfaces. The best compromised is thus reached at

w ∝ K1/2|cβ2 − cα2 |(g∗v − gv(cα2 ))−1/2, with interfacial energy γ ∝ K1/2|cβ2 − cα2 |(g∗v − gv(cα2 ))1/2.

It turns out that for Te near Tc, |cβ2 − cα2 | ∝ (∆T )1/2, where ∆T = Tc−Te, and g∗v − gv(cα2 ) ∝
(∆T )2, so the interfacial width near the critical temperature would diverge as (∆T )−1/2, and

the interfacial energy would vanish as (∆T )3/2 [88].

Science advances greatly when two seemingly different concepts are connected, for instance

the Einstein relation M = D/kBT . Cahn and Hilliard made a similar contribution when they

connected interfacial energy to critical temperature and second-order phase transformation.

Based on the insight that gradient term should be added to thermodynamic field theories

(fundamentally this is because of atomic discreteness), they developed gradient thermody-

namics formalism for chemical solution systems that predict finite interfacial width, interfa-

cial energy, as well as wavelength selection in spinodal decomposition [92], under one unified

framework. The development can in fact be traced back to the work of van der Waals for
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single-component systems, using density as order parameter[93]. Another offshoot of this

approach was provided by Ginzburg and Landau in the theory of superconductivity.

Finally, if Ω1 6= Ω2 the 1-rich α1 phase and 2-rich α2 will have different stress-free volumes,

and to accommodate this mismatch coherently would involve finite elastic energy Gelastic >

0. Growth of the sinusoidal concentration wave would require growth of the associated

transformation strain wave. This would delay the onset of the spinodal instability.
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