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This article is intended as an introduction
to the concepts of springback simulation as well
as recommendations for its practice in a metal
forming setting. Most of the developments focus
on thin beams or sheets, where springback is
most pronounced. The underlying mechanics
of large-strain, elastic-plastic deformation are
treated in a simplified, intuitive way, with
numerous references provided for those wishing
to delve into the theoretical underpinnings in
more detail. Simple bending is first considered,
along with a discussion of approximations, then
bending with tension and finally, more complex
numerical treatments. Compensation of die de-
sign to account for springback is also presented
briefly.

This treatment is intended for practitioners
with widely differing backgrounds and needs.
The early treatments are suited to a limited class
of problems but are best suited for understanding
the direction of the effects of various material
properties and process parameters. The roles and
effects of various simplifying assumptions are
also treated naturally with these closed-form
solutions. The later treatments are intended to
augment the practice of applied sheet forming

analysis (almost always finite element based) to
include postforming springback analysis. As is
shown, the choices of numerical parameters can
be quite different for springback, so these aspects
are emphasized.

As used throughout this article, springback
refers to the elastically driven change of shape
that occurs after deforming a body and then
releasing it. The concept is understood by anyone
who has manually bent a metal wire or strip. For
a sufficiently small bend radius, some part of the
bending remains after unloading and some part
is recovered during unloading (or has sprung
back). For bend radii larger than some critical
value, the initial shape of the body is recovered.
The recovered portion of the deformation is
referred to as springback. As such, the definition
inherently refers to a difference in geometry
between the loaded state and the unloaded state.

The word springback as a single, unhyphen-
ated word appears in virtually no standard
dictionaries but has been in technical use since
at least the early 1940s. A search of the inter-
net in April 2005 found more than 26,800
occurrences of the word, and a contemporaneous
search of the ISI Web of Science (Thomson

Scientific) of published technical papers located
334 such references appearing since 1980. These
numbers represent increases of 460 and 27%,
respectively, over similar searches performed
20 months earlier, in April 2003. Two inferences
may be drawn: the technical meaning of spring-
back is well established, although formal defi-
nitions appearing in dictionaries lag, and interest
in springback is growing rapidly.

The definition of springback can be broad,
applying to the action of springs, for example,
but the principal technical intent of the word
and interest in the phenomenon refers to the un-
desirable shape change that occurs after forming
a part. The change is undesirable because it
creates a difference of part shape from the tool
shapes that were used to carry out the forming
operation. If this difference is not predicted
accurately and compensated for in the design of
the tools, the part may not meet specifications.

Consideration of springback is of prime
interest for bodies that have high aspect ratios;
that is, at least one dimension is much larger
than, or smaller than, the other dimensions.
Examples include slender beams and thin sheets
(Fig. 1, 2). For these cases, the overall geometric
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Fig. 1 Typical automotive sheet-formed part, the S-rail. (a) Formed part. (b) Finite element representation, as formed. (c) Cross-sectional schematics at three forming stages.
Source: Ref 1
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changes caused by springback can be very sig-
nificant even though the elastic strains driving
the springback can be tiny.

To introduce an applied example, Fig. 1(a)
shows a representative automotive formed part
referred to as the S-rail (Ref 1). Figure 1(b)
depicts a corresponding finite element mesh, and
Fig. 1(c) focuses on a schematic cross section of
this part at three stages: initial (flat), as-formed
(with tools in place), and unloaded (after spring-
back). Inspection of the operation (and ignoring
slight stretching at the top web of the part)
reveals that the upper corners of the cross section
are essentially bent to conform to the punch
radius (the punch in this orientation lies below
the sheet). When the tooling is removed, these
radii open up to larger radii. This is typical of an
idealized bending-with-tension operation. The
sidewall regions of the formed rail or channel
are drawn over the die radii (the die lies above the
sheet in this orientation) over large distances,
such that each element undergoes bending and
unbending sequentially, also under the action
of tension. When loaded, the sidewalls are flat.
The final shape of the sidewalls incorporates
what is known as sidewall curl. The level of
tension for each location is related to the binder
force, the friction with the tooling, and the work
required to bend, unbend, and draw. If a draw
bead were involved, this would add yet another
element to the sheet tension determination.

The primary focus in this article is on sheet
metal forming operations, such as the one shown
in Fig. 1. This focus allows conclusions to be
drawn with reference to a relatively narrow range
of thicknesses and bend radii, both of which
are small relative to the width of the body. The
equations and results are nonetheless applicable
to other geometries, with restrictions specified
as necessary.

This article is organized in sections. The
subject of springback is first addressed for the
simplest, most easily understood cases, that is,
pure bending of slender beams or sheets. While
such treatments are applicable to few problems
of applied interest, their study reveals the prin-
ciples governing the problem and addresses the
limitations of the various assumptions. To these
treatments is then added the effect of super-
imposed tension, which is shown to be a critical
variable for accurate prediction of springback.
From these generally closed-form treatments, a
leap is made to the much more general and
practical prediction of springback for real form-
ing operations, using either experience or finite
element modeling. Finally, the design of dies and
tooling using an assumed springback prediction
capability is addressed.

Pure Bending—Classical Results

In order to understand the phenomenon of
springback, it is instructive to begin with the
simplest case and the most restrictive assump-
tions. In this section, the case of pure, or simple,
bending is considered, that is, bending under

the action of an applied moment without ap-
plied sheet tension. The springback consists of
assumed elastic unbending on removal of the
applied moment.

Assumptions. The assumptions that apply to
this case in the simplest treatment may be listed
as:

1. Plane sections remain planar.
2. No change in sheet thickness
3. Two-dimensional geometry, either plane

strain or plane stress in width direction
4. Constant curvature (i.e., no instability of

shape)
5. No stress in the radial, or through-

thickness, direction
6. The neutral (stress-free) axis is the center

fiber and is the zero-extension fiber.
7. No distinction between engineering and true

strain
8. Isotropic, homogeneous material behavior
9. Elastic straining only during springback

The validity of these assumptions is discussed
in the next section, but the simple results for
springback under these conditions are first
presented here.

Within these assumptions, the primary
differences among treatments appearing in the
literature relate to the assumed material con-
stitutive behavior. There are two basic choices
to be made: whether to treat the problem as
purely plastic or elastic-plastic, and what form of
stress-strain law to adopt in the plastic range.
Results have been presented for nearly all
choices: perfectly plastic (no hardening), linear
hardening (Ref 2), power-law hardening (Ref
3–7), or a general approach (requiring graphical
or other numerical integration) (Ref 8, 9).

Basic Equations and Approach. The ap-
proach is illustrated in Fig. 2. An initially flat
sheet or beam is envisioned. For these purposes,
a sheet denotes a part that is very wide relative
to its thickness and bend radius and implies
that the deformation is nearly plane strain; that
is, the strain in width direction is zero. A beam
denotes a part that is very narrow relative to
thickness and bend radius and implies that
the deformation is nearly plane stress; that is, the
stress in the width direction is zero. The part is
bent to a starting radius (R) under the action of a
moment (M). The value of M acting on the sheet
or beam is obtained by integrating the stress
distribution as:

M=
ðt=2

7t=2

sx(ex)zw(z)dz (Eq 1)

where ex is the circumferential strain, sx the
circumferential stress (Fig. 2b), t is the sheet
thickness, and w(z) is the width of the sheet,
which in general may vary with the z-coordinate
(that is, the cross section need not be rectan-
gular). Assuming a rectangular cross section,
taking advantage of the symmetry of the problem
(assumptions 6 and 8 in the section “Approx-
imations in Classical Bending Theory” in this
article), and substituting into Eq 1 obtains the
moment per unit width (M/w), which may be
expressed more simply:

M

w
=

ðt=2

7t=2

sx(ex)z dz=2

ðt=2

0

sx(ex)z dz (Eq 2)

The strain shown in Eq 1 and 2, ex, depends on z.
Within the given assumptions, the circumfer-
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Fig. 2 Schematics of pure bending. (a) Configurations with coordinates defined. (b) Through-thickness stress
distribution
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ential strains (ex) are linearly related to the
distance from the center of the sheet (z) and
inversely to the bend radius (of the center fiber
of the body) R:

ex � ex=
z

R
(Eq 3)

where it is assumed that the true strain (ex) and
the engineering strain (ex) are small enough to be
used indistinguishably. As is shown explicitly,
the bending moment can be calculated using Eq 2
and 3, along with a constitutive relationship
between stress and strain.

Note: In order to simplify the notation, the
subscript x is dropped from the terms sx and
ex, with the understanding that these represent
the principal components of stress and strain
normal to the beam or sheet cross section (as
labeled in Fig. 2).

In order to compute the springback after
bending, the moment per unit width of sheet,
M/w, is removed from the sheet or beam while
the material responds elastically. Because elastic
stresses and strains can be superimposed, an
alternative view of this operation is obtained
by applying a moment (M) to the stress-free body
in the configuration of the bent beam or sheet.
An isotropic linear elastic beam or sheet has a
constitutive response of sx=E 0ex, where E 0 is
the effective modulus for the beam (plane-stress
case) or E 0=E/(1�n2), where n is Poisson’s
ratio, for the sheet (plane-strain case).

For elastic recovery from an initially curved
configuration (radius=R) to a final configura-
tion (radius= r), the relationship for a body of
general cross section is:

1

R
7

1

r
=

M

E0I
(Eq 4)

where I is the moment of inertia of the cross
section.

Note: The springback results for plane strain
and plane stress do not differ greatly for most
materials. Assuming that the bending moment is
proportional to the operative flow stress for an
isotropic, nonhardening, von Mises material, the
plane-strain bending moment is 2=

ffiffiffi
3
p

(1.15)
times the plane-stress moment. Assuming a
typical Poisson’s ratio of 1/3, the plane-strain
elastic modulus is 1.12 times the plane-stress
(i.e., uniaxial tension) one. Thus, the differences
between Eq 4 interpreted for plane stress or plane
strain is only approximately 1.15 versus 1.12, or
approximately a 3% differential. Elastic and
plastic anisotropy may change this value.

Moments of inertia may be readily calculated
for complex shapes by integration and have been
tabulated for a variety of standard structural
shapes (Ref 10). For the case of a rectangular
cross section, which is assumed in the remainder
of this article, the moment of inertia is taken as:

I=
wt3

12
(Eq 5)

where t is the sheet thickness. Equation 4 may
be rewritten for a rectangular cross section in a

per-width format as:

1

R
7

1

r
=

M

E 0I
=

12M=w

E 0t3
(Eq 6)

which may be readily rewritten in the alternate
form:

r

R
= 17R

M

E 0I

� �71

= 17R
12M=w

E 0t3

� �71

(Eq 7)

The form 1
R
7 1

r

� �
is called springback in this

article, while the second form, r/R, is called
the springback ratio. In general, the springback
is positive (r4R), and the springback ratio
is thus greater than unity. The relationship
between the two measures is as Springback
ratio=1/(1�R �Springback). For most applica-
tions, springback as defined previously is the
quantity of interest. For small curvature changes,
the shape change displacements are proportional
to springback. The springback ratio is occa-
sionally used with some analytical procedures,
so a few results in this article are presented
using it.

Note that a fractional error associated with
the evaluation of springback may be quite
different from the fractional error associated
with the springback ratio, depending on how
large the second term of Eq 7 is relative to 1. That
is, when the second term is small, errors of R/r
will appear to be small even though the fractional
errors on moment can be significant.

Equations 6 and 7 represent the fundamental
springback result for pure bending with the
assumptions listed. To apply Eq 6, it is necessary
to first choose the plane-stress or plane-strain
approximation based on width with respect to
bend radius and thickness. The bending moment
is computed using Eq 2 and 3 and an explicit
material stress-strain law (and known stress
state). This approach is used to reproduce some
classical springback results in the remainder of
this section.

Rigid, Perfectly Plastic Result. The simplest
springback result for pure bending makes use of
a rigid (i.e., no elastic strains), perfectly plastic
(no strain hardening) material model (Ref 4–6, 8,
11–13). Under these assumptions, the bending
moment (and thus the springback) is independent
of the original bend radius:

M

w
=2

ðt=2

0

s 00z dz=
s 00 t2

4
(rigid, perfectly plastic)

(Eq 8)

where s0
0 is the yield stress (also the flow stress)

of the material in plane stress or plane strain. The
springback, defined here, is obtained using Eq 4:

1

R
7

1

r
=

3s 00
E 0 t

or, alternatively,

R

r
=17

3s 00 R

E 0t
(rigid, perfectly plastic)

(Eq 9)

This result is often sufficient for springback
prediction, and it reveals the importance of the

principal material properties as they affect
springback:

� Springback is proportional to strength/
stiffness, that is, s0/E.

� Springback is inversely proportional to sheet
thickness.

More detailed analysis alters the exact
form of these dependencies, but the conclusion
remains the same: materials that are strong rela-
tive to their elastic modulus are more susceptible
to large springback, as are thinner materials.
Thus, aluminum sheet of comparable strength to
a steel alloy exhibits springback approximately
three times greater, because its elastic modulus is
approximately 1/3 as large as that of steel.

Elastic, Perfectly Plastic Result. The first
refinement of Eq 9 is by the inclusion of elastic,
perfectly plastic bending behavior (Ref 14, 15).
That is, there will be an elastic core near the
neutral axis. The location of the elastic-plastic
transition has a z-coordinate of z*, which is found
by setting the yield strain (s0

0/E 0) equal to the
bending strain (z/R):

z*=

Rs 00
E 0

for
Rs 00
E 0

j
t

2

(elastic-plastic case) (Eq 10a)

t

2
for

Rs 00
E 0

4
t

2

(elastic only, no springback)

8>>>>>>><
>>>>>>>:

(Eq 10b)

Note that the extent of the elastic core is
proportional to the bend radius (i.e., inversely
proportional to curvature), proportional to the
yield stress, and inversely proportional to
the elastic modulus. Thus, inclusion of the elastic
part of the material response becomes pro-
gressively more important for gentle bending of
high-specific-strength materials. As is shown
later, for typical sheet metal press forming,
the bend radius is typically small enough that
the elastic region may be neglected without
significant loss of accuracy.

Evaluation of the required integral to obtain
the moment for elastic-plastic cases may be
conveniently split into two terms, the second
identical to the rigid, perfectly plastic case
outside of the elastic core:

M

w
=2

ðz*

0

E 0z

R
z dz+2

ðt=2

z*

s 00z dz

=
2E 0z*3

3R
+

s 00t2

4
7s 00z*2

(Eq 11)

Substituting the relationship for the elastic-
plastic location, z* (Eq 10a), obtains the elastic-
plastic moment and springback results:

M

w
=

s 00t2

4
7

s 030 R2

3E 02
(elastic, perfectly plastic)

(Eq 12)
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1

R
7

1

r
=

12M=w

E 0t3
=

12

E 0t3

s 00t2

4
7

s 030 R2

3E 02

� �

(elastic, perfectly plastic) (Eq13)

The springback equation may be rewritten in
an alternate form presented by Gardiner (Ref 14)
using Eq 7:

R

r
=17

3s 00 R

E 0t
+

4s 030 R3

E 03t3
=173x+4x3,

where x=
s 00 R

E 0t
(Eq 14)

Note that the left side of Eq 14 is the reciprocal
of the springback ratio as defined in this article.
The error introduced by ignoring the elastic
core in springback calculations may be evaluated
by comparing Eq 9 and 13 or, equivalently,
Eq 8 and 11. Table 1 presents R/t ratios where
the moment error is limited to 1, 2, 5, and 10%.
For a given desired level of accuracy, the R/t
ratio is the largest one that can be safely con-
sidered.

Typical R/t ratios for automotive press form-
ing lie in the range of 5 to 25, although many
examples outside of that range may be found,
particularly with general three-dimensional
shapes that are not amenable to simple analysis.
The results in Table 1 show that ignoring the
elastic core leads to very small errors in this
range for normal materials (aluminum alloys
with a yield stress of 500 MPa, or 73 ksi, are
seldom suitable for complex press forming).

Rigid, Strain-Hardening Results. In addi-
tion to the results presented previously, bending
moments and springback relationships for strain-
hardening material models have been pres-
ented in various forms, including the following
selections:

� Empirical forms (Ref 16)
� Rigid, arbitrary hardening (Ref 8)
� Rigid, power-law hardening (Ref 3–7)
� Rigid, linear hardening (Ref 2)

Power-law hardening models are frequently
used for sheet forming analysis. The hardening
law, often attributed to Hollomon (Ref 17), may
be written as follows, in uniaxial stress and other
fixed stress- or strain-ratio forms:

s=Ken (uniaxial stress) or

s 0=K 0e 0n (general stress state) (Eq 15)

where K is the strength parameter, K 0 is the effec-
tive strength parameter, n is the strain-hardening
index, and the primes indicate that the strains and
stresses to be considered must take into account
the stress-strain state and the form of the yield
function (anisotropic, quadratic, etc.). (Because
elasticity is ignored, e is the total strain, equal to
the plastic strain.) Typical results for such
hardening may be summarized as (Ref 6):

M

w
=

2

n+2

� �
K 0

Rn

t

2

� 	n+2

(Eq 16)

1

R
7

1

r
=

6

n+2

� �
K 0

E 0
t

2R

� 	n 1

t
(Eq 17)

Elastic-Plastic Result. Bending moments
and springback relationships for elastoplastic,
strain-hardening material models have also been
presented in various forms, including:

� Elastic, power-law hardening (Ref 18, 19)
� Rigid, linear hardening (Ref 18)

In order to assess the importance of strain
hardening in pure bending results, moment and
springback formulas were derived based on a
hardening law of the following form:

s=s0+Ken
p (uniaxial stress) or

s=s 00+K 0e 0np (general case) (Eq 18)

For the plane-stress case, ep signifies the
approximate plastic strain, that is, the total strain
less the elastic yield strain:

ep=e7ee �
z7z*

R
(Eq 19)

The second equality of Eq 19 is approximate
because the elastic strain (ee) is treated as a con-
stant corresponding to the value at first yield,
rather than as evolving with hardening. This
approximation, adopted for simplicity, has little
effect on the result.

The moment consists of three terms, the first
two identical to the elastic, perfectly plastic re-
sult, that is, Eq 12 (with yield stress, s0), and the
third an integral corresponding to the additional
moment caused by the hardening beyond the
yield stress. This third term may be evaluated as:

DM

w
=2

ðt=2

z*

Ken
pz dz=

2K

Rn

ðt=2

z*

(z7z*)nz dz

(uniaxial) (Eq 20)

where, as before, z*=Rs0/E. Equation 20 may
be evaluated to obtain the explicit form of the
incremental moment:

DM

w
=

2K

Rn(n+2)

t

2
7z*

� 	n+2

+
2Kz*

Rn(n+1)

t

2
7z*

� 	n+1
(Eq 21)

The full moment for the elastic, hardening
plastic case is thus:

M

w
=

s0t2

4
7

s3
0R2

3E2
+

2K

Rn(n+2)

t

2
7z*

� 	n+2

+
2Kz*

Rn(n+1)

t

2
7z*

� 	n+1

(Eq 22)

and the springback is then:

1

R
7

1

r
=

12M=w

Et3
(Eq 23)

where M is given by Eq 22.
Springback based on Eq 23 is compared in

Fig. 3 with springback computed analytically
using elastic, perfectly plastic material behavior
(Eq 13), rigid, perfectly plastic material behavior
(Eq 9), and elastic-plastic finite element (FE)
simulations of four-point bending (Fig. 4).
(Finite element simulations are introduced later
in this article, but are included here for com-
pleteness. The FE results presented in Fig. 3
were verified by refining meshes and number of
integration points until no significant changes
were observed.) The FE simulations make use
of either plane-stress quadratic solid elements
(labeled CPS8) or plane-stress beam elements
with shear terms (labeled B21). The element
labels correspond to the ABAQUS (Ref 20)
elements used.

For purposes of Fig. 3 and subsequent use in
this article, two material models corresponding
to ratios of extremes of yield stress (sy) to
Young’s modulus for typical forming materials
were defined based on Eq 18. The soft material,
low-strength steel, is based on properties appear-
ing in the literature (Ref 21) for interstitial-free
steel: yield stress is 150 MPa (22 ksi), ultimate
tensile strength is 310 MPa (45 ksi), and uni-
form elongation is 28.5%. The hard material,
high-strength aluminum, is based on the prop-
erties appearing in the literature (Ref 22) for
7075-T6: yield stress is 500 MPa (73 ksi), ulti-
mate tensile strength is 572 MPa (83 ksi), and
uniform elongation is 11%.

Parameters of Eq 18 can be determined from
the yield stress, ultimate tensile strength, and
uniform elongation by noting two conditions: 1)
the engineering stress at the uniform elongation
is equal to the ultimate tensile strength (sUTS),
and 2) the derivative of the true stress/true plastic
strain equation is equal to the true stress at the
uniform elongation (sf) (or corresponding plastic
true strain, ep

f ). Use of these two conditions, and
associating s0 of Eq 18 with the yield stress, sy,
allows determination of the parameters of Eq 18

Table 1 Maximum ratios of bending radius to thickness (R/t) for specified moment errors
by neglecting the elastic core in bending (perfectly plastic)

Material

Yield stress Young’s modulus Maximum R/t for moment error of:

MPa ksi GPa 106 psi 1% 2% 5% 10%

Low-strength
steel

150 22 210 30 85 120 190 270

Low-strength
aluminum

150 22 70 10 28 40 64 90

High-strength
steel

500 73 210 30 26 36 57 81

High-strength
aluminum

500 73 70 10 9 12 19 27
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as follows:

n=
sf

sf7sy

ep
f (Eq 24)

K=
sf7sy

(ep
f )

n (Eq 25)

For the two chosen materials, explicit elastic-
plastic constitutive equations are:

Low-strength steel:

s=150 MPa+425 MPa e0:4
p , E=210 GPa

(Eq 26)

High-strength aluminum:

s=500 MPa+400 MPa e0:45
p , E=70 GPa

(Eq 27)

As illustrated in Fig. 3(a) neglecting strain
hardening leads to large errors in springback
throughout the range of R/t tested, varying from

approximately 20 to 50%. (The smaller frac-
tional error for springback ratio is illustrated in
Fig. 3b.) For pure bending, Eq 23 is in good
agreement with the FE results, whether or not the
strain distribution through the thickness of the
sheet is approximated.

Approximations in
Classical Bending Theory

In this section, the assumptions introduced
previously are discussed and, in some cases,
evaluated semiquantitatively. As is shown
throughout this article, the most important
aspects for accuracy in springback prediction for
typical sheet forming operations (R/t assumed to
be in the range of 5 to 25) involve:

� Sheet tension (most critical aspect, presented
in the next section)

� The hardening law (discussed in the previous
and last sections)

� Presence of anticlastic curvature (this section
and the last)

The basic assumptions of the previous section
for pure bending have fairly small errors asso-
ciated with them. However, these errors can
grow when elastic-plastic laws are considered
and when bending and unbending occur. It is
useful to consider first the effect of the various
approximations made within the foregoing pure-
bending analysis.

Assumption 1: Plane Sections Remain
Planar. For bending and bending under tension,
this assumption is very nearly satisfied under
most circumstances. For R/ti5, shell finite
elements (which incorporate this assumption,
among others) agree well with full solid
elements, which allow general deformation
patterns (see later section of this article).
Therefore, for R/t45, the assumption degrades
the accuracy little. Another indicator is the accu-
racy of more complicated closed-form solutions
for pure bending. These solutions (Ref 4, 5,
19, 23) retain the planar section assumption
but allow through-thickness stresses to develop.
These solutions are in good agreement with
experiments for small R/t, thus indicating
again that the assumption of planar sections has
little effect on pure bending over a wide range
of R/t.

There are two circumstances where this
assumption may be significantly violated: when
the frictional stress of sliding on the inner surface
of the part is significant relative to bending and
stretching forces, and when the hardening law is
such that instabilities can occur (assumption 4 in
this section). For pure bending and bending
under tension (i.e., without frictional contact),
the assumption of plane sections remaining plane
is reasonable for most situations, probably down
to R/t ratios as small as 1.
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Fig. 3 Effect of various approximations (Eq 9, 13, 14, 23, and 26) on simulated springback quantities. (a) Springback. (b) Springback ratio. R, radius of primary bending
curvature; r, radius of curvature after springback; ep, plastic strain; FEM, finite element modeling; t, thickness. CPS8 and B21 are ABAQUS 6.2 element designations.

Source: Ref 20

1 mm

rd

P

P

M

L

CL

Fig. 4 Finite element modeling (FEM) mesh (CPS8 plane-stress solid elements shown) and tools for simulation
of pure bending. M, bending moment; P, applied load in four-point bend FEM; rd, tool radius in four-point

bend FEM; L, half-sample length. Source: Ref 20
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Assumption 2: No Change in Sheet Thick-
ness. This assumption is related intimately with
pure bending, for which it is very accurate,
even to small R/t ratios. Thick shell results
(Ref 23, 24) show this directly, although for R/t
ratios less than 1, some thickness changes can
occur (Ref 25). The use of the phrase “thick
shell” in this article refers to a relaxation of some
thin-shell approximations. This is distinct from
the specialized use of this phrase in the mech-
anics literature to refer to a particular, systematic
development of the kinematics of shell theory.
For bending under tension, as presented in the
next section, the thickness change is marked.

Assumption 3: Two-Dimensional Geo-
metry, Either Plane Strain or Plane Stress in
Width Direction. This is not a good assump-
tion for many bending operations. As illustrated
in Fig. 5, as bending occurs in the principal axis,
a curvature develops across the width of the
specimen. The effect is well known (Ref 26, 27).

The origin of this anticlastic curvature is
easily understood: the principal bending causes
lengthening of fibers above the neutral axis
and shortening of those below it. For lengthened
fibers there are Poisson contractions in the width
and thickness directions, while for the shortened
fibers there are expansions. Across the entire
thickness, for pure bending, these very nearly
balance each other, hence assumption 2 (no
change in sheet thickness) is very accurate under
most circumstances.

When the width changes are considered, the
tendency to develop a secondary curvature is
clear. The outer fibers tend to contract laterally
and the inner ones to expand, so a concave-up
curvature is favored. For very wide geometries
(relative to thickness and bend radius), the plane-
strain assumption becomes the limiting case
(although there will always be some anticlastic
curvature near the sheet edges). For narrow
geometries, the anticlastic curvature is un-
impeded by shear terms, and the cross section
adopts a circular shape with radius of curvature
Ra=n/R (Ref 9). The plane-stress assumption
is the limiting case when there are no stresses
resisting the adoption of this shape.

For pure-elastic bending, the shape of the
cross section has been found analytically
(Ref 28), and a literature review of the subject
has appeared (Ref 29). In spite of the limited
accuracy of the result for small R/t (the inaccu-
racy arises by considering the bent configuration
to be parabolic), the results are illuminating
for typical sheet-forming cases.

The most important result is that the con-
figuration of the bent part is determined by a
single dimensionless parameter (b) describing
the normalized width (w) of the specimen, some-
times called Searle’s parameter (Ref 30, 31):

b=
w2

Rt
=

w

R
� w

t
(Searle’s parameter)

(Eq 28)

along with the Poisson’s ratio, n. The actual
shape of the cross section for various values
of b is illustrated in Fig. 6, where the bend radii

are also shown assuming a fixed width of 50
and unit thickness of 1. The results in Fig. 6
correspond to the analytic solution as follows,
where C1 and C2 are numerical constants:

z

t

� 	
=C1 cosh

ya

w

� 	
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+C2 sinh
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� 	 (Eq 29)

where C2,1=
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 17n2ð Þ
p

·
sinh a

2


 �
cos a

2


 �
+ cosh a

2


 �
sin a

2


 �
sinh (a)+ sin (a)

with a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3(17n2)4

p ffiffiffi
b

p
:

For b greater than approximately 100, the
edge regions look similar and the center region
is essentially flat, thus implying that plane-strain
conditions are accurate except at the local edge
regions. For small b, the cross-sectional shape
is essentially circular, which implies that the
stresses resisting this curvature may be safely
ignored (i.e., plane stress).

The transition from the plane-stress limit to
the plane-strain limit is a smooth function of b,
as shown in Fig. 7. The limiting values of b
for specified errors of the effective moment of
inertia are shown in Table 2.

For springback application, the most impor-
tant effect of anticlastic curvature is two-fold:
on the bending moment-curvature relationship,
and on the elastic unloading response. The latter
will depend greatly on the degree to which the
anticlastic shape persists, that is, how much
of the anticlastic shape is retained after unload-
ing. For the case of pure-elastic bending and
unloading, there is no difference in springback,
that is, zero springback, for cases with or with-
out anticlastic effects. Persistent anticlastic
curvature is particularly important for the typical
sheet-forming case bending and unbending, as
is discussed in the last section of this article. For
parts curved in three dimensions, the anticlastic
curvature may manifest itself as wrinkling,
twisting, or generalized distortion. See,
for example, the wrinkled area of the S-rail
(Fig. 1a).

Assumption 4: Constant Curvature (i.e., No
Instability in Shape). This is closely related
to assumption 1. For bending and bending under
tension, instabilities can occur because of shear
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x

y

Fig. 5 Anticlastic surface with two orthogonal curva-
tures. R, radius of primary bending curvature;

Ra, radius of anticlastic curvature.
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3

Fig. 6 Shape of cross sections for various values of
Searle’s parameter, b= (w2/Rt). z, thickness

coordinate; t, sheet thickness; y, width coordinate; w, sheet
width; n, Poisson’s ratio; R, radius of primary bending
curvature; b, Searle’s parameter
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Elastic bending

Fig. 7 The transition from the plane stress to plane
strain, as a function of b= (w2/Rt). w, anticlastic

factor; E, Young’s modulus; I, moment of inertia; M,
bending moment; R, radius of primary bending curvature;
w, width; t, thickness; n, Poisson’s ratio

Table 2 Limiting values of b (w2/Rt) for
specified accuracy limits using plane-stress
or plane-strain bending formulas

b limit

Limiting value of b for an accuracy limit of:

1% 2% 5% 10%

Plane stress
(b5)

2 3 5 34

Plane strain
(b4)

170 42 7 2
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banding, for example. These instabilities are
expected to be of a similar magnitude and
importance and in the same range of strains as
for tension or compression. Therefore, when a
stable hardening law is obtained (without ser-
rated yielding, Lüder’s banding, or yield-point
phenomenon), bending may be assumed to
behave similarly.

Assumptions 5, 6, and 7: No Stress in
the Radial, or Through-Thickness, Direction.
The Neutral (Stress-Free) Axis is the Center
Fiber and is the Zero-Extension Fiber. No
Distinction between Engineering and True
Strain. These three assumptions are closely re-
lated and may be considered together naturally.
To consider these effects profitably, it is simpler
to ignore, for the moment, anticlastic curvature.
Each of these assumptions is closely related to
the R/t ratio to which a flat beam or plate is bent
initially. The effect of bending to R/t less than
approximately 5 produces significant through-
thickness stresses in the interior of the body and
causes the stress-free axis to vary significantly
from the zero-extension fiber. Bending to small
R/t also produces large strains at the outer fibers,
thus making the distinction between true and
engineering strains more significant (Ref 32).

The last of these effects is the simplest to
quantify. In order to do so, consider the elastic-
plastic result of Eq 20, but this time evaluate
the strains in terms of true strains, that is:

ep=e7ee � ln 1+
z

R

� 	
7ln 1+

z*

R

� �
(Eq 30)

Note that again the additional elastic strain that
accrues with strain hardening after the elastic-
plastic transition point has been ignored. This
allows Eq 20 to be rewritten as:

M 0

w
=2

ðt=2

z*

Ken
pz dz

=2K

ðt=2

z*

ln 1+
z

R

� 	
7 ln 1+

z*

R

� �� �n

z dz

(Eq 31)

where, except for the use of true strains, all the
other assumptions remain the same. Evaluation
of Eq 31 shows that the error on M introduced
by neglecting true strain is 3.8% for R/t=1 and
less than 0.64% for R/ti5. Therefore, other
assumptions introduce larger errors than this
one. (Note that a true kinematical description
of bending, whether finite or infinitesimal, is
not used for any derivations here. Only the
evaluation of strain differs.)

The remaining assumptions related to small
R/t can be assessed by the thick-shell solutions
for rigid, perfectly plastic behavior presented
first by Hill (Ref 33) and later in simplified forms
(Ref 4, 5) and less restrictive forms for elastic-
plastic cases (Ref 19). The conditions found
to hold even during bending to small R/t are
plane strain (assumed) and no thickness change.

Maintaining these conditions during bending to
small R/t requires consideration of the quadratic
terms in the value of the circular arc. The results
show that significant through-thickness stresses
develop and the stress-free fiber is no longer
the zero-extension fiber. The details of the deri-
vations may be found in the references provided,
but the general result is that the total true strain
for the more precise form is given by:

e= ln 1+
t

2R

� 	2

+
2z

R

� �� �1=2

(Eq 32)

and the plastic problem must be solved incre-
mentally in order to determine the stress dis-
tribution throughout the plastic deformation.

Figure 8 illustrates the relative magnitude of
the various approximations for pure bending.
The deviations are quite small for the pure
bending case.

Assumption 8: Isotropic, Homogeneous
Material Behavior. For fixed stress state
(plane stress, for example) or strain state (plane
strain, for example), the introduction of aniso-
tropy, elastic and plastic, makes no fundamental
change in the treatment of two-dimensional
bending and springback results. While an ex-
tensive treatment of anisotropy is beyond the
scope of this article, a simple result can illustrate
the general procedure. For more complicated
cases, FE analysis is usually required, and FE
programs usually have capabilities incorporating
material anisotropy.

It is important to note that anisotropy does
not affect the basic equations for the simple
bending case. For the plastic bending, the rela-
tionship between tensile strain at a given fiber
and the fiber location (Eq 3) is independent of
anisotropy. The relationship between the normal
principal stress (sx) and the bending moment
(Eq 2) is also unchanged. For the elastic un-
loading, the relationship governing the change
of curvature remains the same, except that the
modulus is the effective one relating tensile
strain (ex) to normal principal stress (sx), taking
anisotropy into account.

The role of anisotropy may be reflected suffi-
ciently in a generalized elastic relationship:

sx=E 0ex=fEEex (elastic) (Eq 33)

where E 0 is the effective modulus for the given
strain-stress state, and fE is a constant factor
equal to E 0/E.

For the plastic relationship, it should be noted
that strain hardening is usually specified in terms
of effective strain (e) and stress (s) based on a
tensile test:

�s=f (�e) for example �s=K �en (Eq 34)

Using similar notation, the constant factor
reflecting plastic anisotropy and stress-strain
state may be defined (Ref 34, 35):

�e=feex, �s=fssx (Eq 35)

For any fixed anisotropy and strain-stress
state, the values of fE, fs, and fe may be found and

used to complete the basic bending and spring-
back equation, such as Eq 2 to 4.

As an example, consider a sheet with normal
plastic anisotropy according to Hill’s quadratic
yield function (Ref 33). The factors fe and fs
can be derived for a given plastic anisotropy
parameter (Ref 34), r̄, as:

fe=
1+�rffiffiffiffiffiffiffiffiffiffiffiffi
1+2�r
p , fs=

ffiffiffiffiffiffiffiffiffiffiffiffi
1+2�r
p

1+�r
(Eq 36)

The necessary strain-hardening relationship,
sx(ex) in Eq 2, may then be found in terms of a
measured uniaxial hardening law, �s=f (�e):

sx(ex)=
�s

fs
=

1

fs
f (�e)=

1

fs
f (feex)=

1

fs
f fe

z

R

� 	

(Eq 37)

The substitution may be illustrated con-
veniently by taking a particular hardening law,
say �s=K�en:

sx=
K

fs
fe

z

R
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K 1+�rð Þffiffiffiffiffiffiffiffiffiffiffiffi

1+2�r
p 1+�rffiffiffiffiffiffiffiffiffiffiffiffi
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1+�rð Þn+1
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n+1

2

K
z

R

� 	n

=K 0
z

R

� 	n

(Eq 38)

where K 0 represents all of the needed changes.
The same procedure may be applied to any strain
state, tensile hardening law, and fixed plastic
anisotropy.

It should also be noted that an assumption of
symmetric yielding in tension and compression
has been made. For as-received sheet material,
this is usually a reasonably accurate picture of
the stress-strain behavior. However, as is dis-
cussed in the section, “Applied Analysis of
Simple Forming Operations” in this article the
hardening behavior can become complex in re-
verse bending, which is common in many sheet-
forming situations. Under these conditions,
the Bauschinger effect on strain reversal must
be considered. (Strictly speaking, some strain
increment reversal can take place in single bend-
ing, because the neutral surfaces move relative
to the midplane. This effect appears not to have
been analyzed and is likely very small in prac-
tical cases.)
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Fig. 8 Comparison of various approximations for
elastoplastic pure bending.
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Finally, initial material properties are assumed
to be the same at each point in the body.

Assumption 9: Springback Occurs Elasti-
cally. For all pure bending and nearly all
bending under tension cases, this is very accu-
rate. However, contrary to assertions in the
literature (Ref 36), elastic-plastic springback
can occur for bending under high sheet tensions
(approaching and beyond the yield stress)
(Ref 37–40) and when the material behavior is
time-dependent (i.e., via creep or anelasticity)
(Ref 41, 42). A few examples of such situations
are mentioned in the section “Applied Analysis
of Simple Forming Operations” in this article.

For most situations, these effects can be
ignored without greatly affecting the result.
However, it should be noted that unloading itself
may involve inelastic effects (Ref 43) that pro-
duce changes in the observed modulus (Ref 44).
There has been no clear approach on how such
effects can be incorporated in springback ana-
lysis except for adjusting the effective elastic
modulus.

Bending with Tension

The effect of superimposed tension during
bending plays a dominant role in determining
springback, as is demonstrated with simple
analyses. Nearly all sheet-forming operations
involve at least some sheet tension, whether
introduced by remote sections of the part
undergoing deformation, local friction con-
ditions, or the intentional action of a draw bead
or other restraint. Increasing sheet tension to
reduce springback and its variability has been
the principal industrial solution to the problem
of inadequate shape fixability.

Analyses similar to those for pure bending
can be carried out by relaxing just one of the
assumptions listed in the first section, namely the
sixth one, that is, that the neutral (stress-free)
axis is the center fiber and is the zero-extension
fiber. The sheet thickness may change sub-
stantially if the tension is high during bending
(Ref 45) (and particularly for bending and
unbending, which is not considered until the
next section), but this effect is often ignored
for simplicity. (For FE simulation, in the next
section, shell elements usually assume zero
thickness change in one time step, but the thick-
ness is updated at the end of each step.)

Springback solutions for bending with tension
have been presented with various levels of com-
plexity, including elastic, perfectly plastic (Ref
6–13); elastic, power-law hardening (Ref 18, 19,
46–48); elastic, linear hardening (Ref 18, 49, 50);
and rigid, power-law hardening (Ref 51–54).
Extension to more complex cases includes:
biaxially loaded plates (Ref 36), bending to
small radii with tension (Ref 19), the effect on
nonsimultaneous tension and bending (i.e., pre-
bending or postbending) (Ref 51), taking into
account section changes in narrow strips (Ref 7),
the role of nonuniform deformation (Ref 55),

results for laminated sheets (Ref 56), and the
effect on formability and residual-stress dis-
tribution (Ref 57).

Elastic, Perfectly Plastic Result. The
simplest elastic, perfectly plastic solution for
bending with tension is sufficient to reveal the
dominating importance of tension relative to
other variables. Initially considering the thick-
ness constant, the strain distribution through the
sheet thickness is a simple superposition of a
tensile or membrane strain (em) and the bending
strain (eb) as before:

e=em+eb=em+
z

R
(Eq 39)

At the neutral axis (assumed to be the zero-
extension axis), located at z0, the strain is zero,
so an expression relating the membrane strain
and the neutral axis location is obtained:

em=7
z0

R
(Eq 40)

The stress distribution is similar to the one
shown in Fig. 9, which may be integrated to
obtain the overall sheet tension, T, (per unit
width, w) operating:

T

w
=
ðt=2

7t=2

s 00 dz=
ðz0

7t=2

7s 00 dz+
ðt=2

z0

s 00 dz=72z0s
0
0

(Eq 41)

It is convenient to rewrite Eq 41 in terms
of normalized quantities: z0/t, the fractional
location of the neutral axis, and T, the average
sheet tension stress (T divided by sheet width
and thickness) divided by stress to yield the

sheet (s0
0), yielding T= T

wts 0
0

� 	
. In terms of these

reduced variables, Eq 41 becomes:

z0

t

� 	
=7

T

2
(Eq 42)

With the location of the neutral axis known
explicitly in terms of the sheet tension, the
moment may be evaluated in closed form:

M

w
=

s 00t 2

4
17T

2
h i

, or (Eq 43)

M=w

t2

� �
=

s 00
4

17T
2

h i
(Eq 44)

where Eq 44 emphasizes the proper normal-
ization with thickness. The springback may then
be presented in standard and normalized closed
forms with the help of Eq 6 and 14 as:

1

R
7

1

r
=

12M=w

E 0t3
=

3s 00
E 0t

17T
2

h i
(Eq 45)

R

r
=17

3s 00
E 0

R

t

� �
17T

2
h i

(Eq 46)

Equations 45 and 46 ignore the thickness
change that occurs by the action of the sheet
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Fig. 9 Schematic of the stress distribution in a beam or sheet, bent to radius R, with definition of various coordinates
used in the analysis of springback
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tension; that is, final thickness t is assumed to be
equal to original thickness t0. The expressions
may be approximately corrected for thickness
changes by assuming that the final thickness is
related to the original thickness such that the
volume is maintained using the membrane strain
(a linear approximation for the definition of
strain is used for simplicity); that is:

t7t0

t0
=7em=

z0

R
=7

tT

2R
(Eq 47)

where t0 is the initial thickness, and the final
thickness, t, is given by:

t=
1

t0

+
T

2R

� �71

or
t

R
=

1

(R=t0)+T=2

(Eq 48)

which gives an expression for the final thickness
that may be substituted into Eq 45 and 46 to
obtain thickness-corrected versions:
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(Eq 50)

The results represented by Eq 46 and 50 are
shown graphically in Fig. 10. As can be seen
readily, the application of sheet tension sub-
stantially reduces springback. For the perfectly
plastic case, springback disappears when the
normalized sheet tension approaches unity, that
is, when the average tensile stress approaches
the appropriate yield stress. By setting T=0, the
pure bending result (Eq 9, for example) is
obtained.

Rigid, Power-Law Hardening Result. Using
the approach followed previously, the spring-
back predicted for bending with tension can be
derived. Unfortunately, it is not in a form as
convenient as for the perfectly plastic case. The

only additional complexity is that t cannot be
found explicitly in terms of T , so that M cannot
be written as an explicit function of T . It is
simplest to proceed by choosing R/t0 and z0/t0
as independent variables, then evaluating the
sheet tension, bending moment, and thus spring-
back. In this way, springback may be obtained
as a function of sheet tension but not in a closed
equation form.

A power-law hardening law with a yield stress
as in Eq 15 is adopted, and similar assumptions
to the ones mentioned previously are made.
Because total strain is represented by Eq 39,
the stress throughout the sheet thickness is:

s=

s 00+K 0en, e40 or

s 00+K 0
z7z0

R

� 	n

, z4z0

7 s 00+K 0 ej jn

 �

, e50 or
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z07z
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, z5z0

8>>>>>><
>>>>>>:

(Eq 51)

where, as was previously done, the plastic strain
is approximated by the total strain (evaluated
using the linear, small-strain definition) minus
the elastic strain at yield. The normalized sheet
tension and bending moment increment (beyond
perfectly plastic) may then be obtained as:

T=72
z0

t

� 	
+

K 0

(n+1)s 00

t

R

� 	n

·
1

2
7

z0

t

� �n+1

7
1

2
+

z0

t

� �n+1
" #

(Eq 52)
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(Eq 53)

where the current thickness must be evaluated in
terms of z0 using either the true-strain definition

or the small-strain approximation:

t

t0

= exp
z0

R

� 	
� 1+

z0

R

� 	
(Eq 54)

Equation 53 represents the additional bending
moment caused by strain hardening that must be
added to the perfectly plastic moment (Eq 43).
The springback ratio is then evaluated using
Eq 7. The final springback ratio is shown in
Fig. 11.

Corrections to the Simple Power-Law
Hardening Result. It is possible to obtain more
accurate solutions for this case; however, the
equations become rather bulky, will usually
require numerical evaluation of integrals, and
they will differ for each kind of hardening law
considered. (In the truly arbitrary case, a
numerical integration can be carried out to
obtain the appropriate solution.) Nonetheless, it
is useful to illustrate the additional terms that
can be considered for completeness and esti-
mation of importance (still adopting assumptions
1 and 3).

For large T or small R/t (i.e., large strain), the
true-strain definition should be used such that
the strains no longer vary linearly through the
thickness, except approximately:

e=em+eb= ln 17
z0

R
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+ ln 1+

z

R
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= ln 17
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z
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ffi7
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R
+

z

R
17

z0

R

� 	
(Eq 55)

Inclusion of the large strain formula via Eq 55
will usually require numerical evaluation of
the integrals to obtain T and M. Furthermore,
bending to large curvatures (R/t less than
approximately 5) introduces errors in the other
approximations that are more significant than
the small strain form (see the section “Approx-
imations in Classical Bending Theory” in this
article). Forms equivalent to the last approximate
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one shown in Eq 55 have been used in the deri-
vations already presented.

Figure 12 shows that the use of true or engi-
neering strain (et) has little effect on either
the thin-shell or thick-shell solutions. Even at
R/t=2, the error is a few percent, and it is
inconsequential for R/ti5, where the overall
approach applies.

The proper plastic strain can be found by
subtracting the elastic strain, which depends
on the current flow stress of the material:

ep=et7
s 0f
E 0

=et7
1

E 0
s0+Ken

p

� 	

=et7
s0

E 0
+

Ken
p

E 0

(Eq 56)

Equation 56 cannot be rewritten to find ep

explicitly, as required for substitution in the
hardening law, but the result may be used
nonetheless in evaluating the required integral
numerically. Note that the third term on the right
side of Eq 56 has been ignored throughout
the previous derivations, thus enabling explicit
evaluation of ep from et. This has little effect
for materials with typical hardening laws
(Fig. 13).

For large R/t (small bending strain), the elastic
core may make an appreciable contribution to
the evaluation of the bending moment. (This
was previously illustrated for the nonhardening
case.) In this case, the integrals for T and M are
carried out over only the part of the thickness
subjected to plastic strain. The results for hard-
ening can be added to the elastic, perfectly
plastic result (e.g., Eq 12) to obtain the full
solution, as was illustrated in the previous sec-
tion for pure bending.

The result for the plastic part of these quan-
tities, say T and DM, is the same as Eq 52 and 53,
with z0 replaced by z1* and z2*, where z1* and z2*

are the location of the transitions from elastic
to plastic behavior above and below the

neutral axis. That is:
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Care must be taken using Eq 57 and 58 that z0,
z1*, and z2* are not assigned nonphysical values
outside of the sheet thickness. That is, the fol-
lowing rules apply to all of the calculations
illustrated so far:
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Evaluation of Eq 58 and 59 (Table 3), shows
that for 05T51, the maximum error caused by
neglecting the elastic core is 0.17% (R/t=25) in
sheet-forming range and grows to 4.6 and 13.8%
for R/t of 100 and 200, respectively.

The foregoing results and discussions show
that for the typical sheet-forming regions (55R/
t525), the elastic response of the material may
be safely ignored, along with more complicated
treatments of the strain and thick shells. For large
R/t, the elastic strains become significant, and for
smaller R/t, the thick-shell approach and proper
plastic-strain measures become significant.

Applied Analysis of
Simple Forming Operations

For a typical industrial sheet-forming opera-
tion, the sheet workpiece is pressed between
nearly rigid tools with draw-in constraints
enforced, usually via draw beads. The general
operation may be arbitrary in three dimensions,
and conformance to the tools is by no means
assured (Ref 58), thus making it impossible to
know, a priori, the bend radius of the sheet.
Many material elements undergo bending and
unbending with superimposed tension, whereas
the closed-form analyses usually assume a flat
starting configuration in both in-plane directions.
Determining sheet tension, which was shown
in the last section to be critically important in
springback, is complex, depending on friction,
bending and unbending, and boundary con-
straints. All of these variables may change
throughout the part and the forming stroke, over
small distances and times.

For arbitrary, three-dimensional (3-D) form-
ing operations, FE analysis (or a similar numer-
ical method) is required throughout the forming
operation to obtain a final, as-formed state. This
configuration (with tool contact forces) may
then be used as a basis for a general springback
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analysis using the same, or a different, FE model.
Such analysis is discussed subsequently; how-
ever, the application of two-dimensional (2-D)
closed-form methods is possible and profitable
for some classes of forming operations that are
first mentioned.

In spite of the difficulties of applied spring-
back analysis discussed previously, certain
applied problems have sufficiently restrictive
characteristics to provide a basis for closed-form
or empirical analysis. Pure bending by dies in
two dimensions, for example, may be analyzed
using closed-form bending solutions if the work-
piece is assumed to conform to the punch sur-
face. Results have been presented for U-bending
and V-bending (Fig. 14) using such analysis
(Ref 32, 59–63) and empirical approaches
(Ref 36, 64–66). A closely related application
in sheet metal forming is flanging, for which
analysis (Ref 67) and empirical approaches
(Ref 68) have been presented.

Closely related operations involving signifi-
cant tension are often called stretch-bend or
draw-bend problems. These operations involve
the bending and unbending of sheet as it is pro-
gressively drawn over a die. The typical appli-
cation is often referred to as a top-hat section
(Fig. 1c, 15a) and may be called channel form-
ing, among other common names. For large
draw-in, the principal springback typically
occurs in the form of sidewall curl, which is the
curling of the material that was drawn over the
die radius (and which was flat while the work-
piece was held in the dies during the operation
itself). Various analyses based on the methods
presented in the last section have appeared (Ref
23, 47–54, 57, 69, 70) and empirical methods
have been applied (Ref 71, 72). Such analysis
has been extended to consider the differing
roles of postbending tension versus prebending
tension (Ref 47), laminated materials (Ref 56),
and nonuniform bending (Ref 55).

Much of the experimental work appearing in
the literature for draw bending must be examined

critically because the tensile stress or load is
often not carefully controlled or measured. In a
few exceptional cases (Ref 53, 73, 74), direct
control was imposed to obtain draw-bend results.
For other work, experiments rely on indirect
control of tension via friction, draw beads, or die
clearances to establish the essentially unknown
value of sheet tension. As shown in the last
section, the tensile stress has a dominant effect
on springback, particularly for values approach-
ing the yield tension, thus leading to large
uncertainties in measured results unless the
tensile stress is known accurately.

A wide range of experimental data for a draw-
bend problem from various sources appears
as part of the NUMISHEET ’93 U-Channel
Benchmark (Ref 75). Geometry, material, lubri-
cation, and forming parameters were fully
specified by the conference organizers, and
numerous laboratories were asked to carry out
independent measurements and simulations.
The results, shown in Fig. 15(b), illustrate the
wide scatter that was obtained. In general, the
experimental scatter was greater than or equal
to the simulation scatter, illustrating the diffi-
culty in carrying out such experiments with
normal industrial forming machinery. It appears
that the scatter of experimental results is typical
for experiments employing indirect control of
sheet tension. The sources of error for the FE
simulations are considered in more detail

subsequently, along with a summary of draw-
bend results for which the sheet tension is
carefully controlled.

Finite Element Analysis

It is only through a complete analysis of the
forming operation that the critical variables in
springback analysis may be obtained reliably,
notably sheet tension, prespringback part shape,
distribution of internal properties (such as yield
strength), and external loading/internal stresses
prior to springback. The geometric complexity of
general bodies with curves in three dimensions
(such as typical autobody parts, for example)
requires discretized treatment. However, finite
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Table 3 Maximum error in moment caused
by neglecting elastic core for 05T51, low-
strength steel (Eq 26)

Maximum error in moment, %

R/t T=0 T=0:2 T=0:5 T=0:7 T=1:0

5 0.002 0.002 0.002 0.002 0.002
25 0.06 0.06 0.06 0.07 0.09
100 1.09 1.12 1.27 1.5 2.4
200 4.8 4.93 5.73 7.04 10.4

R/t, ratio of bending radius to thickness; T , normalized sheet tension

Fig. 14 Schematics of V-bend and U-bend forming
operations
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element analysis (FEA) offers several other
advantages as well. Most FE programs readily
accept complex laws of material behavior,
including anisotropy, elastic-plastic behavior,
rate sensitivity, complex hardening, and so on.
The more sophisticated programs handle large
strain and rotation properly, and arbitrary geo-
metry is treated naturally.

The FEA of sheet forming is well established
and now routine (see, for example, various
benchmark tests on the subject) (Ref 1, 75–78).
The FEA of springback, while appearing to be
a simpler problem, requires higher accuracy
of both the forming solution and throughout
the springback simulation (Ref 39, 41, 79, 80).
The choice of element (Ref 38), unloading
procedure (Ref 39, 55, 81), and integration
scheme (Ref 38, 39, 62, 80, 82, 83) must all
faithfully reproduce the stresses and part con-
figuration.

In view of the need for high precision of stress
results, implicit forming simulation and im-
plicit springback schemes seem the most likely
to succeed (Ref 82). However, claims of success
have appeared for nearly every possible combi-
nation of procedure: implicit/implicit (Ref 38,
39, 41, 84, 85), explicit/implicit (Ref 79, 82, 83,
86, 87), explicit/explicit (Ref 88, 89), and one-
step approaches (Ref 90).

In the section “Draw-Bend Experience” in this
article, these general observations are probed
with tests and simulations corresponding to
draw-in over a die radius in a press-forming
operation. In order to understand those results,
a brief introduction to the FE method is first
presented.

A presentation of the FE method is beyond
the ambit of this article. Nonetheless, an under-
standing of the basic method is helpful in under-
standing the particular constraints presented
by springback analysis following forming
analysis.

The following is based on a presentation
of FEA particularly aimed at metal forming
(Ref 91). Numerous books on the subject of
general-purpose FEA have appeared. References
92 to 97 may be of interest for those seeking
additional information. They are presented in
approximate order of increasing difficulty.

The FE method applied to forming analysis
consists of the following steps:

1. Establish the governing equations: equili-
brium (or momentum for dynamic cases),
elasticity and plasticity rules, and so on.

2. Discretize the spatially continuous structure
by choosing a mesh and element type.

3. Convert the partial differential equations
representing the continuum motion into
sequential sets of linear equations represent-
ing nodal displacements.

4. Solve the sets of linear equations sequen-
tially, step forward and repeat.

Items 1 and 2 of this list are of particular
importance for springback analysis. For item 1,
many choices of material model may be used,

but most forming simulations rely on two basic
governing equations: either static equilibrium
is imposed in a discrete sense (i.e., at nodes
rather than continuous material points), or else a
momentum equation in the form of F=MA is
satisfied for dynamic approaches.* For nearly
all commercial codes used for metal forming,
the static equilibrium solutions are obtained
with implicit methods that solve for equilibrium
at each time step by iteration, starting from a
trial solution. Thus, such programs are often
referred to as static implicit. Examples of static
implicit include ABAQUS Standard (Ref 98)
and ANSYS (Ref 99). Forming programs that
solve a momentum equation typically use ex-
plicit methods that convert unbalanced forces
at each time increment into accelerations but
do not iterate to find an assured solution.
Examples include ABAQUS Explicit (Ref 100)
and LS-DYNA (Ref 101).

The choice of element refers to the number
of nodes per element, the number of degrees
of freedom at each node, and the relationship
with the assumed interior configuration (among
other things) that define the element type. The
nodal displacements are the primary variables
to be solved for. A fixed relationship between
the displacements of points within the finite
element to the displacements of the nodes is
assumed. In this way, the continuous nature of
the deformation within the element is related
to a small number of variables. Of course,
the distribution in the element may be quite
different from the continuum solution, but this
difference can often be progressively reduced
by refining the mesh, that is, by choosing
finer and finer elements. By comparing the
solutions, an adequate mesh size can be
determined.

The essence of the FE method, as opposed
to other discrete treatments such as the finite
difference method, lies in an equivalent work
principle. As described previously, the con-
tinuous displacements within an element are
represented by a small number of nodal dis-
placements (and possibly other variables) for
that element. Similarly, the work done by the
deformation throughout the element is equated
to the work done by the displacements of the
nodes and thus are defined equivalent internal
forces at these nodes.** The internal work is
computed by integrating the stress-strain relation
over the volume of the element. This frequently
cannot be accomplished in closed form, so cer-
tain sampling points, or integration points, inside
the element are chosen to simplify this inte-
gration. The number and location of integration
points may be selected to provide the desired
balance between efficiency and accuracy, or
between locking and hourglassing, as mentioned
subsequently.

For forming and springback analysis, the
procedure consists of applying boundary con-
ditions (i.e., the motion of a punch or die, the
action of draw beads, frictional constraints,
and so on), stopping at the end of the forming
operation, replacing the various contact forces

by fixed external forces (without changing
the shape of the workpiece), and then relax-
ing the external forces until they disappear.
The last step (or steps) produces the springback
shape.

Because the choices of program, element, and
procedure usually apply to both the forming
and springback steps, it is difficult to separate
discussions of accuracy between the two stages.
The deformation history established in the
forming operation is used in the springback
simulation via the final shape, loads, internal
stresses, and material properties.

Two choices are of particular importance in
forming and springback analysis: the type of
solution algorithm/governing equation, and the
type of element. These two aspects are discussed
as follows.

Explicit and Implicit Programs. The first
choice facing one wishing to do forming/
springback analysis is the type of program. As
noted previously, the two standard choices are
a dynamic explicit program or a static implicit
program, although several companies have
both options available, sometimes even during
a single simulation. (Also, there are other
variations available, such as dynamic solutions
solved implicitly.) Table 4 lists general advan-
tages and disadvantages of the two methods.

Most applied sheet-forming analysis in indus-
try currently uses dynamic explicit methods. The
complicated die shapes and contact conditions
that occur in complex industrial forming are
more easily handled by the very small steps
required by the dynamic explicit methods. The
stress solutions are of little importance. Often,
even simulations that are inaccurate in an ab-
solute sense can be used by experienced die
designers to guide sequential modifications
leading to improved dies. On the other hand, if
a certain set of tools cannot be simulated suc-
cessfully, that is, with an implicit method that
does not converge, the die improvement process
is stymied completely.

As is shown in the next sections, springback
simulation is much more sensitive to numerical
procedure than forming analysis. The reason is
simple: springback simulation relies on accurate
knowledge of stresses throughout the part at
the end of the forming operation. Conversely,
forming analysis is primarily concerned with

*It should be noted that nearly all commercial forming
operations may properly be considered static. That is, the
inertial forces are orders of magnitude smaller than the
deformation forces and thus may be safely ignored. The use of
dynamic solutions to solve such quasi-static problems is for
numerical convenience, with a corresponding loss of accuracy
whenever the inertial forces are magnified (by mass scaling, for
example). Thus, mass scaling must always be examined to
quantify the errors introduced.

**Equilibrium in a weak sense is imposed by requiring that the
sum of all such internal forces is zero at each node. Compat-
ibility in a weak sense is automatically satisfied because the
common nodes of adjacent elements have a single displace-
ment. These are called weak forms because they do not ensure
equilibrium or compatibility throughout the entire body, only
at the nodes.
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the distribution of strain within the shape of the
part. The shape of the final part is largely deter-
mined by the shape of the dies because, near the
end of the forming operation, contact occurs
over a large fraction of the workpiece. Therefore,
the oscillatory nature of the stresses obtained
at the end of a dynamic explicit analysis may
be unsuited for accurate springback analysis.
Poor and uncertain results have been reported
(Ref 82).

Developments are currently proceeding in
attempts to artificially smooth or damp dynamic
explicit forming solutions in the hope of pro-
viding a stable base for springback calcu-
lations. It is too early to be confident that these
approaches will be successful. Certain isolated
results can appear promising; however, as is
shown later in this section, it is not unusual to
obtain fortuitously accurate results in springback
analysis. For this reason, great caution should
be used in drawing conclusions from a small
number of apparently accurate predictions.

The foregoing refers to the drawbacks of a
dynamic explicit simulation of a forming
operation prior to a springback analysis. The
springback simulation itself is also much better
suited to implicit methods because the operation
is dominated by quasi-static elastic deformation
that is computed very inefficiently by dynamic
explicit methods. For this reason, implicit
springback analysis is often favored even after
explicit forming analysis.

It is for these two reasons that static implicit
methods are better suited to forming analysis
where accurate springback predictions are re-
quired. The obvious drawback is the uncertain
convergence of current versions of such
methods.

Choice of Element. For sheet-forming ana-
lysis, two principal kinds of elements are popu-
lar, although nearly limitless variations are found
within each category. The major choices are
solid elements and thin-shell elements.

The simplest to understand is the standard
eight-node, trilinear solid element, sometimes
called a brick element. (When an element is
described as linear or quadratic, it refers to the
polynomial order of the shape function, that is,

the mapping equation that relates the motion of
the nodes to the motion of the continuous interior
points in the element. In a linear element, the
displacements of interior points vary linearly
with their original positions. Trilinear refers
to a shape function that is linear in all three
dimensions.) The incompressibility constraint
of plastic deformation is readily adapted with
this element, and it is used for a variety of struc-
tural applications, including bulk forming. The
major disadvantage is simple: because many
such elements are required through the thick-
ness of the sheet, particularly to accommodate
springback analysis, the final number of degrees
of freedom for applied problems is enormous
and the resulting computation time far beyond
today’s (2005) computers. Such elements are
also typically very stiff in bending, thus making
them very poor for springback. One improve-
ment is the use of quadratic or higher-order
elements, which have better bending behavior,
but which add even more degrees of freedom
and further aggravate the overwhelming com-
putational intensity.

Many variations of the standard brick element
have been introduced with the goal of enabling
use of coarse meshes without locking (non-
physically high stiffness in certain modes of
deformation). Unfortunately, these numerical
corrections often introduce the converse
phenomenon of hourglassing (nonphysically low
stiffness in certain modes of deformation). New
solid elements can balance these problems well,
but often at the cost of complexity (Ref 102,
103). Unfortunately, even with elements opti-
mized for coarse meshes, the numbers still
overwhelm today’s (2005) computers for applied
sheet-forming analysis, because very small fea-
tures must be simulated.

By far, the predominant element used for
sheet-forming analysis is the thin-shell element,
or simple shell element. One can imagine
generating such an element by starting with
solid elements and shrinking one dimension to
small thickness, a strategy that has been pur-
sued (Ref 104, 105). Unfortunately, this proce-
dure leads to locking, and special integration
methods (reduced integration, selective reduced

integration, assumed strain methods, and so
on) are then necessary to recover reasonable
behavior.

Typical shell elements for sheet forming are
based on some version of thin-shell theory,
which itself makes assumptions about the strain
and stress state throughout the body. They may
be triangles or quadrilaterals, although quad-
rilaterals are more common. There is no real
thickness to the elements, so clearances between
die faces can be a problem in FE simulations
where that aspect is important. Usually, the strain
is assumed to vary linearly through the “thick-
ness” of the shell for purposes of evaluating the
stresses and work of deformation.* Likewise,
through-thickness stresses are usually ignored.
The usual procedure introduces two new degrees
of freedom at each node corresponding to the
slope or local rotation of the material plane at
that location.

The advantages of shells for applied sheet
forming and springback analysis are so per-
suasive in today’s (2005) computing environ-
ment that solids are seldom used except for
research or when certain conditions are present.
These conditions include critical die clearances,
two-sided contact, significant through-thickness
stresses, and R/t ratios less than 5 to 6. Out-
side of these cases, shell elements are many
times more efficient, and they capture the
necessary phenomena in most sheet-forming
operations, which are dominated by bending
and stretching.

Draw-Bend Experience

The advantages and pitfalls of FEA of
springback for many sheet-forming operations
are revealed by the draw-bend test (Fig. 16),
which closely represents the situation in channel
forming (Fig. 14b, 15a) and many other press-
forming operations. The advantage of the test is
that sheet tension may be closely controlled.

The material in the test is drawn over a round
tool under the action of a pulling displacement
(and corresponding front force) and resisting
force (back force). The workpiece may or may
not conform completely to the tool surface when
under load; it undergoes bending and then
unbending under tension, then rebending under
the final unloading when it is released from the
fixtures. When released, the drawn length of
the strip specimen adopts a final radius of cur-
vature (r 0). This is precisely analogous to the
channel-forming operation, where the pulling
displacement is provided by the punch dis-
placement, the back force is provided by a draw
bead or frictional resistance over a binder

Table 4 Advantages and disadvantages of static implicit and dynamic explicit finite element
programs

Program type Advantages Disadvantages

Static implicit � Known accuracy
� Equilibrium satisfied
� Smooth stress variation
� Elastic solutions are possible
� Unconditionally stable

� Solution not always assured
� Complex contact difficult to enforce
� Long computer processing times for complex

contact

Dynamic explicit � Solution always obtained
� Simple contact
� Short computer processing times

with mass scaling

� Uncertain accuracy
� Equilibrium not satisfied in general
� Mass scaling introduces error in static problems
� Oscillatory stress variation
� Elastic solutions are difficult and slow
� Conditionally stable

*In the limit of no thickness, and consequently no bending
stiffness, a thin-shell element becomes a membrane element.
These elements are efficient because they do not require
additional degrees of freedom at the nodes, but they are
unstable in bending, a common mode for many sheet-forming
operations.
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surface, and the final radius of curvature of the
drawn section is referred to as sidewall curl.
When the drawn distance is sufficiently large, the
final springback changes are dominated by the
sidewall curl (radius r 0) rather than the changes
in the small region in contact with the tool at the
end of the test.

Results of draw-bend tests and parallel FE
simulations (Ref 40, 74) form the basis for the
following observations.

Numerical Parameters. Finite element
sensitivity studies (Ref 38, 39, 106) of the draw-
bend test revealed that accurate springback
prediction requires much tighter tolerances and
closer attention to numerical parameters than
does forming analysis. Furthermore, the tighter
tolerances must be maintained throughout the
forming operation; that is, it is not sufficient to
do a coarse forming simulation followed by a
precise springback simulation (Ref 82).

Using meshes, tolerances, and numerical
parameters typical for forming analysis to ana-
lyze the draw-bend test gave nonphysical
predictions, including, under some conditions,
simulated springback opposite to the direction
observed. Figure 17(a) (Ref 38) shows the initial
simulations and the final ones (i.e., with appro-
priate choices of model parameters). A mesh
size four times finer along the draw direction
was required, combined with a number of inte-
gration points ten times larger than normal.

The FE sensitivity results based on the draw-
bend test may be summarized as:

� The finite elements in contact with tooling
should be limited in size to approximately 5
to 10� of turning angle. This is approximately
2 to 4 times the refinement typically recom-
mended for simulation of forming operations.

� The convergence tolerance and contact tol-
erance must typically be set tighter than for
forming analysis. There are a variety of ways
to define such measures, depending on the
programs used, so again, the best policy is
to refine the measure until the differences
become insignificant.

� While most applied sheet-forming analyses
use shell elements with three to seven inte-
gration points through the thickness, up to
51 integration points are required to assure
simulated springback results within 1% of the
“converged” solutions. (Converged solutions
were obtained by using very large numbers
of integration points, until no appreciable
change in springback was observed.) More
typically, 25 integration points were found
to be sufficient for many simulations.

The last of these conclusions represents a
dramatic divergence from current practice and
remains surprisingly controversial, with re-
searchers continuing to recommend using num-
bers of integration points ranging from five to
nine (Ref 107–111). For this reason, non-FEA
numerical studies (Ref 112, 113) were under-
taken to explore the errors associated with
numerical integration for finite numbers of inte-
gration points. Results from the FE sensitivity
studies are presented first, then those from the
non-FEA numerical studies. The two approaches
serve to confirm the main conclusions.

Figure 17(b) (Ref 39) shows a typical result of
the FE sensitivity analysis for tests of 6022-T4
aluminum with R/t of 10. In one case, for a
normalized back force of 0.9 (relative to the
force to yield the strip in tension), 35 integration
points were required to meet the 1% tolerance
requirement, while for a back force of 0.5, only
21 integration points were required. It is impor-
tant to note the following points with respect
to these results:

� The choice of R/t, back force, and other
process and material parameters changes the
number of required integration points. How-
ever, there is currently no good way to predict
the exact number before a simulation is car-
ried out, because many of these quantities are
available only after solving the boundary-
value problem. As shown subsequently, the
effect of process variables on the required
number of through-thickness integration
points can be determined. Therefore, 25 to
51 integration points are recommended for
general cases (if 1% accuracy of springback
prediction is desired). As with all FEA, the
best policy is to refine the parameters (number
of integration points, in this case) to verify
that no significant changes take place with
continued refinement.

� It is possible, by chance, to obtain accurate
results for a given forming problem with a
small number of integration points. Note that
the results in Fig. 17(b) cross the converged
solution several times, with as few as three
to five integration points. However, the result

is fortuitous and cannot be assured unless
many more integration points are employed.
Extrapolating from this result may explain
why seemingly rough simulation techniques
(such as dynamic explicit solutions, which
show oscillatory stress behavior) can produce,
with carefully selected (postsimulation) para-
meters (or sufficient luck!), accurate spring-
back results. The best way to verify the
robustness and predictivity of such solutions
is by changes of the critical parameters to test
whether the solution is a stable one.

� Many 3-D forming operations are much
stiffer than the 2-D draw-bend geometry
because of the final form of the part. It is
unknown what effect this has on the need for
numerical accuracy. However, it is clear
that for smaller springback, a larger percen-
tage error may be acceptable in terms of
the overall geometry changes. Thus, it may
not be necessary to demand a 1% springback
accuracy; instead, perhaps 10% is adequate.
In such cases, the number of integration points
may be reduced.

The FEA sensitivity results for the draw-bend
test can be understood with the aid of a related
but simpler problem: the springback of a beam
subjected to an applied R/t and tension force.
That is, the state after forming is known analy-
tically, and only the springback is computed,
both analytically and numerically. The spring-
back is proportional to the applied moment
(Eq 4) so that any fractional numerical error
that occurs in evaluating the moment produces
a corresponding fractional error in the com-
puted springback. The analytical moment (and
springback) may be computed exactly for this
problem, and thus, the error induced by the
numerical integration scheme during the spring-
back simulation alone can be evaluated sep-
arately from other effects. This error is less
than the combined errors that can occur during
both the forming and springback stages of a
simulation.

The following results are extracted from more
detailed publications that should be consulted
by those seeking more complete information
(Ref 107, 108). Equations 57 to 62 represent
the analytical tension and moment calculations.
Material models were adopted representing a
low-strength steel and high-strength aluminum
(Eqs 26, 27). Numerical integrations were
carried out with three common choices of inte-
gration rules: trapezoidal (Ref 114), Simpson
(Ref 115), or Gauss (Ref 116). Figure 18 presents
the fractional moment error for the low-strength
steel bent to R/t=5 using a trapezoidal inte-
gration rule with 51 integration points through
the thickness (NIP) for various normalized sheet
tension forces. (The normalized sheet tension
force is defined by dividing the applied tension
force by the force to yield the sheet, which
is equal to the yield stress times width times
thickness of the sheet.) The range of sheet
tensions considered is from zero (pure bending
case) to Tmax, where Tmax is the normalized sheet

Free rolling
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Region 3 (r ′)

Region 4

Region 2 (R ′)

Original position Final position

X=40 mm/s

∆X=127 mm

R
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∆θ

.

Fig. 16 Schematics of the draw-bend test and final
configuration of the unloaded specimen. Fb,

normalized back force; R, tool radius; R 0, radius of curva-
ture of region in contact with tool, after unloading;
r 0, radius of curvature in curl region, after springback;
Dh, springback angle; DX, displacement, the distance
between the original and final positions; _X, displacement
rate
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tension force where the entire thickness of the
sheet is plastically deforming; that is, the elastic
core has moved to the edge of the sheet. For the
low-strength steel at R/t=5, Tmax is 2.06.

Two conclusions can be drawn from the set of
computations shown in Fig. 18. First, the errors
fall into a range depending on the exact choice of
parameters. For some particular cases, the error
may be zero, while at nearby adjacent states the
error may be maximum. (For Fig. 18, this effect
can be observed by small changes of the nor-
malized tension force.) The behavior is oscilla-
tory (as most easily seen in Fig. 18 at smaller
tension forces), depending on where the inte-
gration points fall relative to the actual through-
thickness stress distribution. The smooth lines
drawn on Fig. 18 represent the assured error
limit, that is, the limit of error in the vicinity of a

given set of conditions. For any set of conditions
and numerical integration choices, the numerical
integration error will always be less than or equal
to this assured error limit, but the actual error in
the nearby vicinity of those conditions may be
anywhere from zero to this value. In this manner,
the bounding error limit can be defined.

The second conclusion illustrated by Fig. 18
is that the assured fractional moment error (or,
more succinctly, limiting error) increases for
increasing sheet tension. This can be understood
in terms of the decreasing moment with increas-
ing sheet tension. Thus, a given absolute error
in reproducing the analytical stress distribution
by numerical integration technique represents
a larger fractional error of moment (or spring-
back). While assured fractional moment error is
increased for larger sheet tensions, note that the

oscillatory behavior still exists, so it is possible
in the vicinity of any sheet tension to obtain a
particular result with nearly zero error. Such an
isolated result is fortuitous and should not be
relied on to estimate future performance.

A comparison of the three tested integration
methods (Fig. 19) shows that no single integra-
tion method works best throughout the range of
parameters. In view of the oscillatory nature
of the error, for any given set of conditions, any
one of these may outperform the other two.
In Fig. 19, the unsigned assured error limit is
presented. This error limit is smaller at low back
forces for trapezoidal integration, while Gauss
integration is better at higher normalized ten-
sion forces. This may be simply understood by
noting that the stress distribution is smoothest
in this region, most like a polynomial, and thus
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is reproduced better by Gauss integration in
general. Because the largest possible fractional
errors occur at larger tension forces, the Gauss
integration scheme is a good choice (but by no
means the best for all cases).

The role of R/t in affecting integration error
is illustrated in Fig. 20. A maximum error is
defined, as shown in Fig. 18 and as plotted in
Fig. 20. That is, this quantity represents the
assured fractional error limit for a range of nor-
malized tension forces between 0 (pure bending)
and Tmax (where the entire thickness yields
plastically in tension). This maximum error is
of interest because for most forming operations,
the value of the tension force is unknown ex-
cept after the forming simulation is completed.
Furthermore, it varies with time and location
in the workpiece, as does R/t. Therefore, the
maximum error must be considered as the
numerical tolerance when performing a forming/
springback simulation without a priori knowl-
edge of the sheet tension. The maximum error is
highest for small R/t values and lowest for larger
R/t. Note the different scales on Fig. 20(a) and
(b), illustrating the larger fractional errors for the
low-strength steel.

A summary of many results such as those in
Fig. 18 to 20 is presented in Fig. 21 and Table 5.
Both may be used to determine the number of
integration points needed to assure a limiting
fractional error based only on numerical inte-
gration errors. (Of course, other sources of error,
for example, incurred during the forming simu-
lation or by other numerical aspects, can con-
tribute to larger overall errors.) Note that Gauss
integration is usually more efficient because, in
the regime where the fractional springback errors
are largest, it reproduces the analytical result
best. The required number of integration points
for a specified accuracy varies widely. For an
assured 1% error tolerance, Gauss integration
requires between 17 and 68 integration points
through the thickness (depending on R/t and

material properties), while Simpson integration
requires between 35 and 139 integration points
through the thickness. For 10% tolerance, Gauss
integration requires 5 to 16, depending on R/t
and material properties, while Simpson requires
9 to 41.

Choice of Element, R/t, Anticlastic
Curvature. Shell elements are preferred for
springback simulation of sheet metal forming,
because they can capture the bending behavior
accurately while being computationally efficient
as compared with solid elements, as long at the
material thickness is small relative to the radius
of bending. Membrane elements exclude bend-
ing effects and thus miss the major part of
springback, while solid elements are very time-
consuming for use with sheets because numerous
layers must be used through the thickness (for
the same reasons that many integration points
are required for shells).

Draw-bend tests and simulations for drawing-
quality special killed steel (Fig. 22a) showed
that shell elements are accurate for R/t ratios
as small as approximately 5 or 6, while solid
elements are needed for smaller values, at
much increased cost. Solid elements capture the
through-thickness stresses that become signifi-
cant for small R/t, but the typical brick elements
with linear shape functions are very stiff in
bending and provide poor results (Fig. 22b). For
this reason, higher-order solid elements are
preferred. For larger R/t ratios, shell elements
normally provide better accuracy at much lower
computation time.

One surprising result from the draw-bend
simulations is that 3-D elements are required
for the nominally 2-D problem (Fig. 22b). The
answer lies in anticlastic curvature, discussed
more fully in the section “Approximations
in Classical Bending Theory” in this article.
This is the secondary curvature that develops
orthogonal to bending because of differential
lateral contraction at the inner and outer

surfaces. As shown in Fig. 23, 3-D shell elements
and 20-node quadratic solid elements capture
the anticlastic curvature well, whereas 2-D
elements and linear solid elements do not.
Poor treatment of anticlastic curvature is the
principal source of error in springback predic-
tion for the draw-bend tests with back forces
near the yield force. For arbitrary 3-D parts, the
analog of anticlastic curvature causes distor-
tion or wrinkling out of the plane of bending,
as can be seen in the dimpling of the S-rail
(Fig. 1a).

Unloading Scheme. Another surprising
result from the draw-bend simulations is the
importance, under some conditions, of plastic
deformation during unloading. A comparison
of 2-D simulation results is shown in Fig. 24,
where the unloading was carried out purely
elastically and elastic-plastically. Significant
differences of the springback angle and resi-
dual stress are evident. However, it should be
noted that in spite of the small plastic con-
tribution to unloading behavior under some
circumstances, the choice of path taken during
unloading seems to have no significant effect
on the final configuration (Ref 39). That is, the
various unloading schemes and sequences for
removing the tool constraints seem to give
nearly identical results. It should also be noted
that for many springback problems, particularly
those with fairly small tension forces relative
to yielding, the unloading will be purely
elastic.

Plastic Constitutive Equation. At least two
aspects of the plasticity law are important for
springback prediction: plastic anisotropy (yield
stress and strain ratios) and strain hardening.
In particular, strain hardening must be suitable
for a path reversal in draw-bend or channel-
type forming, as is encountered when a material
element undergoes sequential bending and un-
bending with superimposed tension (Ref 117).
The yield surface anisotropy affects not only
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the loaded bending moment but also the anti-
clastic curvature via the lateral strain ratios
(related to the plastic anisotropy parameter, r, in
various directions).

Table 6 compares the standard errors of fit
for the simulated draw-bend springback angles
for 6022-T4 aluminum alloy with R/t=10 and
normalized back forces ranging from 0.5 to 1.05.

The results illustrate that choosing an anisotropic
yield function gives no guarantee of improved
results. The Hill 48 quadratic yield function
(Ref 23) gives significantly poorer fit than the
von Mises isotropic yield function. The reason
for this result is shown in Fig. 25, where the
variation of yield stress and strain ratio with
direction is poorly matched by the Hill 48 yield
function and well represented by the Barlat YLD
96 (Ref 118) yield function. These results are
presented and discussed in more detail in the
literature (Ref 119), including excellent final
prediction of anticlastic curvature. There are
likely compensating effects of the yield stress
variance and strain-ratio variance for the von
Mises simulations that are not easily deconvol-
uted in predicting the final springback angle.

For all choices of yield function, taking
into account the Bauschinger effect improves
the prediction, as would be expected based on
the reverse straining that takes place for most
material elements throughout the draw-bend
process (Ref 119).

Summary. The relative errors induced by
the various factors discussed previously are
illustrated in Fig. 26. Using normal forming
simulation parameters (mesh size, integration
points) and standard plastic laws (von Mises,
isotropic hardening) for 2-D springback simu-
lation leads to very poor results, including
springback of the wrong sign (Fig. 17a, for
example). The overall standard error of fit to the
measured values is 26�. The 2-D simulations
using adequately selected numerical parameters
reduce the error to 19� degrees (plane strain)
and 11� (plane stress). Use of 3-D shell elements
for simulation (i.e., taking anticlastic curvature
into account) reduces the error to 5.7�. Incor-
poration of the proper yield function form,
Barlat YLD 96 (Ref 118), and a treatment of the
Bauschinger effect (Geng-Wagoner hardening,
Ref 119) reduce the final error to 1.2�, approxi-
mately the same magnitude as the experimental
scatter of the measurements.

Table 5 Number of through-thickness integration points (NIP) required for a specified
springback accuracy. Numbers without parentheses refer to Gauss integration; numbers in
parentheses refer to Simpson integration

Maximum error 1% 5% 10% 50%

Low-strength steel (0jTjTmax)

R/t=5 68 (139) 26 (69) 16 (41) 4 (9)
R/t=20 38 (91) 18 (37) 13 (29) 4 (9)
R/t=100 22 (57) 10 (23) 6 (15) 3 (7)

High-strength aluminum (0jTjTmax)

R/t=5 30 (79) 13 (33) 9 (21) 4 (7)
R/t=20 22 (55) 11 (25) 7 (15) 4 (7)
R/t=100 17 (35) 8 (15) 5 (9) 3 (5)

T , normalized sheet tension; R/t, ratio of bending radius to sheet thickness
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Therefore, while it is essential to perform
springback simulations carefully and to properly
take into account the material behavior, it is
possible to predict springback accurately for
general cases. The biggest challenge for large-
scale industrial applications lies with the conver-
gence of implicit solutions during forming and
the computational intensity of such simulations.

Springback
Control and Compensation

The prediction of springback has been dis-
cussed in some detail at various levels of com-
plexity in the foregoing sections. However,
practical mitigation of springback in industry
relies on two principal strategies: control
(reduction) of springback via forming operation
changes, and compensation for springback via
changes of die shape. These two approaches

are discussed briefly, with references to original
works provided.

Control of Springback. As illustrated in
Fig. 10, application of sheet tension, particularly
near the tension to yield of the sheet, drastically
reduces springback by reducing the stress
gradient through the thickness and hence the
bending moment. Most industrial schemes for
reducing springback rely on this principle.
However, increasing sheet tension moves a
forming operation closer to failure by splitting
(Ref 47), such that many optimized forming
operations walk a fine line between splitting
and excessive springback.

Most springback control methods focus on
increasing the sheet tension while mitigating the
negative effect on formability. The tension can
be applied during the drawing part of the forming
operation or subsequently (Ref 48, 71). By the
use of a variable blank-holder force throughout
the punch stroke, the sheet tension can be varied
arbitrarily (Ref 120–122). Alternatively, special

reverse-bending tooling may be devised either
for pure bending (Ref 123, 124) or in the context
of a more general channel forming (Ref 73, 125).

More general empirical approaches based on
observations of numerous forming operations
(Ref 126–129) involve a range of options
including altering R/t, die clearances, punch
bottoming, coining, and off-axis/in-plane
compression.

Compensation of Springback. Instead of
trying to reduce springback, which invokes
penalties in formability, an alternative approach
is to design dies that produce the desired final
part shape after springback. (Usually, the die
face for a sheet-formed part is very close to the
desired part shape; therefore, springback moves
the final part configuration away from the desired
one.)

If springback prediction is considered a for-
ward analysis, then a backward analysis is
needed to use such results to modify a die design
in order to achieve a given final part shape. For
simple bending operations involving con-
stant radii of curvature, dies can be designed to
account for springback using handbook tables
or closed-form solutions, which can be inverted
to specify tool radii for desired final-part radii.
For new or unusual materials, varying radii of
curvature (i.e., arbitrary curves), or arbitrary or
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Table 6 Standard errors of fit of simulated
springback angle compared with measured
ones for 6022-T4, R/t =10, Fb =0.5 to 1.05

Hardening law

Standard error of fit, degrees,
for indicated yield function

von
Mises

Hill 1948
(Ref 23)

Barlat YLD 96
(Ref 118)

Isotropic hardening 5.7 11.1 2.0
Geng-Wagoner

hardening (Ref 95)
2.7 8.7 1.2

R/t, ratio of bending radius to sheet thickness; Fb, back force
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3-D shapes (with compound curvature), spring-
back compensation has traditionally been carried
out by simple trial and error or some variation
thereof (Ref 130–132). Unfortunately, this pro-
cedure often produces unsatisfactory results and
depends intimately on the skill and experience
of the user. The process can take many months,
thus extending critical tooling lead times. The
trial-and-error method can be applied using FE
forward analysis trials instead of experiments,
but the backward design steps are equally in-
efficient and may take a similar amount of time.

Schemes for guiding the forward and back-
ward analyses may be found in the literature
based on various optimization strategies (Ref 89,
133, 134). These methods typically involve a
gradient calculation and sensitivity analyses.
Considerable complexity in formulation and
implementation is involved, and usually special
programming within special-purpose FE pro-
grams is required.

A promising approach integrating forward
(FE) and backward analyses in an iterative
scheme was reported by Karafillis and Boyce

(Ref 135–137). This method, denoted the spring-
forward method, may in principle be used
with any FE program. As discussed subse-
quently, however, its application suffers from
lack of convergence (Ref 138, 139) unless the
forming operation is symmetric or has very
limited geometric change during springback
(Ref 138).

Figure 27 outlines the steps of the spring-
forward method. A flat sheet is first deformed
into the target shape, and the external forces are
recorded. At step 3, the target shape is elastically
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von Mises yield, and isotropic hardening. (5) 3-D shell, NIP=51, NEL=600, Barlat 96
yield, and Geng-Wagoner anisotropic hardening. R/t, ratio of bending radius to sheet
thickness; m, friction coefficient

(i+1)th trial after springback

Flat sheet

Target

→
X t

i
ool

→

→

X tool

Fexternal

i+1

1)

Steps

2)

3)

4)

Fig. 27 Schematic representation of the steps undertaken in the springforward method
of springback compensation. Step 1: flat sheet before deformation; Step 2: form

to the tool shape and record external force field; Step 3: apply the recorded force field to the
previous tooling shape and obtain the new tooling shape; Step 4: evaluate the (i+1)th tooling
shape by comparing the part shape, after forming and springback, with the target shape.
xi

tool, forming tool position at i th iteration; F, force. Source: Ref 135–137
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loaded by the recorded external forces, and the
next trial die shape is obtained (the same shape as
the deformed blank at the end of this step). This is
the springforward step. The accuracy of the trial
die shape is next checked by doing a forming and
springback simulation. If the resulting spring-
back shape is not the same as the target, another
cycle will be carried out from step 1. Now, a flat
sheet is deformed to the trial die shape just
obtained, instead of being deformed to the target
shape as in the first cycle. External forces are
recorded and applied to the target shape. A new
trial die shape will be obtained. The new trial die
shape will be checked again at step 4, and
iterations will continue until the target part shape
is attained within a specified tolerance. Varia-
tions of this approach have been presented
making use of internal forces instead of contact
forces (Ref 137).

An alternate iterative design method that
avoids many of the limitations of springforward
while maintaining its generality and ease of
implementation may be designated the dis-
placement adjustment method (Ref 138). Instead
of a springforward step using simulated contact
forces, the simulated forming and springback
displacements are used to predict the next die
design iteration. A similar approach has been
used in one-step simulation versions (Ref 140)
and via experimental iteration (Ref 67, 141).
The displacement adjustment method appears to
offer several advantages over the springforward
method, including excellent convergence rate,
ease of implementation, and considerable gen-
erality. However, it has only been tested for
rather simple 2-D, bending-dominated problems
as of this writing.

The displacement adjustment method is out-
lined in Fig. 28. First, a flat sheet of metal is
deformed to a trial die shape (for the first cycle,
the trial die shape is the target shape). After
springback, the springback shape is compared
with its target. The shape error is defined as
D~y i, which is the vector difference of coordi-
nates of a FE node in the springback shape and in
the target shape, at the ith iteration. At step 3, the
D~y i is added to the current die shape nodal
positions, obtaining a new tooling shape of~X i+1

tool .
For the next cycle, a flat sheet is deformed to
this new tooling shape. If the springback shape
is not within a specified tolerance of the target
(checked at step 2), another iteration will be
conducted.

Comparison of springforward and displace-
ment adjustment methods for a simple bending-
dominated forming operation have been pres-
ented (Ref 138). For an arbitrary, nonsymmetric,
nonconstant-radius part shape (Ref 138), both
methods were applied, with iterative results
shown in Fig. 29. The normalized error for the
nth iteration cycle in Fig. 29 is defined as:

rms error(n)

rms error(1)
(Eq 63)

where:

rms error=
P

D~y 2
k

N

� �1=2

(Eq 64)

where rms is root mean square, K is a counting
variable that progresses from 1 to N, and N is the
total number of nodes of displacement.

Analysis of simpler, symmetric operations
showed that the obstacle to applying the

springforward method lies with the unknown
constraints that must be enforced during the
springforward step to restrict rigid body motion.
Unless such conditions are applied at exactly
the right location, which usually is unknown for
a general problem, the springforward forces
distort the workpiece and lead to nonconver-
gence of the technique.
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