REPORT:

DRAFT

Advanced High Strength Steel Workshop

held

October 22-23, 2006 Arlington, Virginia, USA

by

Robert H. Wagoner, Organizer

George R. Smith Chair Department of Materials Science and Engineering The Ohio State University Columbus, Ohio, USA

Advanced High-Strength Steels (AHSS) Workshop

A two-session workshop held on October 22 and 23, 2006, in Arlington, Virginia, brought together a diverse group of 60 scientists and engineers to discuss research issues surrounding Advanced High Strength Steels (AHSS), to recommend ways to address the outstanding issues, and to establish a vision for a path forward for the adoption of such materials. The workshop was funded by the National Science Foundation, Department of Energy, and the Auto/Steel Partnership.

AHSS offer amazing combinations of strength (performance) and ductility (manufacturability). They are particularly promising for crash-resistant autobody structures, where stiffness, strength, and energy absorption are required in stamped parts. Many fundamental technical questions must be answered before 2nd and 3rd generation AHSS can be adopted, thus allowing the potential benefits to be achieved. Progress in these fundamental areas will benefit other metals and alloys as well.

 2^{nd} generation AHSS offer the promise of unprecedented combinations of strength and ductility, but their cost is prohibitive for widespread adoption because of costly alloy content (e.g. Ni or Mn). The to-be-developed 3^{rd} generation AHSS are envisioned as affordable alternatives to 2^{nd} generation AHSS, but will trade some mechanical properties, still being much more effective than current, 1^{st} generation AHSS.

The first set of workshop recommendations deal with fundamental technical issues. These were generated during breakout sections (8 tables), then presented to the full group for discussion. These recommendations appear in their entirety in appendices, and are summarized below in three inter-related areas: 1) alloy development issues, and 2) widespread adoption issues, and 3) linkages between these sets of issues and various length scales:

Alloy Development Issues

- Predictive micro-level models (phases, grains) of material behavior, particularly those involving twinning and phase transformation
- Predictive atomic-level models of interfaces, twinning, and phase transformation
- Predictive meso-level models / ability to treat large numbers of dislocations with computational feasibility
- Particularly *ab initio* tools and in-situ TEM, SEM experiments
- Properties of complex phases and microstructures, related fracture nucleation
- Choice of approach for 3nd generation AHSS: target phases and microstructures
 - o ultra-fine ferrite matrix with bainite/martensite
 - stabilized, high austenite fractions
 - layered composite microstructures
 - o nano-precipitates
- Basic knowledge of phase stability and phase transformations, particularly martensitic
- Knowledge of interface properties among phases, related fracture nucleation
- Rigorous methods for 2D and 3D microstructural characterization

Widespread Adoption Issues

- Accurate, verified constitutive equations informed by basic material models as well as macro tests (especially incorporating hardening laws for complex strain paths)
- Numerical procedures for accurate springback simulation in realistic times
- Limited material behavior data under multi-axial and complex strain/stress paths
- Unknown springback behavior, particularly involving modulus changes and generalized Bauschinger effect
- Unknown fracture behavior, particularly shear failure which is not predicted by existing FLD models
- Need to consider wide range of properties: weldability, toughness, cost, corrosion, high-rate deformation, fatigue.
- Development of forming processes optimized to needs of AHSS (elevated temp, rate, etc.)

Linkage Issues

- Multi-scale models to link phenomena from atomic to grain to continuum scales
- Homogenization schemes beyond averaging to inform continuum constitutive equations
- IP agreements, large project coordination
- Funding mechanisms for teams addressing AHSS issues (fundamental vs. applied)
- Education in steels and other supposedly traditional materials is disappearing in the U.S.
- Government / NSF policy r.e. manufacturing (vs. nano, bio, info).

The second set of workshop recommendations centered on the kinds of cooperation required to make 2^{nd} generation AHSS a reality, as well as improving the fundamental knowledge for other alloys and their development. There was a strong consensus that a sustained effort over multiple years will be needed, both single-investigator work and larger cooperative projects. The cooperative projects will likely need to involve academia, steel companies, automotive companies, and government labs, with the grouping dictated by the problem and the most likely approach to solving it. Sponsorship will need to broad in order to address the range of issues (NSF – various programs, DOE, government labs, industry, other)

The workshop discussed in particular the EFRI program (Emerging Frontiers in Research and Innovation) of the NSF Engineering Directorate, as introduced by Dr. Realff. The parameters for the program seem most appropriate for the subject of 3rd generation AHSS, as follows:

Tranformative: Steels have been considered a mature area for many years, but recent advances are exciting, innovative, and offer the potential of materials with heretofore impossible combinations of properties and cost. The so-called banana chart illustrates the typical trade-off between strength and ductility that has been taken as gospel by generations of faculty, students, and engineers. The ability to increase both of these properties simultaneously with AHSS is indeed a technical paradigm shift of the highest order.

A second paradigm shift, in application, is also in progress. The national goals of energy conservation, increased safety and security, and protecting the environment have translated into substitutions of lower-density materials (e.g. polymers, composites, aluminum, magnesium) into automotive structures. The innovative leap of AHSS allows meeting of these goals in an economically feasible manner (and thus much more widespread impact) with stronger, stiffer materials. This is certainly a paradigm shift that has implications beyond the automotive industry.

National Need / Grand Challenge: Clearly the potential for a great advance and many societal benefits is promising. The workshop participants identified a variety of fundamental issues that must be addressed before the potential benefits can be realized. These occur at all length scales, and range from the most basic issues, to more applied challenges.

Community Response: The original driving force behind the AHSS Workshop was the Auto / Steel Partnership $(A/SP)^*$, a long-standing consortium that organizes research and develops projects related to their constituency. The existence of the A/SP, which is not reproduced in other material / manufacturing sectors, provides a unique opportunity to build on existing relationships and mechanisms for continued cooperation.

A/SP has long partnered with DOE to carry out applied and developmental research of common national interest. These two groups recently realized that 3rd generation AHSS required fundamental advances to couple with existing development activities, hence providing part of the motivation for this workshop. The response by the academic and government / private laboratory community to the AHSS workshop can only be described as overwhelming. Originally envisioned as an open-attendance event with a target attendance of 50 individuals, an acceptance rate by invitees of over 80% met the maximum capacity for the event (60). This effectively closed off further attendance. There were many requests to attend after the capacity had been filled, indicating a strong and deep interest in this new and exciting area.

Engineering Leadership: As shown by the range of workshop issues (and attendees), the focus of the NSF Engineering Directorate is central to the overall thrust. Research areas, such as the fundamentals of shear failure and fracture, multi-scale modeling, predictive models for fracture, springback and processing, thermo processing, and design theory for new materials, are all in the heart of various areas that engineering divisions support. Furthermore, NSF/MPS directorate (e.g., DMR) can be a strong partner in this topic in terms of atomic-level models and experiments, at one extreme, DOE has interests and funding in the applications and industrial trials, and ONR can be interested in this for their steel applications in ships.

^{*} The workshop presentation by Roger Heimbuch, Director of the Auto/Steel Partnership, introduces the organization and its goals. This presentation appears as an appendix to this report.

List of Appendices

Appendix 1: AHSS Workshop Schedule and Organizing Committee

Appendix 2: Workshop Assignments

Appendix 3: AHSS Workshop: Attendee List and Table Assignments

Appendix 4: Sponsor Presentations

- Welcome Remarks, Roger Heimbuch, Auto/Steel Partnership:
- *NSF Goals and Funding Procedures*, Mary Lynn Realff, National Science Foundation (DMI)
- *DOE Goals and Funding Procedures*, Joseph Carpenter, Department of Energy (Freedom Car)

Appendix 5: Technical Presentations

- Overview of AHSS: Debanshu (DB) Bhattacharya, Mittal Steel
- *AHSS Microstructures, Fffect on Failure*: David K. Matlock, Colorado School of Mines
- AHSS Continuum Modeling Issues:
 - *Part A, Springback*: Thomas B. Stoughton, GM Research and Development
 - o Part B, Forming: Cedric Xia, Ford Research Laboratory

Appendix 6: Table Group Presentations, 1-8

Appendix 1: AHSS Workshop Schedule and Organizing Committee

October 22, 2006 – Hilton Arlington & Towers, Master Ballroom

5:30p Welcoming reception (A/SP hosted)

7:30p Dinner (hosted by the Auto/Steel Partnership)

Welcome Remarks, Roger Heimbuch, Auto/Steel Partnership:
 NSF Goals and Funding Procedures, Mary Lynn Realff, National Science Foundation (DMI)
 DOE Goals and Funding Procedures, Joseph Carpenter, Department of Energy (Freedom Car)
 Workshop Organization, Robert H. Wagoner, The Ohio State University

October 23, 2006 - NSF Building, 4201 Wilson Blvd., Arlington VA 22230

- 8:00 Breakfast, Introductions
- 8:15 Opening Remarks
- 8:30 State of AHSS

8:30 Overview of AHSS: Debanshu (DB) Bhattacharya, Mittal Steel 9:00 AHSS Microstructures, Fffect on Failure: David K. Matlock, Colorado School of Mines

9:30 AHSS Continuum Modeling Issues:

Part A, Springback: Thomas B. Stoughton, GM Research and Development

Part B, Forming: Cedric Xia, Ford Research Laboratory

- 10:15 Breakout sessions
- 12:30 Lunch
- 1:15 Breakout session reporting & discussion
- 3:00 Compilation of workshop results and recommendations
- 3:30 Adjourn

Organizing Committee

Robert H. Wagoner, Ohio State University (Chair)

Jian Cao, Northwestern University

Tom Stoughton, General Motors Research

Roger Heimbuch, Auto-Steel Partnership

Mary Lynn Realff, National Science Foundation, DMI

Bruce MacDonald, National Science Foundation, DMR

Clark Cooper, National Science Foundation, CMS

Joseph Carpenter, US Department of Energy

^{10:00} Break

Appendix 2: Workshop Assignments

R.H. Wagoner October 12, 2006

AHWW Workshop: Work Assignments & Table Assignments

Plenary Questions (All Groups to Answer)

1. What are the principal technical obstacles to the creation of third-generation AHSS?

2. What are the principal technical obstacles to the widespread usage of second-generation AHSS?

3. What specific, <u>fundamental</u> (i.e. NSF-like) research is needed to make push forward second and third-generation AHSS? (i.e. Identify priority areas for NSF-like research in this area.)

4. What specific, <u>applied</u> (i.e. DOE-like) research is needed to make second-and thirdgenerations practical and widely used? (i.e. Identify priority areas for DOE-like research in this area.)

A. Modeling vs. Experimental (2 Groups)

1. What kinds of modeling are most needed to push AHSS forward? What length scales and techniques are likely to be the most important?

2. What kind of experimental information is needed by modelers in order to inform and validate their models?

3. What are the principal holes in experimental knowledge for second and third generation AHSS?

4. What kinds of established, new, or novel experiments or characterization techniques are most important to help inform models and understanding of properties?

B. Focus Application: 3rd Generation AHSS (2 Groups)

1) Which classes of 3rd Generation AHSS are most promising? What is the expected time frame to commercialization?

2) Identify critical issues related to developing a 3rd generation of AHSS.

3) What are the best mechanisms for addressing these issues?

4) What specific kinds of cooperation is needed among funding agencies, steel companies, auto companies, and the research community? (Money, of course, but what else?)

C. Focus Application: Sheet Forming Simulation (2 Groups)

1) Identify critical issues related to numerical simulation of forming with AHSS

2) What are the best mechanisms for addressing these issues?

3) What specific kinds of cooperation is needed among funding agencies, steel companies, auto companies, and the research community? (Money, of course, but what else?)

D. Focus Application: Fracture / Failure (2 Groups)

1) Identify critical issues related to new or unusual fracture / failure behavior of AHSS, microstructural and mechanical.

2) What are the best mechanisms for addressing these issues?

3) What specific kinds of cooperation is needed among funding agencies, steel companies, auto companies, and the research community? (Money, of course, but what else?)

com: Screen	Table 1 (D, Fracture) Realff Spanos Gao Putnam (dinner) Acharya Matlock Thomas Wagoner	Table 3(C, Forming Simul.)StoughtonMacDonaldSunHaezebrouckDeArdoKalidindiMao	Table 5(B. 3rd Generation)ChongEssadiqiSantellaAgnewGarmestaniPanWelshSpeer	Table 7.(D. Fracture)ConnerSimunovicKeelerWuAltanFunkenbuschMichalWierzbicki
Front of F	Table 2 (B, 3rd Generation) Heimbuch Carpenter Gan Bhattacharya Lorincz (dinner) Balaji Pourboghrat Van Aken	Table 4 (C, Forming Simul.) Xia Balaguru White Shi Beaudoin Jonas Shen J. Wang	Table 6(A, Model v. Expt.)FeketeChopraLoszAnandGhoshKhraishehLiMiles	Table 8(A. Model v. Expt.)DuCooperKhaleelSunCaoKhanP. Wang

AHSS Workshop: Seating Chart and Table Arrangement

Appendix 3: AHSS Workshop: Attendee List and Table Assignments

Dr. Amit Acharya (Table #1) Associate Professor Civil and Environmental Engineering Carnegie Mellon University 119 Porter Hall Dept. of Civil and Environmental Engineering Pittsburgh PA 15213

Dr. Sean Agnew (Table #5) Assistant Professor Materials Science and Engineering University of Virginia 116 Engineers Way P.O. Box 400745 Charlottesville VA 22904-4745

Dr. Taylan Altan (Table #7) Professor and Director Engineering Research Center for Net Shape Manuf. Ohio State University 339 Baker Systems Bldg., ERC/NSM 1971 Neil Lane Columbus OH 43210-1271

Dr. Lallit Anand (Table #6) Professor Dept. Mechanical Engineering MIT Room 1-310 77 Massachussetts Ave. Cambridge MA 02139

Dr. Perumalsamy Balaguru (Table #4) Program Director Division of Civil & Mechanical Systems (ENG/CMS) National Science Foundation Suite 545 S 4201 Wilson Blvd Arlington VA 22230

Dr. Alagar K. Balaji (Table #2) Assistant Professor Department of Mechanical Engineering University of Utah 50 S. Central Campus Drive Rm. 2110 Merrill Engr Bldg Salt Lake City UT 84112-9208 Dr. Armand Beaudoin (Table #4) Professor Dept. of Mechanical and Industrial Engineering University of Illinois at Urbana-Champaign 1206 W. Green St. MC-244 Urbana IL 61821

Dr. Debanshu Bhattacharya (Table #2) Director, Product Research Research & Development Center Mittal Steel 3001 E. Columbus Drive East Chicago IN 46312

Dr. Jian Cao (Table #8) Associate Professor Dept. Mechanical Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208-3111

Dr. Joe Carpenter (Table #2) Tech. Area Development Manager Technology Area US Department of Energy 1000 Independence Avenue SW Suite 59, Org. Code EE-2G Washington DC 20585

Dr. Ken P Chong (Table #5) Mechanics & Materials Program, CMS National Science Foundation Suite 545 4201 Wilson Blvd Arlington VA 22230

Dr. Harsh D. Chopra (Table #6) Program Director Metals Program, DMR National Science Foundation Room 1065 4201 Wilson Blvd Arlington VA 22230 Capt. Brett Conner (Table #7) Program Manager Metallic Materials Research AFOSR/NA Suite 325, Room 3112 875 North Randolph St. Arlington VA 22203-1768

Dr. Clark V. Cooper (Table #8) Program Director Materials Design & Surface Engrg. National Science Foundation Suite 545 4201 Wilson Blvd Arlington VA 22230-0002

Dr. Anthony DeArdo (Table #3) Professor Materials Science & Engineering Department University of Pittsburgh BAMPRI / MSE Dept. Benedum Hall 848 Pittsburgh PA 15261

Dr. Changqing Du (Table #8) Advance Stamping Manufacturing Eng. DaimlerChrysler 800 Chrysler Drive East CIMS 482-01-12 Auburn Hills MI 48326-2725

Dr. Elhachmi Essadiqi (Table #5) Program Manager CANMET Materials Technology Laboratory 568 Booth Street Ottawa Ontario Canada K1A 0G1

Dr. Jim Fekete (Table #6) Technical Fellow GM Body Manufacturing Engineering General Motors Corporation 2000 Centerpoint Parkway MC 485-520-266 Pontiac MI 48341

Dr. Paul Funkenbusch (Table #7)
Professor
Mechanical Engineering & Materials
Science
University of Rochester
Materials Science Pgm, Dept. of
Mechanical Engr.
235 Hopeman Engr Building
Rochester NY 14627-0132

Dr. Wei Gan (Table #2) Project Engineer Materials & NDE Edison Welding Institute 1250 Arthur E. Adams Drive Columbus OH 43221-3585

Dr. Jeff Gao (Table #1) Senior Research Leader Dofasco Inc. 1330 Burlington East Box 2460 Hamilton, ON CANADA L8N 3J5

Dr. Hamid Garmestani (Table #5) Professor Department of Materials Science and Engineering Georgia Institute of Technology Rm. 288 Love Manufacturing Bldg 771 Ferst Drive NW Atlanta GA 30332-0245

Dr. Amit Ghosh (Table #6) Professor University of Michigan 2102 Dow Bldg. 2300 Hayward St. Ann Arbor MI 48109

Dr. Dennis M. Haezebrouck (Table #3) Senior Research Consultant Product Technology Division United States Steel Corp. USS Research & Technology Center 800 East Waterfront Drive Munhall PA 15120-5044

Dr. Roger Heimbuch (Table #2) Executive Director Auto/Steel Partnership 2000 Town Center Suite 320 Southfield MI 48075-1123

Dr. John Jonas (Table #4) Professor Dept. of Metallurgical Engineering McGill University 3610 University Street M. H. Wong Bldg. Montreal, QC CANADA H3A 2B2 Dr. Surya Kalidindi (Table #3) Professor and Department Head Department of Materials Science and Engineering Drexel University Department of Materials Science and Engineering Philadelphia PA 19104

Dr. Stu Keeler (Table #7) President Keeler Technologies LLC 23145 West River Road Grosse Ile MI 48138

Dr. Moe Khaleel (Table #8) Division Director Computational Mathematics & Mathematics Pacific Northwest National Lab PO Box 999 / K7-36 Richland WA 99352 Dr. Akhtar Khan (Table #8) Professor Dept. of Mechanical Engineering University of Maryland Baltimore County ECS Building 234 1000 Hilltop Circle Baltimore MD 21250

Dr. Marwan K. Khraisheh (Table #6) Associate Professor UK Center for Manf. & Mech. Engrg. Dept. University of Kentucky 210 CRMS Bldg. Center for Manufacturing Lexington KY 40506-0108

Dr. Ju Li (Table #6) Assistant Professor Dept. Materials Science and Engineering The Ohio State University 494 Watts Hall 2041 College Rd. Columbus OH 43210

Ms. Deanna Lorincz (Table #2) (STAFF) Director, Automotive Communications American Iron and Steel Institute Auto/Steel Partnership Dr. Mauro Losz (Table #6) Sr. Research Engineer Specialty Steel Product Research AK Steel 705 Curtis Street Middletown OH 45043

Dr. Bruce MacDonald (Table #3) Program Director Division of Materials Research National Science Foundation, Room 1065 N 4201 Wilson Blvd Arlington VA 22230

Dr. Scott X. Mao (Table #3) Professor Department of Mechanical Engineering University of Pittsburgh Dept. of Mechanical & Materials Science & Engr 3700 O'Hara St. Pittsburgh PA 15261

Dr. David K. Matlock (Table #1) Armco Foundation Fogarty Professor and Director, Adv. Steel Produ. & Proc. Res. Ctg. Department of Metallurgical and Materials Engineering Colorado School of Mines Dept. Metallurgical Engineering Golden CO 80401

Dr. Gary Michal (Table #7) LTV Steel Professor Of Metallurgy Materials Science & Engineering Department Case Western Reserve University Dept. of Materials Science & Engr 10900 Euclid Avenue Cleveland OH 44106-7204

Dr. Michael Miles (Table #6) Asst Professor Dept. of Manufacturing Engr. Technology Bringham Young University 265 CTB Provo UT 84602

Dr. Jwo Pan (Table #5) Professor Mechanical Engineering University of Michigan 3120 G.G. Brown Laboratory 2350 Hayward Street Ann Abor MI 48109-2125 Dr. Farhang Pourboghrat (Table #2) Associate Professor Mechanical Engineering Michigan State University Mechanical Engineering Department 2241 Engineering Building East Lansing MI 48824-1226

Ms. Christine Putnam (Table #1) (Staff) Administrative Associate The Ohio State University

Dr. Mary Lynn Realff (Table #1) Program Director Division of Materials Research National Science Foundation Room 1065 N 4201 Wilson Blvd Arlington VA 22230

Dr. Michael Santella (Table #5) R&D Staff Member UT-Battelle Oak Ridge National Lab 1 Bethel Valley Road Oak Ridge TN 37831-6096

Dr. Ming Shi (Table #4) Manager Product Applications United States Steel Corp. 5850 New King Court Troy MI 48098-2692

Dr. Srdjan Simunovic (Table #7) Research Staff Modeling & Simulation Group Oak Ridge National Laboratory One Bethel Valley Road P.O. Box 2008, MS-6164 Oak Ridge TN 37831-6164

Dr. George Spanos (Table #1) Naval Research Laboratory Code 6355 Naval Research Laboratory Washington DC 20375-5000

Dr. John Speer (Table #5) Professor Metallurgical and Materials Engineering Colorado School of Mines MME Dept. - Hill Hall 1500 Illinois St. Golden CO 80401 Dr. Thomas Stoughton (Table #3) Staff Research Scientist General Motors Corporation MC 480-106-359 30500 Mound Road Warren MI 48090-9055

Dr. Weiping Sun (Table #8) Metallurgical Specialist Product Development Nucor Steel Corp. 210 Marsala Court Canton MI 48187

Dr. Xin Sun (Table #3) Chief Scientist Pacific Northwest National Lab 906 Battelle Boulevard Richland WA 99352

Dr. Brian Thomas (Table #1) Wilkins Professor Dept. of Mechanical & Industrial Engineering University of Illinois at Urbana-Champaign 1206 W. Green St. Urbana IL 61801

Dr. David C. Van Aken (Table #2) Professor of Metallurgical Engr. Department of Materials Science and Engineering University of Missouri - Rolla 1870 Miner Circle Department of Materials Science and Engineering Rolla MO 65409-0340

Dr. Robert H. Wagoner (Table #1) Director - CAMMAC Department of Materials Science & Engr. Ohio State University 477 Watts Hall 2041 College Road Columbus OH 43210

Dr. Jyhwen Wang (Table #4) Assistant Professor Department of Mechanical Engineering Texas A&M University Department of ETID MS3367 College Station TX 77843-3367 Dr. Paul Wang (Table #8) Manager Center for Advanced Vehicular Systems Mississippi State University 200 Research Blvd. Starkville MS 39759

Dr. Gerhard Welsch (Table #5) Professor Materials Science & Engineering Department Case Western Reserve 10900 Euclid Avenue White Metallurgy Bldg Cleveland OH 44106-7204

Mr. Matthew White (Table #4) Market Leader Edison Welding Institute 1250 Arthur E. Adams Drive Columbus OH 43221-3585

Dr. Xin Wu (Table #7) Associate Professor Department of Mechanical Engineering Wayne State University Dept. Mechanical Engineering 5050 Anthony Wayne Drive Detroit MI 48202

Dr. Cedric Xia (Table #4) Technical Leader Ford Research Laboratory Ford Motor Company 2101 Village Rd. Research & Advanced Engr. Dearborn MI 48121-2053

Appendix 4: Sponsor Presentations

- Welcome Remarks, Roger Heimbuch, Auto/Steel Partnership:
- *NSF Goals and Funding Procedures*, Mary Lynn Realff, National Science Foundation (DMI)
- *DOE Goals and Funding Procedures*, Joseph Carpenter, Department of Energy (Freedom Car)

Advanced High-Strength Steels: Fundamental Research Issues Workshop

Sunday, October 22, 2006 Arlington, Virginia

	TERMINOLOGY
FreedomCAR	DOE and USCAR Collaborative
Fuel ^{Partnership}	Automotive Research Program
	United States Council for Automotive
LINTED STATES COLVID, FOR AUTOMOTIVE RESEARCH	Research
®US AMP	United States Automotive Materials
UNITED STATES AUTOMOTIVE MATERIALS PARTNERSHIP	Partnership
	– AMD: Automotive Metals Division
	 ACC: Automotive Composites
	Consortium
Terrary and	- A/SP: Auto/Steel Partnership
www.a-sp.org	NSF Workshop - October 22, 2006

NSF)

EFRI Mandate

EFRI will serve a critical role in helping the Directorate for Engineering focus on important emerging areas in a timely manner. EFRI will recommend annually a prioritization, fund, and monitor initiatives at the emerging frontier areas of engineering research and education.

Auto-Reconfigurable Engineered Systems Enabled by Cyberinfrastructure (ARES-CI)

- Cyberinfrastructure and other engineering advances now provide the capability to embed reconfigurability into systems.
- Design of autonomously configurable engineered systems integrating physical, information and knowledge domains
- Novel methods to sense, self-diagnose, and autoreconfigure the system to function uninterruptedly when subject to unplanned failure events
- Auto-reconfigurability will provide robustness to unanticipated/unplanned failure events in the same way Complexity provides it to anticipated failure events.

• Up to \$500K/year

- Require short (~5-page) pre-proposals followed by invited Full Proposals
- Preliminary Proposal Deadline: Nov. 17, 2006
- Full Proposal Deadline Date: April 30, 2007

11, \$2M Standard Awards

	Materials Technologies		
Lightweight Material	Material Replaced	Mass Reduction (%)	Relative Cost (per part)*
High Strength Steel	Mild Steel	10-25	1
Aluminum (AI)	Steel, Cast Iron	40 - 60	1.3 - 2
Magnesium	Steel or Cast Iron	60 - 75	1.5 - 2.5
Magnesium	Aluminum	25 - 35	1 - 1.5
Glass FRP Composites	Steel	25 - 35	1 - 1.5
Carbon FRP Composites	Steel	50 - 60	2 - 10+
Al matrix Composites	Steel or Cast Iron	50 - 65	1.5 - 3+
Titanium	Alloy Steel	40 - 55	1.5 - 10+
Stainless Steel	Carbon Steel	20 - 45	1.2 - 1.7

Key Activ	Key Activities and Budge				
20092-	Materials Technologies				
	Budgets (\$M) <u>FY05</u> <u>FY06</u> <u>FY07</u>				
		(I	Request)		
Propulsion Materials Technology					
Automotive Propulsion Materials	1.9	1.8	1.9		
Heavy Vehicle Propulsion Materials	4.6	4.3	3.9		
Lightweight Materials Technology					
Automotive Lightweighting Materials (light-duty)	16.3	18.3	18.7		
High-Strength Weight Reduction Materials (truck)	7.4	2.7	0		
High Temperature Materials Laboratory	5.9	7.2	4.4		
Total	36.1	34.3	28.9		

Appendix 5: Technical Presentations

- Overview of AHSS: Debanshu (DB) Bhattacharya, Mittal Steel
- AHSS Microstructures, Fffect on Failure: David K. Matlock, Colorado School of Mines
- AHSS Continuum Modeling Issues:
 - *Part A, Springback*: Thomas B. Stoughton, GM Research and Development
 - o Part B, Forming: Cedric Xia, Ford Research Laboratory

Product	Tensile Strength (MPa)	Yield Strength (MPa)	Total Elongation (%)
HR 590 SF	590	510	28
CR 590 HY	690	515	23
CR 980 HY	1005	795	15
GA 590 HY	620	505	26

Steel Grade	TS, MPa	YS, MPa	TE, %	
GA DP 590	620	355	26	_
Target	>590	388	26	-

Table 1. Dual Phase ste	els and their :	mechanical p	горегту
requirements.	TSONDAN	ve	TECAL
Product	min.	സ്താ	min.
Cold Rolled 590 MPa Dual Phase (CR 590 DP)	590	305-450	24
Cold Rolled 780 MPa Dual Phase (CR 780 DP)	78)	420-550]4
Cold Rolled 980 MPa Dual Phase (CR 980 DP)	98)	600-720	10
Galvanized 600 MPa Dual Phase (GI 600 DP)	60)	340-410	23
Galvanized 780 MPa Dual Phase (GI 780 DP)	78)	420-550]4
Galvanne aled 590 MPa Dual Phase (GA 590 DP)	590	300-410	23
Galvanne aled 780 MPa Dual Phase (GA 780 DP)	78)	440-560	12
Galvanne aled 980 MPa Dual Phase (GA 980 DP)	98)	600-720	10

Tensile Strength (MPa)	Yield Strength (MPa)	Total Elongation (%)
590 Min	350 – 495	31
590 Min	360 - 510	26
590 Min	380 - 480	27
780 Min	410 – 500	21
780 Min	410 - 560	19
780 Min	440 – 500	21
	Tensile Strength (MPa) 590 Min 590 Min 590 Min 780 Min 780 Min	Tensile Strength (MPa) Yield Strength (MPa) 590 Min 350 – 495 590 Min 360 - 510 590 Min 380 - 480 780 Min 410 - 500 780 Min 410 - 560 780 Min 440 - 500

Product	Tensile Strength (MPa)	Yield Strength (MPa)	Total Elongation (%
M130	1054	923	5.4
M160	1178	1020	5.1
M190	1420	1213	5.1
M220	1585	1350	4.7

Void Formation – Interface Control				
Steel	Microstructure	Interface		
IF steel	Ferrite	Grain Boundary		
Low C steel	Ferrite + GB Fe ₃ C	Ferrite/Fe ₃ C		
Medium C steel	Ferrite + Pearlite	Ferrite/Fe ₃ C		
HSLA steel	ppt. Hardened Ferrite + Pearlite	Ferrite/ Fe ₃ C Ferrite/ ppt.		
TRIP steel	Ferrite + Retained Austenite	Ferrite/Austenite		
DP Steel	Ferrite + Martensite	Ferrite/Martensite		

Lee et al. ASPPRC/Posco 2005

Hole Expansion Ratio: High Local Strain				
Microstructure (780 MPa grade)	Tensile El.	Stretch-flangeability (HER)		
Ferrite + Bainite	18 %	80 %		
Ferrite + Pearlite	21 %	65 %		
Dual Phase	19 %	60 %		
TRIP steel (ferrite + retained γ)	30 %	40 %		
Lee et al. ASPPRC/Posco 2005	After Cho, Pus	san National University, 2000		

Summary: Research Needs

- Identification of critical microstructures based on strength, ductility, and fracture resistance
 - <u>Materials will contain large volume fractions of</u> <u>high strength constituent</u>
- Analysis of unique alloying and processing methodologies to produce new materials
- Analysis of fracture susceptibility
 - Models to assess strain distribution between constituents and critical fracture events
 - Models of damage accumulation
 - Include strain path effects
 - Laboratory methods to assess model predictions

Challenges for Constitutive Models for Forming of Advanced Steels

Thomas B. Stoughton, Cedric Xia, Changqing Du, Ming F. Shi, General Motors Corporation Ford Motor Company DaimlerChrysler Corporation United States Steel Corporation

Options for constitutive modeling for FEM simulation Phenomenological-Based Approach Advantages Fewer degrees of freedom Good strain and failure prediction under proportional loading Challenges Non-proportional loading (beyond model calibration limits) Stress prediction (especially for AHSS) Springback prediction Novel effects deformation induced phase transformation microstructural based instability factors

	Discussion Issues
•	 What experiments are necessary to determine the evolution of elastic and plastic properties during loading and unloading, considering: Dependence on large strain deformation for anisotropic materials Dependence on non-proportional loading with and without unloading Dependence on single and few-cycle non-proportional loading
•	Is it feasible to consider development of a micro-level model that has enough of the critical physics that it can be used to due virtual experiments for development of a more general continuum level model? - What mechanisms should be considered in the micro-level model approach? - How can such a model be validated? - Once validated, what numerical experiments are useful for improving continuum level modeling?
•	 What effect do the following issues/mechanisms have on springback determination, Definition of yield (% offset, micro-strain offset, proportional limit) at both loading and unloading Evolution of the elastic constants, texture, and voids Microplasticity/Yield Surface Distortion/Anisotropic Transient Hardening Anelasticity, Creep
•	Is it practical to develop a model to predict/handle all of these effects?
•	What possible cost-effective solutions are possible for incorporating benefits of shell and solid elements to deal with areas where high strength steels are flowing over sharp radii under significant forming pressures

Appendix 6: Table Group Presentations, 1-8

Advanced High-Strength Steels: Fundamental Research Issues Workshop			
TABLE 1:			
Realff			
Spanos			
Gao			
Acharya			
Matlock			
Thomas			
Wagoner			
Group D Questions:	Fracture		
October 23, 2006	AHSS Workshop – Table 1	Page 1	

 What specific, <u>applied</u> (i.e practical and widely use 	a. DOE-like) research is needed to make second-and ad? (i.e. Identify priority areas for DOE-like researc	d third-generations h in this area.)
Scale up form the la	aboratory to production level heats, proces	sing, etc.
October 23, 2006	AHSS Workshop – Table 1	Page 5

Microstruc – Accu alloy – Deter impo – Tie ir	tural rate quantitative characterization techniques to relate to properties content, processing, etc in a consistent and quantitative way rmine critical microstructural features (phases, distributions, geome rtant properties – strain localization, fracture, etc. (not defined by s to large body of existing work on microstructural evolution models	s - as a function of etries) that dictate the imple flow curves) s
 Fracture/F How etc.) What association What 	ailure does development of a heterogeneous microstructure (phase trans affect ductile crack initiation, residual stress initiation, etc.? are the critical fracture nucleation and growth events, stress requi ciated with these new microstructures? are the contributions of strain localization mechanisms to fracture	s., dislocation density, irements, etc. ?
 Proper col and theori Being able Evolution Modeling of phases, m Methods for induced m 	nmunication between various communities – modelers, metallurgis sts of to calculate internal stresses as a function of heterogeneities of dislocation density leading to plasticity of deformation and failure/fracture across multiple length and time acro) or predicting evolution of mixtures of non-linear materials (intrinsic icrostructure)	sts (microstructure), scales (dislocations, and deformation

Advanced High-Strength Steels: Fundamental Research Issues Workshop				
TABLE 2:				
Heimbuch				
Carpenter				
Gan				
Bhattacharya				
Balaji				
Pourboghrat				
Van Aken				
Group B Questions:	3 rd Generation			
October 23, 2006	AHSS Workshop – Table 2		Page 1	

	1. What are the principal tech	nical obstacles to the creation of third-generation AH	SS?
•	Fundamental science of new ma Interface between material deve Development of accurate constit – Material properties for the r Interface characterization	aterial development lopment and material processing tutive models for the 3 rd generation AHSS modeling	
O	ctober 23, 2006	AHSS Workshop – Table 2	Page 2

B	4) What specific kinds of coopera companies, and the resea	tion is needed among funding agencies, steel compar arch community? (Money, of course, but what else?)	nies, auto
•	Data sharing between academic – Steel, auto companies, Nat	and manufacturing ional labs, universities	
•	Access to facilities for processin	g new materials	
•	Computational and experimenta	I facility access	
C	Dctober 23, 2006	AHSS Workshop – Table 2	Page 9

Advanced High-Strength Steels: Fundamental Research Issues Workshop				
TABLE 3:				
Stoughton				
MacDonald				
Sun				
Haezebrouck	ζ.			
DeArdo				
Kalidindi				
Mao				
Group C Questions:	Forming Simulation			
October 23, 2006	AHSS Workshop – Table 3	Page 1		

	1. What are the principal tech	nical obstacles to the creation of third-generation AH	SS?
	Lack of a micro-structure based Identification of more meaningfu Defining properties of these mat Defining the processing constrai Challenges due to the highly con chemistry, and thermomechanica Lack of basic thermomechanica	failure criteria Il material performance criterion terials ints for manufacturing these steels instrained manufacturing options (eg. Available coating line (al paths) Il and kinetic data for likely candidate alloy systems	95,
Oc	tober 23, 2006	AHSS Workshop – Table 3	Page 2

Weldability		
Coatability		
Affordable manufacturi	na cost	
Lack of microscale or p transformations or other	whenomenological models (with sufficient accuracy) for er effects that are involved with these materials	or twinning, phase

 Identify target applicatio 	ns for specific materials	
 Perform experiments an 	nd correlation studies	
 For existing HSS, identi extended to 2nd and 3rd 	fy ways to maximize homogeneity (eg. Mn banding), gen	that could be
 Effect of chemistry and of supplier or batch dep 	processing on variability of microstructure and prope endency)	rties (identify causes
 Factors contributing to a 	and improve weldability; what are acceptance criteria	

	C2) What are the l	best mechanisms for addressing	these issues?	
	Form teams (Nat Lab, industry the following topics – Material Design (Chemistr – Simulation Technology an – Micro-structural characteri	and academia) of critical mass with y, Microstructural Design, Process I d Modelling zation	sufficient scope of exp	ertise for
Oct	ober 23, 2006	AHSS Workshop – Table 3		Page 7

Г

Advanced High-Strength Steels: Fundamental Research Issues Workshop				
TABLE 4:				
Xia				
Balaguru – n	ot present			
White				
Shi				
Beaudoin				
Jonas				
Shen – not p	resent			
J. Wang				
Group C Questions:	Forming Simulation			
October 23, 2006	AHSS Workshop – Table 4	Page 1		

	1. What are the principal tech	nical obstacles to the creation	of third-generation AHS	SS?
•	Determining the family of alloy of – Ni, Mn, N, C – Impacts on weldability	ompositions which reliably and "ir	nexpensively" stabilize au	ustenitic
•	Determine processing methods – Uniform distribution of phas – Through-thickness issues, I	which are appropriate to the varic ses throughout the strip banding	us alloy compositions	
•	Identify constitutive relationships – Including void formation and – Anelasticity	and, using those relationships, f d coalesence	ormulate a fracture mode	9
Oc	ctober 23, 2006	AHSS Workshop – Table 4		Page 2

Advanced High-Strength Steels: Fundamental Research Issues Workshop				
TABLE 5:				
Chong- no	t present			
Essadiqi				
Santella				
Agnew				
Garmestar	ni- not present			
Pan				
Welsh				
Speer				
Group B Questior	ns: 3 rd Generation			
October 23, 2006	AHSS Workshop – Table 5	Page 1		

	1. What are the principal technical obstacles to the creation of third-generation AHS	SS?
	Can you get a ferritic matrix (low cost) to meet 3 rd Generation requirements ? Stabilizing austenite with a lean-alloy approach (C, Mn, high-N in low-alloy steels, etc) Steel processing of totally new grades. Alloying effects on austenite deformation behavior High temperature in-line austenitizing capability for light gage sheet Joining limits alloy selections Microstructure developers need to understand multiaxial behavior and relationships betwe ductility/fracture/constitutive behaviors (mechanics / materials interface) Understanding effects of microstructure anisotropy/morphology on key properties needed. Predictive data for damage (crack/void) initiation. Better void growth prediction. Ab initio: fundamental understanding of alloying effects to inhibit cementite and transition phases (allows carbon to be used for austenite stabilization). Can one reduce the density (and/or increase modulus) of the steel in a useful way ?	en carbide
Oc	ctober 23, 2006 AHSS Workshop – Table 5	Page 2

B1) Which classes of 3rd Generation AHSS are most promising? What is the expected time frame to commercialization?
UFG ferrite or bainite/martensite matrix
High austenite fractions
New precipitation strengthening approaches
Layered (composite) microstructures
October 23, 2006 AHSS Workshop – Table 5 Page 6

	B2) Identify critical issu	ues related to developing a 3rd generation of AHSS.	
•	Next generation of professionals	s (metallurgical/manufacturing scientists/engineers disappo	earing)
•	Funding priority for steel researc	ch relative to other parts of the world	
•	Govt policy toward manufacturin	g ?	
Oct	ober 23, 2006	AHSS Workshop - Table 5	Page 7

B4) What s c	pecific kinds of coopera ompanies, and the rese	tion is needed among funding agencies, steel arch community? (Money, of course, but what	companies, auto t else?)
High le	evel political support on th	e importance of these activities.	
More e	exchange of professionals	between the different constituencies	
Coordi	nate materials/mechanics	s interface (workshops like this)	
October 23	s, 2006	AHSS Workshop – Table 5	Page 9

Advan Fundament	ced High-Strength St tal Research Issues V	eels: Vorkshop
TABLE 6:		
Fekete		
Chopra		
Losz		
Anand		
Ghosh		
Khraisheh		
Li		
Miles		
Group A Questions	: Model v. Experiment	
October 23, 2006	AHSS Workshop – Table 6	Page 1

1. What are the pri	ncipal technical obstacles to the creation of third-gen	eration AHSS?
 Lack of guiding princ Highly trial and error How to increase duct 	iples and concepts for processing (see A1) based tility	
October 23, 2006	AHSS Workshop – Table 6	Page 2

De	eformation Issues
•	How the phases deform/transform/crack and interact with each other. Phase-interfaces, voids nucleation. Slip/twin/phase transformation interactions with interfaces.
-	transformations. Twin-slip interactions. Stacking-fault energy dependence.
•	Microstructure model: how to design microstructure - different microstructure – phenomenological – physics unknown length scale from dislocation scale to part geometry scale :
•	Lack of suitable constitutive model for yielding damage accumulation in changing strain path
•	Phase distribution and microstructure, morphological anisotropy
•	Modeling microplastic strain – see most unloading in high strength materials – inelastic springback – small dislocation motion. Residual stress near martensite – relief.
•	Leverage recent models for nanocrystals
•	Computational efficiency, reducing microstructure-sensitive models to bulk forming model.
Fra	acture Issues:
•	Energy absorption model in fracture
•	Multi-axial loading – damage accumulation in microstructure in phases
•	Go beyond principal strains for microstructure-sensitive shear banding and eventual failure and/or fracture criterion
•	Modeling coupled effects of shear localization and hole-growth and coalescence.
Ca	alibration of material parameters in constituive/failure models:
•	How to efficiently extract parameters from experiments for advanced models.

Advar Fundamen	nced High-Strength Steel Ital Research Issues Wor	s: kshop
TABLE 7:		
Conner		
Simunovic		
Keeler		
Wu		
Altan		
Funkenbusc	ch	
Michal		
Wierzbicki –	- not present	
Group D Questions	s: Fracture	
October 23, 2006	AHSS Workshop – Table 7	Page 1

1. What are the priv	ncipal technical obstacles to the creation of third-gen	eration AHSS?
 Cost effective all Develop method set of mechanica Defining a cost e the required mic 	loying elements needed to generate new ministry to define the microstucture required to define al properties affective thermomechanical processing scherrostructure.	icrostructures. iver a desired me to generate
October 23, 2006	AHSS Workshop – Table 7	Page 2

4. What specific, <u>applied</u> (i.e practical and widely use	e. DOE-like) research is needed to make secored? (i.e. Identify priority areas for DOE-like re	nd-and third-generations search in this area.)
 In situ characterizat Develop FEM formation couple length and t 	tions of materials and processes ulations and large scale computations ime scales for the models	necessary to
October 23, 2006	AHSS Workshop – Table 7	Page 5

D3) What specific kinds of companies, and	cooperation is needed among funding agencies, the research community? (Money, of course, but	steel companies, auto t what else?)
Organize workshops b coordinate research	etween academia, industry and US government rese	arch laboratories to
Develop joint research and strengths	between the above institutions to leverage respective	e research capabilities
 Increase sharing of inf Material database Experiments Standards Simulations 	ormation between different research institutions and i	ndustry
October 23, 2006	AHSS Workshop - Table 7	Page 8

Advanced High-Strength Steels: Fundamental Research Issues Workshop		
TABLE 8:		
Du		
Cooper		
Khaleel		
Sun		
Cao		
Khan		
P. Wang		
Group A Questions	: Model v. Experiment	
October 23, 2006	AHSS Workshop – Table 8	Page 1

 Define/expand tech Additional consider weldability, coatabi growth, etc. 	nnological aims/goals beyond strength an ations include formability, cost, manufact lity, fracture toughness, resistance to fati	d ductility. turability, gue crack
 Identification of app volume fractions 	propriate microstructures- "hard phase" v	rs. "soft phase"
Technical requirem limited to sheet ma suspension system	ents based on application requirements terials. Examples include components w	including but not rithin the
Cost effective thern composition	no-mechanical process modeling that is	related to
Predictive modeling needed to simulate	g tools, especially first-principles, <i>ab initic</i> and predict the behavior of AHSS	o type, are
October 23, 2006	AHSS Workshop Table 8	Dago 2

2. What are the principal technica	al obstacles to the widespread usage of seco	nd-generation AHSS?
 Cost Manufacturability, in Secondary processing Industrial use of sime multi-axial processes 	cluding coatability, weldability, rep ng, such as fracture, formability ple models and uniaxial data to pr s	airability, <i>etc</i> . edict complex,
October 23, 2006	AHSS Workshop – Table 8	Page 3

 A1. What kinds of modeling technology technolo	g are most needed to push AHSS forward? Wi nniques are likely to be the most important? to go from desired engineering pro and multi-scale, first-principles-bas o / integrated with continuum-based tion models efficient, simple-to-use, accurate pro e with multi-pass processes arameters that are absent from cur ent measurable microstructures t for friction, contact stresses, and in ning / rolling processes	hat length scales and perties to sed models to models edictive models rent generation microstructural
October 23, 2006	AHSS Workshop – Table 8	Page 6

