
CHAPTER 1 - PROBLEM SOLUTIONS 
 
A. PROFICIENCY PROBLEMS 
 
1. The plot below of load vs. extension was obtained using a specimen (shown in the following figure) 

of an alloy remarkably similar to the aluminum-killed steel found in automotive fenders, hoods, 
etc.  The crosshead speed, v, was 3.3x10-4 inch/second.  The extension was measured using a 2" 
extensometer as shown (G).  Eight points on the plastic part of the curve have been digitized for 
you.  Use these points to help answer the following questions. 

 

L
oa

d,
 p

ou
nd

s

0.80.70.60.50.40.30.20.1

100

200

300

400

500

600

700

800

900

G = 2.0"

0.03"

0.
5"

(0.0018, 405 )

(0.004, 458)

(0.10, 630 )

(0.20, 699)

(0.30, 729)

(0.40, 741.5 )

(0.50, 745 )

(0.80, 440 )

Extension, inches

D = 3.3 "

 
 

a. Determine the following quantities.  Do not neglect to include proper units in your answer. 
 

Yield stress Young's Modulus 
Ultimate tensile strength Total elongation 
Uniform elongation Post-uniform elongation 
Engineering strain rate  

 
b. Construct a table with the following headings, left-to-right:  Extension, load, engineering 

strain, engineering stress, true strain, true stress.  Fill in for the eight points on graph. 
 What is the percentage difference between true and engineering strains for the first point?  

(i.e., % = ______ x 100) 
 What is the percentage difference between true and engineering strains for the last point? 
c. Plot the engineering and true stress-strain curves on a single graph using the same units. 
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d. Calculate the work-hardening rate graphically and provide the ln-ln plot along with the 
value of n.  How does n compare with the uniform elongation in Part a?  Why? 

e. A second tensile test was carried out on an identical specimen of this material, this time 
using a crosshead speed of 3.3x10-2 inch/second.  The load at an extension of 0.30 inch 
was 763.4 lb.  What is the strain-rate sensitivity index, m, for this material? 

 
SOLUTION: 

a. 
  σy = 458 lbs

.030" x 0.5" = 30,500 psi E = 27,000 psi
0.0018"/2.0" = 30 x 106 psi 

 

 
  σUTS =

745 lbs
.030" x .5"

= 49,700 psi
 et = 0.80"

2.0" = 0.40 or 40% 
 

 
 eu = 0.5"

2.0" = 0.25 or 25%  epu = et – eu = 0.40 – 0.25 = 0.15 or 15% 
 

 
 e = 3.3 x 10–4 inch/s

3.3" = 10–4/s 
b.  

Extension Load Eng. Strain Eng. Stress True 
Strain 

True Stress
% Error 
eng/true 

strain 

0.0018 405 0.001 27000 0.001 27024 0.04% 

0.02 458 0.010 30533 0.010 30839 0.50% 

0.1 630 0.050 42000 0.049 44100 2.48% 

0.2 699 0.100 46600 0.095 51260 4.92% 

0.3 729 0.150 48600 0.140 55890 7.33% 

0.4 741.5 0.200 49433 0.182 59320 9.70% 

0.5 745 0.250 49667 0.223 62083 12.04% 

0.8 440 0.400 29333 0.336 41067 18.88% 

 
c.  
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d.  
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n=0.13 
(all data)

n = 0.225 
(less extreme points)

 
 
The n value (slope of the ln-ln plot) is as follows: 
 All points:  n = 0.13, Wth first and last removed:  n = 0.225 
 
The first point must be removed because the elastic strain is a significant part of the total strain and the 
last point is meaningless because necking means that the formula to find εt, and σt cannot be used. 
 
.225 differs from 0.25 because n is true strain so e.225 - 1 = 0.25 = uniform elongation. 
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e. 

 
m =

ln p2/p1
ln v2/v1

=
ln 763.4 lb

729 lb

ln 3.3 x 10–2/s
3.3 x 10–4 /s

= ln 1.047
ln 100 = .046

4.605 = 0.010
 

 
 
2. Starting from the basic idea that tensile necking begins at the maximum load point, find the true 

strain and engineering strain where necking begins for the following material laws.  Derive a 
general expression for the form and find the actual strains. 

 
a.     (Swift)σ = k (ε + εo)n σ = 500 (ε + 0.05)0.25 1

 
b.   (Ludwik) σ = σo + k (ε + εo)n σ = 100 + 500 (ε + 0.05)0.25

 
c.   σ = σo (1 - Ae

-Bε) σ = 500 1 - 0.6 exp (-3ε)   (Voce)2

 
d. σ = σo    σ = 500     (Ideal) 
 
e. σ = σo + kε   σ = 250 + 350 ε    (Linear) 
 
f.      (Trig) σ = k sin (Bε) σ = 500 sin (2πε) 

 
SOLUTION: 
a.    σ = k (ε + εo)n

 

 
  dσ

dε = nk (ε + εo)
n–1 = k(ε + εo)n = σ 

 

 
  n = εu + εo, εu = n – εo  

 

 for 
  εo = 0.05, n = 0.25 εu = 0.20

 
 

b.  
  σ = σo + k(ε + εo)

n

 

 
  dσ

dε
= nk (ε + εo)

n–1 = σo + k(ε + εo)
n = σ

 
 

 
  

σo + k(ε + εo)
n–1 ε + εo–n = 0

 
 
This is transcendental, so it cannot be solved algebraically. 
 
Let's solve it numerically by Newton's Method for the special case n = 0.25, εo = 0.05, σo = 100, k = 
500. 

                                                 
1 H. W. Swift:  Plastic Instability Under Plane Stress, J. Mech. Phys. Solids, 1952, Vol. 1, p.1. 
2 E. Voce:  The Relationship Between Stress and Strain For Homogeneous Deformation, J. Inst. Met:  1948, Vol. 74, p. 537-562, 760. 
 E. Voce:  The Engineer:  1953, Vol. 195, p.23. 
 E. Voce:  Metallurga:  1953, Vol. 51, p. 219. 
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  F(ε) = σo + k(ε + εo)

n–1 ε + εo–n = 0 
 

 
  F′(ε) = k(n–2)(ε + εo)n–2 ε + εo–n + k(ε + εo)

n–1
 

 
Start from a trial of eu = 0.20 (from Part b) 
 

Step (i) εu(i) F[εu(i)] F'[εu(i)] εu(i+1) 

0 0.20 100 1,414 0.129 

1 0.129 -29 3,078 0.138 

2 0.138 -8.5 2,762 0.142 
 
So, eu ≈ 0.142 
 

c. 
  σ = σo(1–Ae–Bε) 

 

 
  dσ

dε
= BAσoe

–Bε = σo(1–Ae–Bε) = σ
 

 
 BX = 1-X  where X = Ae-Bε 

 

 
 X =

1
1+B

or ln X = ln
1

1+B,  
 ln A – Bε = ln

1
1+B,  

–Bε = ln
1

1+B
– ln A

 
 

 

  
εu = –

1
B

ln A – ln
1

1+B
=

1
B

ln A(1+B)
 

 

for A = 0.6 B = 3: 
  εu =

1
3

ln 0.6(4) = 0.29
 

 

d. ,   σ = σo

  dσ
dε

= 0 = σo = σ
 (Never stable for constant  σ .     o

 εu = 0 ) 
 

e. ,   σ = σo + kε
  dσ

dε
= k = σo + kε = σ

, 
ε =

k–σo

k  
 

for σo = 250, k = 350, 
  εu =

350–250
350

= 0.29
 

 
f.   σ = k sin Bε  
 

 
  dσ

dε
= kB cos Bε = k sin Bε

, , B = tan Bε
ε =

1
B

tan–1 B
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 for ,   B = 2π, k = 500
  ε =

1
2π

tan–1 2π = 0.22
 

 
 
3. What effect does a multiplicative strength coefficient (for example k in the Hollomon Law, k in 

Problem 2.a., or σo in Problem 2.c.) have on the uniform elongation? 
 
SOLUTION: 
 No effect.  Because it is only the ratio of strength in one part of the tensile test (i.e. in the neck) to 

another (outside the neck), multiplication of σ has no effect on stability. 
 
4. For each of the explicit hardening laws presented in Problem 2, calculate the true stress at ε = 

0.05, 0.10, 0.15, 0.20, 0.25 and plot the results on a (ln σ-ln ε) figure.  Use the figure to calculate 
a best-fit n value for each material and compare this with the uniform strain calculated in Problem 
2.  Why are they different, in view of Eq. 1.16? 

 
 
5. For each of the explicit hardening laws presented in Problem 2, plot the engineering stress-strain 

curves and determine the maximum load point graphically.  How do the results from this 
procedure compare with those obtained in Problems 2 and 4? 

 
SOLUTIONS: 
 See table and plots.  Compare εu and n from ln-ln plots 
 

Equation εu (Problem 2) εu (Problem 4) εu (Problem 5) 
(from max load) 

a 0.20 0.17 0.20 

b 0.14 0.13 0.14 

c 0.29 0.24 0.29 

d 0.00 0.00 0.00 

e 0.29 0.14 0.29 

f 0.22 0.75 0.22 
 

The results are different from Problems 2 and 4 because 
d ln σ
d ln ε

(=n)
 is not a constant.  Only this quantity 

at the point at which 
  dσ

dε
= σ

 impor

he results from Problems 2 and 5 are identical, whether Considere's Criterion is used mathematically 

 

 is tant, not an average of this quantity over a large range of strains. 
 
T
(Problem 2) or whether the hardening equation is plotted in engineering units and the maximum load is 
found. 
 

  σ2
σ1

(at two rates) =
520 (ε + 0.05)0.25

500 (ε + 0.05)0.25 =
520
500  
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  Problem 1-4   
 Stress Stress Stress Stress Stress Stress 

Strain Part a Part b Part c Part d Part e Part f 
0.05 281 381 268 155 242 500 
0.1 311 411 278 500 285 294 

0.15 334 434 309 500 303 405 
0.2 354 454 335 500 320 476 

0.25 370 470 358 500 338 500 
       

 ln stre ln stre ln stre ln stre ln stre ln stress ss ss ss ss ss 
ln strain Part a Part b Part c Part d Part e Part f 
-2.996 5.639 5.943 5.488 6.215 5.589 5.040 
-2.303 5.740 6.019 5.627 6.215 5.652 5.683 
-1.897 5.812 6.074 5.732 6.215 5.712 6.003 
-1.609 5.868 6.117 5.815 6.215 5.768 6.164 
-1.386 5.914 6.153 5.881 6.215 5.822 6.215 

    
slope (n) 0.17 0.13 0.24 0.00 0.14 0.75 

 
(Figure for Problem 1-4 follows.) 
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Figure for Problem 1-4 (upper), for Problem 1-5 (lower). 

  Problem 1-5  

True Eng. Eng. Stress Eng. Stress Eng. Stress Eng. Stress Eng. Stress Eng. Stress 
Strain Strain Part a Part b Part c Part d Part e Part f 
0.01 0.01 245.0 344.0 206.8 495.0 251.0 31.1 
0.02 0.02 252.1 350.1 213.2 490.1 251.9 61.4 
0.03 0.03 258.1 355.1 219.1 485.2 252.8 90.9 
0.04 0.04 263.1 359.2 224.8 480.4 253.6 119.5 
0.05 0.05 267.5 362.6 230.0 475.6 254.5 147.0 
0.06 0.06 271.2 365.4 234.9 470.9 255.2 173.3 
0.07 0.07 274.4 367.6 239.5 466.2 255.9 198.5 
0.08 0.08 277.1 369.5 243.7 461.6 256.6 222.4 
0.09 0.09 279.5 370.9 247.7 457.0 257.3 244.9 
0.1 0.11 281.6 372.0 251.3 452.4 257.9 265.9 

0.11 0.12 283.3 372.9 254.7 447.9 258.4 285.5 
0.12 0.13 284.8 373.4 257.8 443.5 259.0 303.6 
0.13 0.14 286.0 373.8 260.7 439.0 259.5 320.1 
0.14 0.15 287.0 373.9 263.3 434.7 259.9 334.9 
0.15 0.16 287.8 373.9 265.7 430.4 260.4 348.2 
0.16 0.17 288.4 373.6 267.9 426.1 260.8 359.7 
0.17 0.19 288.9 373.3 269.8 421.8 261.1 369.7 
0.18 0.20 289.2 372.7 271.6 417.6 261.4 377.9 
0.19 0.21 289.4 372.1 273.2 413.5 261.7 384.4 
0.2 0.22 289.5 371.3 274.6 409.4 262.0 389.3 
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0.21 0.23 289.4 370.5 275.8 405.3 262.2 392.6 
0.22 0.25 289.2 369.5 276.8 401.3 262.4 394.2 
0.23 0.26 289.0 368.4 277.7 397.3 262.6 394.1 
0.24 0.27 288.6 367.3 278.4 393.3 262.7 392.5 
0.25 0.28 288.2 366.1 279.0 389.4 262.8 389.4 
0.26 0.30 287.7 364.8 279.5 385.5 262.9 384.8 
0.27 0.31 287.1 363.4 279.8 381.7 263.0 378.7 
0.28 0.32 286.4 362.0 280.0 377.9 263.0 371.2 
0.29 0.34 285.7 360.5 280.1 374.1 263.0 362.4 
0.3 0.35 284.9 359.0 280.1 370.4 263.0 352.3 

0.31 0.36 284.1 357.4 279.9 366.7 262.9 341.0 
0.32 0.38 283.2 355.8 279.7 363.1 262.9 328.5 
0.33 0.39 282.2 354.1 279.3 359.5 262.8 315.0 
0.34 0.40 281.2 352.4 278.9 355.9 262.6 300.5 
0.35 0.42 280.2 350.7 278.4 352.3 262.5 285.1 
0.36 0.43 279.1 348.9 277.8 348.8 262.3 268.8 

        
Uniform strain (eng.) 0.22 0.15 0.34 0.00 0.33 0.25 
Uniform Strain (true) 0.20 0.14 0.29 0.00 0.29 0.22 

 
6. Tensile tests at two crosshead speeds (1mm/sec and 10mm/sec) can be fit to the following 

hardening laws: 
 at V1 = 1mm/sec,   σ = 500 (ε + 0.05)0.25 
 at V2 = 10mm/sec, σ = 520 (ε + 0.05)0.25 

 What is the strain-rate sensitivity index for these two materials?  Does it vary with strain?  What is 
the uniform strain of each, according to the Considere Criterion? 

 
SOLUTION: 

 

  
m =

ln σ 2/σ 1

ln v2/v1

=
ln 520/500

ln 10/1
= 0.017

 
 
The strain-rate sensitivity is independent of strain because the ratio of stresses at the two strain rates is 
independent of strain. 
 
Substituting into the result for Problem 2a gives the uniform true strain in each case: 
 
    εu (v2) = εu (v1) = n – εo = .25 – 0.05 = 0.20
 
7. Repeat Problem 6 with two other stress-strain curves: 
 at V1 = 1mm/sec,   σ = 550 ε0.25 
 at V2 = 10mm/sec, σ = 500 ε0.20 

 Plot the stress-strain curves and find the strain-rate sensitivity index at strains of 0.05, 0.15, and 
0.25.  In view of these results, does Eq. 1.17 apply to this material? 

 
SOLUTION: 

 

  σ2
σ1

=
550 ε0.25

500 ε0.20 = 1.1 ε0.05

, 

  
m =

ln 1.1 ε0.05

ln 10
=

0.095 + 0.05 ln ε
2.303

= 0.041 + 0.022 ln ε
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In this case, the strain-rate sensitivity varies with strain. 
 
 
Eq. 1.17 applies equally well to Problem 6 or Problem 7 at a given strain rate.  The difficulty is that the 
equation was derived assuming that tensile stress depends only on tensile strain.  However, the effect of 
strain-rate sensitivity on the maximum load point is small if m<<n, as is the usual case.  However, the 
post-uniform elongation depends strongly on even small values of m. 
 
8. Consider the engineering stress-strain curves for three materials labeled A, B, and C below.  

Qualitatively, put the materials in order in terms of largest-to-smallest strain hardening (n-value) 
and strain-rate sensitivity (m-value). 

 
σe

A

e

C

B
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SOLUTION: 
 Strain hardening (based on strain to maximum 
load) order:  B, A, C. 
 Strain-rate sensitivity (based on post-uniform 
strain) order:  A, C, B. 
 Ductility or formability (based on total strain to 
failure) order:  A, B, C. 
 
9. It is very difficult to match tensile specimens 

precisely.  For sheet materials, the thickness, width, 
and strength may vary to cause a combined 
uncertainty of about ±1% in stress.  Considering this 
uncertainty of K's in Problem 6, calculate the range 
of m values which one might obtain if one conducted the tests at both rates several times. 

σe

e

B

A

σe=315 MPa

σe=300 MPav1 = 10-3 m/s

v2 = 10-2 m/s

 
SOLUTION: 
 From Problem 6, we recall that  
 

 

 
m =

ln 520
500

ln 10
= 0.017

,  but now we consider the range: 520 ± 1% x 520 = 515 to 525 

       and  500 ± 1% x 500 = 495 to 505 

So, the combined uncertainty of m is in the range: 

mlow =
ln 515

505

ln 10
= 0.009

mhigh =
ln 525

495
ln 10 = 0.026

= 0.017 ± 0.009

 
 
So, a ± 1% uncertainty in stress corresponds to a 50% uncertainty in m! ±
 
 
 
 
10. Considering the specimen-to-specimen variation mentioned in Problem 9, it would be very 

desirable to test strain-rate sensitivity using a single specimen.  Typically, "jump-rate tests" are 
conducted by abruptly changing the crosshead velocity during the test.  Find the strain-rate 
sensitivity for the idealized result shown: 

 
 

 
SOLUTION: 

 

 
m =

ln 315
300

ln 10
= 0.021

 
 
 
11. In fact, the procedure outlined in Problem 10, while being convenient and attractive, has its own 

difficulties.  In order to obtain sufficient resolution of stress, it is necessary to expand the range 
and to move the zero point.  Some equipment does not have this capability.  More importantly, the 
response shown in Problem 10 is not usual.  For the two more realistic jump-rate tests reproduced 
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below, find m values using the various points marked. 

 
σe

e

B

A

v1 extrapolated

A=300 MPa

D

C

B=315 MPa
C=330 MPa
D=345 MPa

σe

e

B

A

A=315 MPa
D

C

B=310 MPa
C=300 MPa
D=290 MPa

v2 extrapolated

v2 = 10-2 m/s

v2 = 10-2 m/s

v1 = 10-3 m/s

v1 = 10-3 m/s

 
 

OLUTION: 

For the "up jump" in rate: 

 

 
 
S
 
 
 

 
mB =

ln 315
300

ln 10
= 0.021

,  

 
mC =

ln 330
300

ln 10
= 0.041

,  
mD =

ln 345
300

ln 10
= 0.061

 
 
For the "down jump" in rate: 

 

 
 

mB =
ln 310

315

ln 1
10

= 0.007
,  

 
mC =

ln 300
315

ln 1
10

= 0.021
,  

mD =
ln 290

315

ln 1
10

= 0.036
 

 
It should be apparent that neither the jump or continuous method eliminates the uncertainties. 

. DEPTH PROBLEMS 

2. If a tensile test specimen were not exactly uniform in cross section, for example if there were 

 
B
 
1
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initial tapers as shown below, how would you expect the measured true stress-strain curves to 
appear relative to one generated from a uniform specimen?  Sketch the stress-strain curves you 
would expect. 

 

(a) Uniform gage length

G

(b) General notch
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���
���
���
���
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(c) Severe notch

���
���
���
���

���
���
���
���

 
 

OLUTION: 

he presence of a notch tends to concentrate the strain in the reduced gage section such that work 

 

 
S
 
T
hardening occurs there rapidly.  In a more severe notch, the stress state begins to have a lateral 
component (tending toward plane strain) which leads to more hardening.  Therefore, one might expect 
the behavior to appear as shown. 
 

Uniform
Mild NotchSevere Notch

Engineering Strain

E
ng

in
ee

ri
ng

 S
tr

es
s

 
 

3. What is the relevance of the 0.2%  offset in determining the engineering yield stress? 

OLUTION: 
convenient number; small enough so that little strain hardening takes place but large 

1
 
S
It is simply a 
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4. Some low-cost steels exhibit tensile stress-strain curves as shown below.  What would you expect 

 

enough to resolve using most tensile testing equipment. 
 
1

to happen with regard to necking? 

σe

e
 

 
OLUTION: 

t, flat stage one should expect localization to begin.  In fact, this happens in a narrow 

5. It has been proposed that some materials follow a tensile constitutive equation which has additive 

 

S
During the firs
band called a Luder's band, but as the strain there increases the material in the bank increases and the 
flow stress exceeds that of the surrounding material.  The bank thus moves outward until the entire 
specimen is strained beyond the flat region.  After that, straining takes place normally. 
 
1

effects of strain hardening and strain-rate hardening rather than multiplicative ones: 

multiplicative:    σ = F(ε) G(ε)  
 

additive:          σ = F(ε) + G(ε)  

 In the first case one investigates 

 

 at constant ε by examining 
σ (V2)
σ (V1)G(ε) , as we have done so far.  

tch

 

In the second case, one would wa (V2) - σ (V1).  Assume that an additive law of the following 
type were followed by a material: 

σ = 500 ε

 σ

0.25  + 25 ε
εo

0.030

 

where
 

 εo  is the base strain-rate where the strain hardening law is determined (i.e. a tensile test 
conducted at a strain rate of εo  exhibits σ = 500ε0.25). 

 
a. Given this law, determine the usual multiplicative  m value at various strains from two 

tensile tests, one conducted at εo  and one at 10εo . 
 

. Compare tensile results extracted from the additive law provided and the multiplicative 

 

b
one determined in Part a.  [Use the m value obtained from the center of the strain range, at 
ε = 0.125.] 
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SOLUTION: 

 

  
σ = 500 ε0.25 + 25

ε
εo

0.30

 
 
 at

at

   ε = εo σ = 500 ε0.25 + 25 
 

  
  ε = 10 εo σ = 500 ε0.25 + 25 (10)0.30 = 500 ε0.25 + 50 

 

  

m =
ln 500 ε0.25 + 50

500 ε0.25 + 25

ln 10 , such that at   

  ε = 0.05 m = 0.040
ε = 0.15 m = 0.031
ε = 0.25 m = 0.028
ε = 0.125 m = 0.032  

 
The m value decreases with strain because the stress difference between the two rates is reduced relative 

6. Use Eq. 1.1-19 (or, equivalently, Eqs. 1.1-20 and 1.1-22) to find the plastic instability for the 

to the overall flow stress. 
 
1

strain hardening [f(ε)] and strain-rate hardening [g(ε)] forms specified.  In each case m=0.02 and 
εo=1/sec. 

σ = f(ε) g(ε)a.  , f(ε) from Problem 2a, 
g(ε) = ε

εo

m

 
 

σ = f(ε) g(ε)b.  , f(ε) from Problem 2c, 
g(ε) = ε

εo

m

 
 

σ = f(ε) g(ε)c.  , f(ε) from Problem 2d, 
g(ε) = ε

εo

m

 
 

σ = f(ε) g(ε)d.  , f(ε) from Problem 2e, 
g(ε) = ε

εo

m

 
 

σ = f(ε) g(ε)e.  , f(ε) from Problem 2f, 
g(ε) = ε

εo

m

 
 
f.  σ = f(ε) + g(ε), f(ε) and g(ε) from Problem 15.  (Leave Part f in equation form.) 

 
OLU ION: 

a.  

S T
σ = k (ε + εo)n ε

ε0

m
 
 

ni = ∂lnσ
∂lnε ε

 = 
  

n
+

ε
ε εo

 ,    mi = ∂lnσ
∂lnε ε

 = m

`  

 
ε =  nε

1-m  ε+εo
   ⇒   εu = n

1-m
 - εo = 0.205
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b. 
σ = σo (1 - Ae

-Bε) ε
ε0

m
 
   

  
ni = ∂lnσ

∂lnε ε
 = BAε exp(-Bε)

1 - A exp(-Bε)
 ,    mi = ∂lnσ

∂lnε ε
 = m

 

  
εu = 1

B
 ln A (B+1-m)

1-m
 = 0.300

 
 

c. 
σ = σo ε

ε0

m
 
    

  
ni = ∂lnσ

∂lnε ε
 = 0 ,    mi = ∂lnσ

∂lnε ε
 = m

 
  εu = 0   (Never stable) 
 

d. 
σ = σo + kε  ε

ε0

m
 
   

  
ni = ∂lnσ

∂lnε ε
 = kε

σo + kε
 ,    mi = ∂lnσ

∂lnε ε
 = m

 

  
ε =  kε

1-m  σo + kε
   ⇒   εu = 1

1-m
 - σo

k
 = 0.306

 
 

e. 
σ = k sin (Bε) ε

ε0

m
 
 

  
ni = ∂lnσ

∂lnε ε
 = Bε

tan(Bε)
 ,    mi = ∂lnσ

∂lnε ε
 = m

 

  

ε =  Bε
1-m  tan(Bε)

   ⇒   εu = 1
B

 tan-1 B
1-m

 = 0.225

 
   
 

f. 
σ = k εn + B ε

εo

m

 

  

ni = ∂lnσ
∂lnε ε

 = nkεn

kεn + B ε
εo

m ,    mi = ∂lnσ
∂lnε ε

 = 
Bm ε

εo

m

kεn + B ε
εo

m

 
 
  Substitution leads to a transcendental equation: 
 

  
nεn-1 - εn = B

k
 (1-m) ε

εo

m
 
, 
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which may be solved iteratively if so desired.  Note that for an additive law such as 
this one, the plastic instability strain depends on strain rate as well as material 
constants. 

 



CHAPTER 2 - PROBLEM SOLUTIONS 
 
A.  PROFICIENCY PROBLEMS 
 
1. Perform the indicated vector operations using the vector components provided: 
 

     a ↔ (1, 1, 1) b ↔ (1, 2, 3) c ↔ (-1, 1, -1)
a⋅b a×b a⋅(b×c)
a⋅c a×c (a×b) ⋅(a×c)
b⋅c b×c a⋅(b+c)
a+b b×a a⋅b+a⋅c
a+c c×a a×(b+c)
b+c c×b (a×b)+( a×c)

 

 
SOLUTION: 

Note:     a ⋅ b ↔ ai bi = a1b1 + a2b2 + a3b 3

  
   a × b = εkij ai bj xk = a2b3 – a3b2 x1 + a3b1 – a1b3 x2 + a1b2 – a2b1 x3 

 
      a ⋅ b = (1, 1, 1) ⋅ (1, 2, 3) = 1 ⋅ 1 + 1 ⋅ 2 + 1 ⋅ 3 = 6
 
      a ⋅ c = (1, 1, 1) ⋅ (–1, 1, –1) = –1 + 1 – 1 = –1
 
      b ⋅ c = (1, 2, 3) ⋅ (–1, 1, –1) = –1 + 2 – 3 = –2
 
      a + b = (1, 1, 1) + (1, 2, 3) ↔ (2, 3, 4)
 
      a + c = (1, 1, 1) + (–1, 1, –1) ↔ (0, 2, 0)
 
      b + c = (1, 2, 3) + (–1, 1, –1) ↔ (0, 3, 2)
 

  

   

a × b =
x1 x2 x3

1 1 1
1 2 3

=
1 1
2 3

x1 –
1 1
1 3

x2 +
1 1
1 2

x3 = x1 – 2x2 + x3 ↔ (1, –2, 1)

 
 
In a similar way, 
 
     a × c ↔ (1, –2, 1)
 
     b × c ↔ (–2, 0, 2)
 
     b × a ↔ (–5, –2, 3)
 
     c × a ↔ (2, 0, –2)
 
     c × b↔ (5, 2, –3)
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     a ⋅ (b × c) = –4
 
     (a × b)⋅ (a × c) = 0
 
     a ⋅ (b + c) = 5
 
     a ⋅ b + a ⋅ c = 5
 
     a × (b + c) ↔ (–1, –2, 3)
 
     (a × b) + (a × c) ↔ (–1, –2, 3)

 
2. Perform the indicated vector operations. 
 

a. Write the  components of the given vectors  (a,b,c) n terms of the base vectors  
   x 1

′,x 2
′,x 3

′

provided: 
     x1

′ ↔ (0.866, 0.500, 0.000)
x2

′ ↔ (-0.500, 0.866, 0.000)
x3

′ ↔ (0.000, 0.000, 1.000)
,  

 where the components of these base vectors are expressed in the original coordinate 
system as follows: 

  a ↔  (1,  1,  1)     b ↔  (1,  2,  3)      c ↔  ( -1,  1, -1)
 or 

  a = x1+x2+x3 b = x1+2x2+3x3 c = -x1+x2-x3  
 
b. Perform the following operations using the components of a, b, c expressed in the new 

(primed) basis: 
a⋅ b       a⋅ (b×c)              a×(b+c)         
a×b      (a×b)⋅ (a×c)       (a×b)+(a×c)   
a+b                                                           

 
c.  Construct the rotation matrix [R] to transform components from the original coordinate 

system to the primed coordinate system.  Is [R] orthogonal?  Find the inverse of [R] in 
order to transform components expressed in the primed coordinate system back to the 
original, unprimed coordinate system. 

 
d.  Transform the components of the results found in Part b. to the unprimed coordinate system 

and compare the results with the equivalent operations carried out in Part a. (using 
components expressed in the original coordinate system). 

 
SOLUTION: 
a.    x1′ ↔ (0.866, 0.500, 0.000)    x1′ = 0.866 x1 + 0.5 x2  

    x2
′ ↔ (–0.500, 0.866, 0.000)     x2

′ = – 0.5 x1 + 0.866 x2  
    x3

′ ↔ (0.000, 0.000, 1.000)  x3' = x3 
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so that, according to Eq. 2.23: 
 

 

 

R =
0.866 0.500 0.000
–0.500 0.866 0.000
0.000 0.000 1.000

, and

 
 

 

  a1
′

a2
′

a3
′

=
0.866 0.500 0.000
–0.500 0.866 0.000
0.000 0.000 1.000

1
1
1

=
1.366
0.366
1.000

 
 

 

  b1
′

b2
′

b3
′

=
0.866 0.500 0.000
–0.500 0.866 0.000
0.000 0.000 1.000

1
2
3

=
1.866
1.232
3.000

 
 

 

  c1
′

c2
′

c3
′

=
0.866 0.500 0.000
–0.500 0.866 0.000
0.000 0.000 1.000

–1
1
–1

=
0.366
1.366
–1.000

 
 
     a′ ↔ (1.366, 0.366, 1.000)
 
     b′ ↔ (1.866, 1.232, 3.000)
 
     c′ ↔ (–0.366, 1.366, –1.000)

 
 
b.  (Note:  the prime notation is used here to remind that the required operations 

were carried out using the components expressed in the primed coordinate system.) 
   a′ ⋅ b′ = 6

 
     a′ × b′ ↔ (–0.134, –2.232, 1.000)
 
     a′ + b′ ↔ (3.232, 1.598, 4.000)
 
     a′ ⋅ (b′ × c′) = –4.000
 
     (a′ × b′) ⋅ (a′ × c′) = 0.000
 
     (a×b)+(a×c) = –4.000
 
     (a′ × b′) + (a′ × c′) ↔ (–1.866, –1.232, 3)
 



Page 4 Fundamentals of Metal Forming - Solution Manual Chapter 2 
 

c.

 

   
R =

0.866 0.500 0.000
–0.500 0.866 0.000
0.000 0.000 1.000

, x′ = R x

 
 

 

  
R RT =

0.866 0.500 0.000
–0.500 0.866 0.000
0.000 0.000 1.000

0.866 –0.500 0.000
0.500 0.866 0.000
0.000 0.000 1.000

=
1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00

= I

Orthogonal  

 

  

R –1 =

signed
cofactor
matrix

–1

A
=

0.866 –0.500 0.000
0.500 0.866 0.000
0.000 0.000 1.000

= R T

 
 

d. 
  a ′ = R a  , or  

  R –1 a ′ = a  
 
 (i)     a ⋅ b = 6 ; does not change since it is scalar.
 

 (ii) 

   
a × b =

0.866 –0.500 0.000
0.500 0.866 0.000
0.000 0.000 1.000

–0.134
–2.232
1.000

=
1
–2
1

↔ (1, –2, 1) (same result)
 

 

 (iii) 

   
a + b =

0.866 –0.500 0.000
0.500 0.866 0.000
0.000 0.000 1.000

3.232
1.598
4.000

=
2
3
4

↔ (2, 3, 4) (same result)
 

 
 (iv)     a ⋅ (b × c) = a ⋅ (b × c) = –4
 
 (v)     a ⋅ (b × c) = a ⋅ (b × c) = 0
 
 (vi)     (a × b) ⋅ (a × c) = (a × b) ⋅ (a × c) ↔ (–1, –2, 3)
 
 (vii)     a × (b + c) = a × (b + c) ↔ (–1, –2, 3)
 
 (viii)      (a × b) + (a × c) = (a × b) + (a × c) ↔ (–1, –2, 3)
 
  Should have the same results for every case. 

 
 
3. Find the rotation matrices for the following operations: 

a. Rotation of axes (i.e. component transformation) 45  about ° x3 in a right-handed sense 
(counter-clockwise when looking anti-parallel along x3). 

b. Rotation of a physical vector 45  about ° x3 in a right-handed sense (i.e. the vector moves 
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counter-clockwise when looking anti-parallel along x3). 
c. Rotation of axes (i.e. component transformation) 30  about ° x2 in a right-handed sense (i.e. 

counter-clockwise when viewed anti-parallel to x2). 
d. Rotation of a physical vector 30  about ° x2 in a right-handed sense (i.e. the vector moves 

counter-clockwise when looking anti-parallel along x2). 
 

SOLUTION: 
a. 

 

  

R =

cos 45° cos 45° cos 90°

cos 135° cos 45° cos 90°

cos 90° cos 90° cos 0°

=

2
2

2
2 0

–
2
2

2
2

0

0 0 1

 
 

b.  

 

R =

2
2 –

2
2 0

–
2

2
2

2
0

0 0 1
 c.  

 

R =

3
2 0 –

1
2

0 1 0

1
2

0 3
2

 d.  

 

R =

3
2 0 –

1
2

0 1 0

– 1
2

0 3
2

 
 

4. Perform the matrix manipulations shown. 
 
a. Find the determinants and inverses of the following matrices: 

 
A =

1 2 3
4 5 6
7 8 9

B =
7 8 9
1 2 3
4 5 6

C =
1 1 1
-1 2 3
3 1 -1

 

 
b. Multiply A  A -1,  B  B -1,   and C  C -1  to verify that the inverse has been correctly 

obtained. 
 
SOLUTION: 

a. 

 
A =

1 2 3
4 5 6
7 8 9

B =
7 8 9
1 2 3
4 5 6

C =
1 1 1
–1 2 3
3 1 –1

 
 

   A = 1 (5 ⋅ 9 – 6 ⋅ 8) – 4 (2 ⋅ 9 – 3 ⋅ 8) + 7 (2 ⋅ 6 – 3 ⋅ 5) = 0  
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A –1 =

signed wfactor
matrix

T

A
,
     since A = 0, A –1 cannot be obtained 

 

  B = A = 0,        
  B –1 → does not exist  

  C = 1 (–2 –3) – 1 (1 – 9) + 1 (–1 – 6) = –4,      

 

C –1 =
1.25 –0.5 –0.25
–2 1 1

1.75 –0.5 –0.75
 

 

b. 
 A A –1 , B B –1 ; not applicable.  

 

 

C C –1 =
1 1 1

–1 2 3
3 1 –1

1.25 –0.5 –0.25
–2 1 1

1.75 –0.5 –0.75
=

1 0 0
0 1 0
0 0 1

 
  Yes, inverse has been correctly obtained. ∴

 
5. The following sets of basis vectors are presented in a standard Cartesian coordinate system 

(x1, x2, x3). 
   

Set (1)

x1
(1)

↔ 0.707, 0.707, 0.000

x2
(1)

↔ -0.500, 0.500, 0.707

x3
(1)

↔ 0.500, -0.500, 0.707

 

 
   

Set (2)

x1
(2)

↔ 0.750, 0.433, 0.500

x2
(2)

↔ -0.500, 0.866, 0.000

x3
(2)

↔ -0.433, -0.250, 0.866

 

 
   

Set (3)

x1
(3)

↔ 0.866, 0.500, 0.354

x2
(3)

↔ 0.500, 0.866, 0.354

x3
(3)

↔ 0.000, 0.000, 0.866

 

 
a. Using vector operations, determine which of the basis sets are orthogonal. 
 
b. Determine the transformation matrices to transform components presented in the original 

coordinate system (x1, x2, x3) to those in each of the other basis systems. 
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c. Which of the transformation matrices in Part b. are orthogonal?  Does this agree with Part 
a? 

 
d. Find the transformation matrix to transform components provided in coordinate system (1) 

to components expressed in coordinate system (2).  Is the transformation matrix 
orthogonal? 

SOLUTION: 
a. To be orthogonal, the inner product of two vectors should be zero. 

   
Set (1) x1

(1)
⋅ x2

(1)
= (0.707, 0.707, 0.000) ⋅ (-0.5, 0.5, 0.707) = 0.0

x3
(1)

⋅ x2
(1)

= (0.500, -0.500, 0.707) ⋅ (-0.500, 0.500, 0.707) = 0.0

x1
(1)

⋅ x3
(1)

= (0.707, 0.707, 0.000) ⋅ (0.500, -0.500, 0.707) = 0.0

∴ orthogonal

Set (2) x1
(2)

⋅ x2
(2)

= x2
(2)

⋅ x3
(2)

= x1
(2)

⋅ x3
(2)

= 0.0 ∴ orthogonal

Set (3) x2
(3)

⋅ x3
(3)

= 0.991

x1
(3)

⋅ x2
(3)

= 0.307

x1
(3)

⋅ x3
(3)

= 0.307 ∴ not orthogonal

 

 

b. 
   x1 ↔ (1, 0, 0) , x2 ↔ (0, 1, 0) , x3 ↔ (0, 0, 1)  

 

Set(1) 

   
x1

(1)
↔ (0.707, 0.707, 0.0) = 0.707 (1, 0, 0) + 0.707 (0, 1, 0) + 0.0 (0, 0, 1)

x2
(1)

↔ (-0.5, 0.5, 0.707) = -0.5 (1, 0, 0) + 0.5 (0, 1, 0) + 0.707 (0, 0, 1)

x3
(1)

↔ (0.5, -0.5, 0.707) = 0.5 (1, 0, 0) + -0.5 (0, 1, 0) + 0.707 (0, 0, 1)

 
 
In a similar way as  shown in Exercise 2.5, we obtain 

 Set (1) 

 
R(1) =

0.707 0.707 0.000
–0.500 0.500 0.707
0.500 –0.500 0.707

  
 

 Set (2) 

 
R(2) =

0.750 0.433 0.500
–0.500 0.866 0.000
–0.433 –0.250 0.866

  
 

 Set (3) 

 
R(3) =

0.866 0.500 0.354
0.500 0.866 0.354
0.000 0.000 0.866
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c. Set (1) 

 

R(1) R(1) T
=

0.707 –0.5 0.5
0.707 0.5 –0.5

0.0 0.707 0.707

0.707 0.707 0.0
–0.5 0.5 0.707
0.5 –0.5 0.707

=
1 0 0
0 1 0
0 0 1

 

       ∴orthogonal 
 

Set (2)  
   R(2) R(2) T

= I ∴ orthogonal  
 

Set (3) 

   

R(3) R(3) T
=

0.866 0.500 0.354
0.500 0.866 0.354
0.000 0.000 0.866

0.866 0.500 0.000
0.500 0.866 0.000
0.354 0.354 0.866

=

=
1.13 0.99 0.31
0.99 1.13 0.31
0.31 0.31 0.75

≠
1 0 0
0 1 0
0 0 1

= I ∴ not orthogonal

 
 
i.e.  When the transformation is a pure rotation, the transformation is orthogonal. 
All of these results agree with Part a. 

 

d. 
 x(1) = R(1) x , 

 x(2) = R(2) x  
 

Thus, 
 x (2) = R(2) R(1) –1

x(1)
 

 

Since 
 R(1)

 is orthogonal 
 R(1) –1

= R(1) T

  
 

 
  ∴ R(1) → (2) = R(2) R(1) T

 

 

 
=

0.750 0.433 0.500
–0.500 0.866 0.000
–0.433 –0.250 0.866

0.707 –0.500 0.500
0.707 0.500 –0.500
0.000 0.707 0.707

 

 

 
=

0.836 0.195 0.512
0.259 0.683 –0.683
–0.483 0.704 0.521

 
 
Check of orthogonality: 

   
R ′ R(1) T

=
0.836 0.195 0.512
0.259 0.683 –0.683

–0.483 0.704 0.521

0.836 0.259 –0.483
0.195 0.683 0.704
0.512 –0.683 0.521

1 0 0
0 1 0
0 0 1

= I

 

       ∴ orthogonal 
 
 For those familiar with matrix manipulation, another proof may be written briefly as follows: 
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 R(1) R(1) T
= R(2) R(1) T

R(2) R(1)
T

= R(2) R(1) T
R(1) R(2) T

= R(2) R(2) T
= I

I  
 
 
6. Solve the sets of equations presented below by finding the inverse of the coefficient matrix.  (Note 

that Part b will require extension of the inversion formula to matrices of size greater than 3x3.): 
 

a.  

 X1 + 2X2 + 3X3 = 10
X1 + 5X2 - X3 = 12
X1 + 3X2 + X3 = 14

 

b.   

 X1 + 2X 2 + 3X3 + 4X4 = 10
X1 + 5X 2 - X3 +14X4 = 12
X1 + 3X2 + X3 + X4 = 14
X1 + 4X 2 - 2X3 - 2X4 = 16

 
SOLUTION: 
 

a. 
   K X = F → X = K –1 F  

 

 

 
K =

1 2 3
1 5 –1
1 3 1

, F =
10
12
14  

 

  K = 5 + 3 – 2 + 9 – 2 – 15 = –2,       

 

∴ K –1 = –
1
2

8 –2 –2
7 –2 –1

–17 4 3

T

 
 
 Classical adjoint:  transpose of the matrix of cofactors. 
 

 

  

∴ X = –
1
2

8 7 –17
–2 –2 4
–2 –1 3

10
12
14

=
37
–6
–5

 
 

b. In the same way, 

 

X =

–4.632
5.789
2.000

–0.737
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7.  Perform the following operations related to eigenvector - eigenvalue problems. 
 

a. Find the eigenvalues and the associated eigenvectors for the following matrices: 
 

1 2
3 1

1 2 3
2 4 5
3 5 6

1 -1 2
-1 2 -3
2 -3 3

 

 
b. Find the transformation matrices which change components expressed in the original 

coordinate system to ones expressed using the eigenvectors as base vectors.  Choose the 
direction associated with the maximum eigenvalue to be the new x1' ,the second one x2' , 
and the third one x3' . 

 
c. Treating the columns of the matrices in part a. as vectors, find the equivalent components 

expressed in the eigenvector bases from Part b..  [i.e. use the transformation matrices 
found in Part c. to find the new components of the tensors in Part a., expressed in the 
principal coordinate system.] 

 
 

SOLUTION: 

a.   A – λI = 0 , 

  1–λ 2
3 1–λ

= 1–λ 2 – 6 = 1–2λ + λ2 – 6 = λ2–2λ – 5 = 0
 

 
    Eigenvalues: λ1 = 1 + 6 , λ2 = 1 – 6 ; Eigenvectors: p(1) , p(2)

 
 

 (i) For      λ = 1 + 6 = 3.449  ,        

  
p(1) ↔

x1
(1)

x2
(1)

 
 

  

  
A – λ 1 I p(1) =

– 6 2
3 – 6

x1
(1)

x2
(1) =

0
0

 
 

  Let   x1
(1) = 1, then – 6 + 2x2

(1) = 0  

  
∴ x2

(1) =
6

2  
 

  Normalizing these   

  
p(1) ↔ 1

5
2

1, 6
2 = (0.632, 0.775)

 
 
 (ii) For    λ = 1 – 6 = –1.449  
 

  

 6 2
3 6

x1
(2)

x2
(2) =

0
0

,

     and if  
 x1

(2) = 1, then x2
(2) = – 6

2  
 
  Normalizing, we get     p(2) ↔ (0.632, – 0.775)
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  Check of orthogonality:    (Not orthogonal because the 

original  
  p(1) ⋅ p(2) = – 0.20 ≠ 0

  matrix is not symmetric.) 
 
Using the same procedure, 
 

 (ii) For 

 1 2 3
2 4 5
3 5 6  , 

  λ1 = 11.345, p1 ↔ (0.328, 0.591, 0.737)
λ2 = –0.516, p2 ↔ (0.737, 0.328, –0.591)
λ3 = 0.171, p3 ↔ (–0.591, 0.737, –0.328)  

 

 (iii) 

 1 –1 2
–1 2 –3
2 –3 3  ,  

  λ1 = 6.419, p1 ↔ (0.374, –0.577, 0.725)
λ2 = –0.387, p2 ↔ (0.816, 0.577, 0.038)
λ3 = 0.806, p3 ↔ (–0.441, 0.577, 0.687)  

 

b. 

 
T (1) = 0.632 0.775

0.632 – 0.775  
 

 

 
T (2) =

0.328 0.591 0.737
–0.591 0.737 –0.328
0.737 0.328 –0.591

     
 

 

 
T (3) =

0.374 –0.577 0.725
0.816 0.577 0.038
–0.041 0.577 0.687  

 

c. Suppose x, y, z are orthogonal eigenvectors of A where eigenvalues are  
respectively, let 

  λ1, λ2, and λ3,

 

 

 
L =

x1 y1 z1
x2 y2 z2
x3 y3 z3  ,    where  

  
x ↔

x1
x2
x3

y ↔
y1
y2
y3

z ↔
z1
z2
z3  

 

 Then from 2.35a,  

  A x = λ1 x
A y = λ2 y
A z = λ3 z  

 

   → A L = D L     ∴ D = L T A L  
 

 Here   L = T T
, and  D = T A T T

 
 
 We will obtain [D]; the diagonal matrix whose diagonal components are eigenvalues. 
 For example, 
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D =
0.328 0.591 0.737
0.737 0.328 –0.591
–0.591 0.737 –0.328

1 2 3
2 4 5
3 5 6

0.328 0.737 –0.591
0.591 0.328 0.737
0.737 –0.591 –0.328

=
11.345 0 0

0 –0.516 0
0 0 0.171

 

 
8. Find the new components of the tensors provided below if the coordinate system change 

corresponds to a rotation of 30  about ° x3: 
 

 

R =
0.866 0.500 0.000

-0.500 0.866 0.000
0.000 0.000 1.000

 

 

T1 ↔ 
1  2  3
2  4  5
3  5  6

  =  T1  ,    T2 ↔ 
1  2  3
4  5  6
7  8  9

 = T2
 

 
SOLUTION: 

  T ′ = R T R T , T1
′ = R T1 R T , T2

′ = R T R2
T  

 
  

T1
′ =

0.866 0.500 0.000
–0.500 0.866 0.000
0.000 0.000 1.000

1 2 3
2 4 5
3 5 6

0.866 –0.500 0.000
0.500 0.866 0.000
0.000 0.000 1.000

=
3.482 2.299 5.098
2.299 1.518 2.830
5.098 2.830 6.000

 

  
T2

′ = R T2 R T =
4.598 2.232 5.598
4.232 1.402 3.696
10.062 3.428 9.000

 

 
9. In calculating contact conditions at an interface, it is often necessary to find the unit vector which 

represents the projection of a given vector (usually the displacement of a material point) onto a 
plane tangent to the interface.  If the normal to the tangent plane is denoted n and the arbitrary 
vector is a, find t, the unit tangent vector corresponding to the material displacement.  [Express 
the result in terms of a, n̂ , and simple vector operations.] 

 
 
SOLUTION: 

One possibility is based on the use of vector addition and the dot product: 

 

   
t =

a – a ⋅ n n
a – a ⋅ n n

(since t is a unit vector)
 

 
Alternatively, one may use the cross product to accomplish the same thing by first defining a 

unit vector q , which is orthogonal to n , a , and t : 

 
   q = a × n

a × n , 

   
t = n × q =

n × a × n

a × n  
 
B. DEPTH PROBLEMS 
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10. Perform the following operations related to component transformations. 
 

a. Find the transformation for components from basis set (2) to basis set (3), in Problem 5, 
above.  

 
b. Find the inverse transformation, that is, one that expresses components in basis set (2) if 

they are given in basis set (3). 
 
c. Using the approach shown in Exercise 2.5, verify that transformation matrices found in 

Parts a. and b. do, indeed, perform the indicated transformations. 
 
d. Show the matrix form of the tensor transformation for components given in basis set (2) to 

those in basis set (3). 
 

SOLUTION: 

a. 
   xi

(2) → xi
(3)

 
 

 
  x(2) = R(2) x ,    

 x = R(2) T
x2

 
 

 
 x(3) = R(3) x ,    

  x3 = R(3) R(2) T
x(2)

 
 

 

  
∴ R(2)→(3) = R(3) R(2) T =

0.866 0.500 0.354
0.500 0.866 0.354
0.000 0.000 0.866

0.750 – 0.500 – 0.433
0.433 0.866 – 0.250
0.500 0.000 0.866

=
1.043 0.000 – 0.193
0.927 0.500 – 0.126
0.433 0.000 0.750

 
 

 Since the inverse of 
 R(3)

 is not used in this transformation, its non-orthogonality is not 
an issue.  However, in part b this requires inverting (rather than transposing) a matrix. 

b. Recall from Part a:     R(2)→(3) = R(3) R(2) T
 

 

 

  
R(2)→(3) –1

= R(3) R(2) T –1

= R(2) R(3) – 1
=

0.866 0.000 0.223
– 1.732 2.000 – 0.110
– 0.500 0.000 1.204

 
 

 Where we have used the relationships:  
 R(2) – 1

= R(2) T
and A B

– 1
= B – 1 A – 1

 
 

c. Let's verify the transformations by considering three vectors, namely those of the original 
basis set  x i

(o)
(let's label them  x , y, x  here to simplify the notation).  We form the matrix 

 A  (corresponding to the tensor A composed of the three vectors) in the usual way, by 
putting the components of each basis vector into a column.  Since we are considering the 

components of the basis set in the basis set,  A  is the identity matrix: 
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A ↔ A(o) =
x1

(o) y1
(o) z1

(o)

x2
(o) y2

(o) z2
(o)

x3
(o) y3

(o) z3
(o)

=
1 0 0
0 1 0
0 0 1

= I

 
 
 We then find the coordinates of these three vectors expressed in the   x (2) and x (3)

 basis sets: 

 

   
A ↔ A(2) = R(2) I =

0.750 0.433 0.500
–0.500 0.866 0.000
–0.433 –0.250 0.866

  (in basis set 2) 

 

   
A ↔ A(3) = R(3) I =

0.866 0.500 0.354
0.500 0.866 0.354
0.000 0.000 0.866

 (in basis set 3) 
 

 Now, our transformation matrix 
  R(2)→(3)

 must transform the components of any vector 
expressed in  x i

(2)
 to components expressed in  x i

(3)
: 

 

 

  
A (3) = R(2)→(3) A (2) =

1.043 0.000 – 0.193
0.927 0.500 – 0.126
0.433 0.000 0.750

0.750 0.433 0.500
–0.500 0.866 0.000
–0.433 –0.250 0.866

=
0.866 0.500 0.354
0.500 0.866 0.354
0.000 0.000 0.866

= A(3)

 
 

 Comparison of 
 A(3)

 obtained here with 
 A(3)

 above shows that the transformation matrix 
  R(2)→(3)

 performs its intended function.  
  R(3)→(2)

, the inverse of 
  R(2)→(3)

 may be verified 
in the same manner. 

 
d. Shown in a. 
 
 
11. Find the rotation matrix for the double rotation of coordinate axes:  rotate 90  about ° x1, and then 

 about 90° x3. 
 
SOLUTION: 

 

 
R1 =

1 0 0
0 0 1
0 –1 0  

 

 

 
R2 =

0 1 0
–1 0 0
0 0 1  
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R = R2 R1 =
0 1 0
–1 0 0
0 0 1

1 0 0
0 0 1
0 –1 0

0 0 1
–1 0 0
0 –1 0

 
 

 

 
R 1–2 =

0 0 1
–1 0 0
0 –1 0  

 
12. A cylindrical coordinate system is one which 

rotates according to the coordinates of the point 
in question.  Typically, r, θ, z represent the 
coordinates of a point, with the base vectors 

given as    r, θ, z , for example.  The figure at the 
right shows such a coordinate system and a 
superimposed Cartesian coordinate system 
which coincides when θ=0. 

X1

θ

r

z
r

θ

X3 = Z

X2

 
 

 
a. Find the transformation matrix to change components expressed in   x1, x2, x3  to ones 

expressed in    r, θ, z . 
 
b. Find the cylindrical components of the following vectors expressed in the x1, x2, x3 

system: 

   

a ↔10.000,             0.000,         0.000
b ↔  0.866,             0.500,        0.000
c ↔  1.000,             1.000,        0.000
d ↔  1.000,            1.000,         1.000
e ↔  0.000,            1.000,         0.000
f  ↔ -1.000,            1.000,        1.000

 
c. Find the magnitudes of the vectors given in Part b., first using the Cartesian coordinate 

system components, then using the cylindrical coordinate system.  How is the magnitude of 
a vector computed in cylindrical coordinates? 

 
d. Is [R] orthogonal for this transformation?  Physically, why or why not? 

 
 
SOLUTION: 

a. 

   r
θ
z

=
cos θ sin θ 0
–sin θ cos θ 0

0 0 1

x 1
x2
x3

 from geometry 
 

b.    a ↔ (10.000, 0.000, 0.000)
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  a = R x  
 

 

  a1

a2

a3

=
cos θ sin θ 0
–sin θ cos θ 0

0 0 1

10
0
0

=
10 cos θ
–10 sin θ

0  
 
 
 
 In a similar way, 
 

 

  

b =
0.866 cos θ + 0.5 sin θ
–0.866 sin θ + 0.5 cos θ

0
 

 

c =
cos θ + sin θ

–sin θ + cos θ
0

 
 

 

  

d =
cos θ + sin θ
–sin θ + cos θ

1
 

  
e =

sin θ
cos θ

0
  

 

f =
–cos θ + sin θ
sin θ + cos θ

1
 

 
c.      Cartesian Coordinate   Cylindrical Coordinate 

  a = 102 + 02 + 02 = 10  
  a = 102 cos2θ + 102 sin2θ = 10 

 Likewise, should have the same results. 
 

d. 

   

R R T =
cos θ sin θ 0
–sin θ cos θ 0

0 0 1

cos θ –sin θ 0
sin θ cos θ 0

0 0 1
= I

 
 The basis sets of each system are mutually orthogonal. 

 
13.  Perform the indicated operations related to equation solving. 
 

a. Solve the equations given in Problem 6 by using Gaussian reduction instead of by finding 
the inverse.  Which to you prefer for large matrices? 

 
b. Given the solutions obtained in Part a., find the inverse of the coefficient matrix. 
 
c. For larger sets of equations, why is it easier to solve by a reduction method? 
 

SOLUTION: 

a. 

  1 2 3
1 5 –1
1 3 1

10
12
14

→
1 2 3
0 3 –4
0 1 –2

10
2
4

→
1 2 3
0 3 –4

0 –2
3

10
2
10
3   

 
∴

x3 = –5
x2 = –6
x1 = 37

 
 Similarly, we should get the same results for the second set.  The Gassian reduction method 
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is much simpler for large matrices because it operates row-by-row and it is not necessary to 
keep track of complex expressions. 

 
b. Solutions given in Problem 6. 

 
c.  For large sets of equations, it is much more complicated to compute the inverse of a matrix, 

whereas the reduction method does not involve inverse computation.  Less computation is 
required in a reduction method. 

 



CHAPTER 3 - PROBLEM SOLUTIONS 
 
A. PROFICIENCY PROBLEMS 
 
1. Calculate the 3-D stress tensor components for the rectangular material shown in the figure, first 

in the coordinate system x1, x2,  and x3 and then in the coordinate system x1', x2',  x 3' . 
 

X3

200 N

X1

X2

X1'
X2'

X3'
1 mm

1 mm

 
 

 The angle between    x1
′and x1  is 30o, and the    x3

′and x3  axes are parallel. 
 

SOLUTION: 
Before doing the problem formally using the known tensor transformations, let's approach it 
from a physical and geometrical standpoint.  Because of the equilibrium, we know that the force 
transmitted throught the cross-sectional area (1mm2) normal to x1 is 200N, and the stress vector 

operating on that same plane is 
  S1 ↔ (200, 0, 0) N

mm2 .  The other two planes, normal to 
x2 and x3, contain the force vector and thus have no associated stress vectors: 

 . 

   S 2 ↔ (0, 0, 0)
S 3 ↔ (0, 0, 0)

 
Therefore, the stress tensor in the x i  coordinate system may be written: 

 

   
σ ↔

200 0 0
0 0 0
0 0 0

.
 

 
The situation in the   x i

′
 coordinate system may be approached similarly by first considering the 

plane normal to    x1
′
 which passes through the rod.  The entire 200N of force must be transmitted 

through this area, which is now larger because of the incline: 

 
  A 1

′ = 1mm 2

cos 30° = 1.155mm2

 
 
The corresponding stress vector thus has a magnitude of 

 
   S 1

′ = 200 N
1mm2 cos 30° = 200 N

1.155 mm 2 = 173.2 N/mm2,
 

 
To find the components of this vector along the x1' and x2'  vectors, we simply resolve this 
value: 

 
   S1
′ ↔ (173.2 cos 30, 173.2 sin 30, 0) = (150, 86.6, 0) N

mm2  
 
To find the stress vector operating on the plane normal to   x2

′
, we follow the same procedure: 

 
  A 2

′ = 1mm2

sin 30° = 2 mm2,
,  so 

   S 2
′ = 100 N/mm2,  



Page 2 Fundamentals of Metal Forming - Solution Manual Chapter 3 
 

 
and the associated stress vector components are  
    S2

′ ↔ (100 cos 30, 100 sin 30, 0) = (86.6 N/mm2, 50 N/mm 2, 0)
 
And the entire stress tensor in x1'  is 

 

   S 1'
′ S 2'

′ S 3'
′

σ =
150 86.6 0
86.6 50 0

0 0 0
 

 
It is much easier and less error-prone to use the known tensor transformation properties to solve 
the problem, as follows: 
 
Let σ  be the stress tensor in the material and t the stress vector, then we have in general: 

 
   σ ⋅ n = t = F

a . 
 

For   n = x 1 , we get:  

   
t1 = σ ⋅ x 1 = F

a , so that t1 =
200 0 0
0 0 0
0 0 0

MPa
 

 
Similarly,    t2 = σ ⋅ x 2 , t3 = σ ⋅ x 3 , and we can conclude that the stress tensor is 

  

  

σ =
200 0 0
0 0 0
0 0 0

MPa

 
 

In order to transform these components to those corresponding to the 
  x1
′

 coordinate system, we 
first find the rotation matrix: 

 

  

x ′ = R x ⇒

x1
′

x2
′

x3
′

=

3
2

–1
2 0

1
2

3
2 0

0 0 1

x1

x2

x3
  

 
and then apply the transformation rule for a second-ranked tensor: 

 

  

σ′ = R σ R T ⇒

3
2

–1
2 0

1
2

3
2 0

0 0 1

200 0 0

0 0 0

0 0 0

3
2

1
2 0

–
1
2

3
2 0

0 0 1
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=

100 3 0 0

100 0 0

0 0 0

3
2

1
2 0

–
1
2

3
2 0

0 0 1

=

150 50 3 0

50 3 50 0

0 0 0

=

150 86.6 0

86.6 50 0

0 0 0

MPa

 
 
2. Given the stress tensor which appears below, find the stress vector acting on planes normal to the 

unit vectors n,  m ,  and p , also given. 

 

σ ↔ 
1   2   3
2   2   4
3   4   3

                 

n  ↔  1
3  (1,1,1)

m ↔  1
6  (1,2,1)

p  ↔  1
2  (1,1,0)

   
 
SOLUTION: 

 
  t = σ n  

 

 

  

t n =

1 2 3

2 2 4

3 4 3

1
3

1
3

1
3

=

6
3

8
3

10
3

=

3.464

4.619

5.774
 

 

 

  

t m =

1 2 3

2 2 4

3 4 3

1
6

2
6

1
6

=

8
6

10
6

15
6

=

3.266

4.082

5.715
 

 

 

  

t p =

1 2 3

2 2 4

3 4 3

1
2
1
2

0

=

3
2

4
2

7
2

=

2.121

2.828

4.950
 

 
3. Find the principal stresses, the principal directions, and the rotation matrix for transforming 

coordinates to the principal coordinate system  (   x1
′
 corresponds to σmax, 

   x3
′
 corresponds to σmin) 

for the stress tensors given. 

 

 

a.
3 -1 0

- 1 3 0
0 0 1

, b.
3 0 0
0 3 - 1
0 - 1 1

, c.
10 -5 5
- 5 0 5
5 5 10

 
 

Note:  No numerical procedure is required to find the roots of the cubic equations. 
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SOLUTION: 

a. 

  
σ =

3 –1 0
–1 3 0
0 0 1

 ,  so the eigen equation is: 

 3–λ –1 0
–1 3–λ 0
0 0 1–λ

= 0

 
 

   3–λ 3–λ 1–λ – 1–λ = 1–λ 3–λ 2 – 1 = 0 
 
 So:    λ = 1, λ = 2, λ = 4 ⇒ σ 1 = 4, σ2 = 2, σ3 = 1
 

 

   
For σ1 = 4,

–1 –1 0
–1 –1 0
0 0 –3

n1
n2
n3

=
0
0
0

, where (n1,n2,n3) are the components of x1
′

 
 

    n3 = 0, n1 + n2 = 0, n1
2 + n2

2 = 1 (unit vector)
 

  
   ∴ n1 = ± 1

2 , n2 = + 1
2 , n3 = 0, or x1

′ ↔ ( ± 1
2

, + 1
2

, 0)  
 

 

   
For σ 2 = 2

1 –1 0
–1 1 0
0 0 –1

m1
m2
m3

=
0
0
0

, where (m1,m2,m3) are the components of x2
′

 
 

    m3 = 0, m1 – m2 = 0, m1
2 + m2

2 = 1 (unit vector)
 

  
   ∴ m1 = ± 1

2 , m2 = ± 1
2 , m 3 = 0, or x2

′ ↔ ( ± 1
2

, ± 1
2

, 0)  
 

 

   
For σ3 = 1,

2 –1 0
–1 2 0
0 0 0

p1
p2
p3

=
0
0
0

, where (p1,p2,p3) are the components of x3
′

 
 

  ,        2p1 – p2 = 0, –p1 + 2p2 = 0 ⇒ p1 = p2 = 0  p3
2 = ± 1 (unit vector) 

 
      ∴ p1 = 0, p2 = 0, p3 = ±1, or x3

′ ↔ ( 0, 0, ±1)
 
In order to find the rotation matrix, we first choose a right-hand set from among the various 
choices of    x1

′, x2
′, x3

′
 

 

   x1
′ ↔ ( 1

2
, – 1

2
, 0)

x2
′ ↔ ( 1

2
,

1
2

, 0)

x3
′ ↔ (0, 0, 1) ,   then the required rotation matrix is 

 

R =

1
2

– 1
2

0
1
2

1
2

0

0 0 1
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b.  

  

σ =
3 0 0
0 3 –1
0 –1 1

, so the eigen equation is
3–λ 0 0

0 3–λ –1
0 –1 1–λ

= 0

 
 
   3 – λ 3 – λ 1 – λ – 1 = 0 
 

 So,  
  λ1 = 3, λ2,3 = 4 ± 8

2 = 3.41, 0.59 ⇒ σ 1 = 3.414, σ 2 = 3.000, σ 3 = 0.586
 

 

 

   
For σ1 = 3.41,

–0.41 0 0
0 –0.41 –1
0 –1 –2.41

n1
n2
n3

=
0
0
0

, where (n1,n2,n3) are the components of x1
′

 
 

   
 n1 = 0, –0.41 n2 – n3 = 0, n1

2 + n2
2 + n3

2 = 1
 
      ∴ x1

′ ↔ (0, ±0.92, +−0.38)
 

 

   
For σ2 = 3,

0 0 0
0 0 –1
0 –1 –2

m1
m2
m3

=
0
0
0

, where (m1,m2,m3) are the components of x2
′

 
 
    m3 = 0, m2 = 0, m1 = ±1
 

   
   ∴ x2

′ ↔ (±1, 0, 0)
 

 

   

For σ3 = 0.586,
2.414 0 0

0 2.414 –1
0 –1 0.414

p1

p2

p3

=
0
0
0

, where (p1,p2,p3) are the components of x 3
′

 
 

   
 p1 = 0, 2.414 p2 – p3 = 0, p1

2 + p2
2 + p3

2 = 1
 

   
   ∴ x3

′ ↔ (0, ±0.38, ±0.92)
 
 In order for find the rotation matrix we first choose a right-handed set of eigenvectors: 

 

   x1
′ ↔ (0, 0.92, –0.38)

x2
′ ↔ (1, 0, 0)

x3
′ ↔ (0, –0.38, –0.92)  then the rotation matrix is 

 

R =
0 0.92 –0.38
1 0 0
0 –0.38 –0.92

 
 

c. 

  
σ =

10 –5 5
–5 0 5
5 5 10

⇒ σ1 = 15, σ2 = 10, σ3 = –5

 



Page 6 Fundamentals of Metal Forming - Solution Manual Chapter 3 
 

 

  

   x1
′ ↔ 0.707, 0, 0.707 , for σ1 = 15

x2
′ ↔ 0.577, –0.577, –0.577 , for σ 2 = 10

x3
′ ↔ 0.408, 0.816, –.408 , for σ3 = –5

 

 

R =
.707 0 .707
.577 –.577 –.577
.408 .816 –.408

 
 

Check:  

  

R σ R T =
σ1 0 0
0 σ2 0
0 0 σ3

    

 

R σ =
10.6 0 10.6
5.77 –5.77 –5.77

–2.04 –4.08 2.04
    

 
R σ R T =

15 0 0
0 10 0
0 0 –5

 
 
4. Find the invariants for the stress tensors shown below: 

 

 

a.
1.44 0.22 -0.76
0.22 2.25 -0.38

-0.76 -0.38 2.31
, b.

1.75 0.35 -0.75
0.35 2.50 -0.35

-0.75 -0.35 1.75
, c.

1.94 0.38 -0.54
0.38 2.75 – 0.22
-0.54 -0.22 1.31

 
 
SOLUTION: 

a. 

  

σ =
1.44 0.22 –0.76
0.22 2.25 –0.38

–0.76 –0.38 2.31
 

 
         J1 = σ11 + σ22 + σ33 = 1.44 + 2.25 + 2.31 = 6
 

      

  J 2 = – σ11 σ22 + σ22 σ33 + σ33 σ11 + σ23
2 + σ31

2 + σ12
2

= – 1.44 2.25 + 2.25 2.31 + 2.31 1.44 + –0.38 2 + –0.76 2 + 0.22 2 = –11
 

 

      

 

J3 =
1.44 0.22 –0.76
0.22 2.25 –0.38

–0.76 –0.38 2.31
= 6

 
 

b. 

  

σ =
1.75 0.35 –0.75
0.35 2.50 –0.35

–0.75 –0.35 1.75
 

 

   

 J 1 = 6
J 2 = –11
J 3 = 6
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c. 

  

σ =
1.94 0.38 –0.54
0.38 2.75 –0.22

–0.54 –0.22 1.31
 

 

   

 J1 = 6
J2 = –11
J3 = 6

 
5. Find and solve the characteristic equations for the stress tensors shown in Problem 4.  Use the 

method followed in Exercise 3.3.  (A numerical procedure is required.) 
 
SOLUTION: 

a.  

 J1 = 6
J2 = –11
J3 = 6

 

   0 = λ3 – 6λ2 + 11λ – 6 = ϕ λ  
 

 

  i λi ϕ λi ϕ' λi Δλ

0 1 0 λ = 1 exactly. Lucky guess!
 

 
To obtain the quadratic equation, perform synthetic long division as shown below.   
 

 

  
λ3 – 6λ2 + 11λ – 6(λ – 1)

λ2 – 5λ + 6

λ3 – 6λ2

–5λ2 + 11λ
–5λ2 + 5λ

6λ – 6
6λ – 6 , thus the original expression is   (λ – 1) (λ 2 – 5λ + 6)

 
The remaining roots are found by the quadratic formula: 

 

  
λ =

+5 ± 25 – 24
2

= 2, 3
 

 
So, the three roots (principal stresses) are: 
    σ1 = 3,. σ2 = 2, σ 3 = 1
 
and the characteristic equation can be written in product form: 
    λ – 3 λ – 2 λ – 1 = 0 
 

b.   J1 = 6, J2 = –11, J 3 = 6
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    0 = λ3 – 6λ2 + 11λ – 6 = ϕ λ  
 
This characteristic equation is identical to 5.a., thus the two stress tensors are identical except for 
a rotation.  The principal values must therefore be the same. 
 

c.   J1 = 6, J2 = –11, J 3 = 6
 
  [Same as 5.a. and 5.b.] 

 
 
6. Find the principal directions for the stress tensors shown in Problem 4 and find the rotation 

matrix which transforms components given in the original coordinate system to ones in a principal 
coordinate system.  (Assume that the minimum principal stress acts on a plane with normal x1'  
and the maximum principal stress acts on a plane with normal x3' .) 

 
SOLUTION: 

a. 

   
σ 1 = 1
σ 2 = 2
σ 3 = 3

⇒

x1
′ ↔ ± 0.866, 0, 0.5

x2
′ ↔ ± –0.24, 0.866, 0.433

x3
′ ↔ ± –0.43, –0.5, 0.75

 
 
Taking the three plus signs forms a right-handed system for which the rotation matrix is 

 

 

R =
0.866 0 0.5
–0.24 0.866 0.433
–0.43 –0.5 0.75

.

 
 

b. 

   
σ1 = 1
σ2 = 2
σ3 = 3

⇒

x1
′ = ± –0.707, 0, –0.707

x2
′ = ± –0.5, 0.704, 0.50

x3
′

= ± 0.50, 0.704, –0.50
 

 
For the "+" signs (one choice of right-handed system): 
 

 

 

R =
–0.707 0 –0.707
–0.50 0.704 0.50
0.50 0.704 –0.50

 
 

c. 

   
σ1 = 1
σ2 = 2
σ3 = 3

⇒

x1
′

= ± 0.5, 0, 0.867

x2
′

= ± –0.75, 0.5, 0.43

x3
′ = ± –0.433, –0.867, 0.24
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For the "+" signs (one choice of right-handed system): 

 

 

R =
0.5 0 0.867

–0.75 0.5 0.43
–0.43 –0.867 0.24

 
 
 
7. Find the spherical and deviatoric components of the stress tensors given in Problem 4.  Find the 

principal stresses and directions of the deviatoric tensors following the method outlined in Section 
3.6.  How do these compare with the values for the stress tensor obtained in Problems 5 and 6. 

 
 
SOLUTION: 

a. 

 stress spherical deviatoric

1.44 0.22 –0.76
0.22 2.25 –0.38

–0.76 –0.38 2.31
=

2 0 0
0 2 0
0 0 2

+
–0.56 0.22 –0.76

0.22 0.25 –0.38
–0.76 –0.38 0.31

 
 

 Spherical Invariants: ,  so    J2
d ≈ 1.0 J 3

d ≈ 0

 α 1 = 1
3 cos–1 0 = 30°

α 2 = 120° + 30° = 150°
α 3 = 30° – 120° = –90°  

 

 

  
σ1

d = 2 1
3

1
2 cos (30°) = 1.0

σ2
d = 2 1

3
1
2 cos (150°) = –1.0

σ3
d = 2 1

3
1
2 cos –90° = 0.0

 Therefore:  

  σ1 = 1.0 + 2.0 = 3
σ2 = –1.0 + 2.0 = 1
σ3 = 0 + 2.0 = 2

 
The principal directions are found using the principal values with the same result as Problems 
5.a. and 6.a. 
 

b. 

 stress spherical deviatoric

1.75 0.35 –0.75
0.35 2.50 –0.35

–0.75 –0.35 1.75
=

2 0 0
0 2 0
0 0 2

+
–0.56 0.22 –0.76

0.22 0.25 –0.38
–0.76 –0.38 0.31

 
 
The results are the same as Problems 5.b. and 6.b. 
 

c. 

 stress spherical deviatoric

1.94 0.38 –0.54
0.38 2.75 –0.22

–0.54 –0.22 1.31
=

2 0 0
0 2 0
0 0 2

+
–0.56 0.22 –0.76

0.22 0.25 –0.38
–0.76 –0.38 0.31
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The results are the same as Problems 5.c. and 6.c. 
 
8. Find the spherical, deviatoric, principal deviatoric components, and principal directions of stress 

for the following cases: 

  Uniaxial tension:    σ11 = σ, other σ ij = 0

  Simple shear:     σ21 = σ12 = σ, other σ ij = 0

  Balanced biaxial tension:  
 σ11 = σ22 = σ, other σ ij = 0

  Biaxial shear:    
 σ13 = σ31 = σA, σ21 = σ12 = σB, other σij = 0

  Tension and shear:   
 σ11 = σt, σ13 = σ 31 = σs, other σij = 0

 
SOLUTION: 

a. Uniaxial tension 
  σ11 = σ, other σ ij = 0

,  

 stress spherical deviatoric

σ 0 0

0 0 0

0 0 0

=

σ
3 0 0

0 σ
3 0

0 0 σ
3

+

2σ
3 0 0

0 –
σ
3 0

0 0 –
σ
3

 
 

 

  
σ1

d =
2σ
3

σ2
d = σ3

d = –
σ
3  

 

 

   m ↔ 1, 0, 0

n ↔ 0, 1, 0 (current axes are principal)

p ↔ 0, 0, 1  
 

b. Simple shear 
  σ12 = σ, other σ ij = 0

,  

 stress spherical deviatoric
0 σ 0
σ 0 0
0 0 0

=
0 0 0
0 0 0
0 0 0

+
0 σ 0
σ 0 0
0 0 0

 
 

    σ12
d = σ21

d = σ, σ ij
d = 0

  m ↔ 1
2 , 1

2 , 0

n ↔ 0, 0, 1

p ↔ 1
2 , – 1

2 , 0
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c. Balanced biaxial tension   σ11 = σ22 = 0, other σ ij = 0   

  stress spherical deviatoric

σ 0 0

0 σ 0

0 0 0

=

2σ
3 0 0

0 2σ
3 0

0 0 2σ
3

+

σ
3 0 0

0 σ
3 0

0 0 –
2σ
3  

 

 
  σ1
d = σ2

d =
σ
3

σ3
d = –

2σ
3  

  m ↔ 1, 0, 0

n ↔ 0, 1, 0 (current axes are principal)

p ↔ 0, 0, 1  
 

d. Biaxial shear   σ13 = σ31 = σA, σ12 = σ21 = σB, other σ ij = 0  
 

 

  stress spherical deviatoric

0 σB σA

σB 0 0
σA 0 0

=
0 0 0
0 0 0
0 0 0

+
0 σB σA

σB 0 0
σA 0 0

 

 σ1 = σB
2 + σA

2

σ2 = 0

σ3 = σB
2 + σA

2

 
 

 

   
m ↔ 1

2
, σB

2 σB
2 + σA

2
, σA

2 σB
2 + σA

2

n ↔ 0, σA

σA
2 + σB

2
, – σB

σA
2 + σB

2

p ↔ – 1
2 , σB

2 σB
2 + σA

2
, σA

2 σB
2 + σA

2

 
 

e. Tension and shear:  σ11 = σt, σ13 = σ31 = σs, other σij = 0 

 

  stress spherical deviatoric

σ t 0 σ3

0 0 0
σs 0 0

=

σ t
3 0 0
0 σ t

3 0
0 0 σ t

3

+

2σ t
3 0 σs

0 – σ t
3 0

σs 0 – σ t
3

 
 

 

  
σ1 =

σ t + σ t
2 + 4 σs

2

2
σ2 = 0

σ3 =
σ t – σ t

2 + σs
2

2  
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m ↔ σ s

D , 0, σ t – σ 1
D , where D = σ t – σ1

2 + σ s
2

1
2

n ↔ 0, 1, 0

p ↔ ±
σ s

D′ , 0,
σ t – σ2

D ′ , where D = σ t – σ2
2

+ σs
2

1
2

(If σsσ t < 0, the minus sign is adopted for the components of p.)  
 
 
B. DEPTH PROBLEMS 
 
9. The reciprocal theorem of Cauchy states that the stress vectors acting on two intersecting planes 

have the following property: 

 s 1⋅ n2  =  s 2⋅ n1  
 where si is the stress vector acting on a plane with normal ni.  Show that this principle follows 

from the symmetry of the stress tensor, or from the equilibrium condition directly. 
 
SOLUTION: 

It is possible to prove the relationship by considering Cauchy's tetrahedron (Exercise 3.1), or by 
multiplying all of the required components and comparing the results. 
 
The shortest method is by writing the various terms in indicial notation. 
 

Let 
  n1 = n, n 2 = m, and s 1 = s and s 2 = t  for simpler notation, then 

 

 
   s = σ n ↔ si = σ ij nj  

 

 
   t = σ m ↔ ti = σ ij mj  

 

 
   s ⋅ m = σ n⋅m or, s ⋅ m = si m i = σ ij n j mi  

 

     t ⋅ n = σ m n or t ⋅ n = ti ni = σ ij m jni 
 

but, since  we can rewrite    σ ij = σ ji,    σ ij n jmi = σ ij ni m j, so s ⋅ m = t ⋅ n. 
 
10. Octahedral planes are ones which have normals forming equal angles with the three principal 

axes.  Find an expression for , the normal components of the stress vector on the octahedral 
plane in terms of a) principal stresses and b) arbitrary stress components. 

 Sn

 
SOLUTION: 
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n

x1

x3

x2

 
 

a. In principal axes, as show in the figure above, 

 

σ =
σ1 0 0
0 σ2 0
0 0 σ3

, and n =

1
3
1
3
1
3  

 

Therefore:  

   

Sn = n⋅S⋅n = 1
3

1
3

1
3

σ1 0 0
0 σ 2 0
0 0 σ3

1
3
1
3
1
3

= 1
3 (σ1 +σ 2 + σ3) p = 1

3 J1 (Eq. 2.38)

 
where J1 is the first stress invariant.   
 

b. Since we know that this quantity is invariant to the choice of coordinate system orientation, the 
expression in an arbitrary cartesian system is  

   Sn = p = 1
3 J1 = 1

3 (σ11 +σ22 + σ33)  
 

 
11. Show that the tangential component of the stress vector on the octahedral planes (i.e. the shear 

component) is equal to 

  
2
3

J2'

1
2

, where J  is the second invariant of the deviatoric stress tensor. 2'
 
SOLUTION: 

As shown in Problem 10., the normal component on an octahedral plane is 

 
  SN =

1
3

σ1 + σ2 + σ3
 

 
The tangential component may be found from the relationship 
     SN

2 + S T
2 = S ⋅ S = (σ ⋅ n) ⋅ (σ ⋅ n), or

 

 
   ST
2 = (σ ⋅ n) ⋅ (σ ⋅ n) – SN

2 = 1
3 σ1

2 + σ2
2 + σ3

2 – 1
9 σ1 + σ2 + σ3

2

 
 

  
  9 ST

2 = 2 σ1
2 + 2 σ2

2 + 2 σ3
2 – 2 σ1σ2 – 2 σ1σ3 – 2 σ2σ3 = 6 J2
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So, 
  

ST = 2
3 J2

′
1
2

 
 
12. Problems involving cylindrical symmetry often use cylindrical coordinates r, θ, z where 

r = x1
2+x2

2
1
2

 and 

 
θ = tan-1 x

y .  (Conversely, x1 = r cos θ, x2 = r sin θ, x3 = z).  For example, 
consider pure torsion of an elastic, long bar with axis parallel to z, where σθz is a constant on the 
outside of the bar.  Find the stress tensor in two alternate Cartesian coordinate systems: 

 
a. One which has x1 normal to the cylinder axis and is tangent to the cylinder surface, x2 

normal to the cylinder surface, and x3 the cylinder axis. 
 
b. One which is fixed in space (i.e. independent of θ), with x3 // z, x1 lying in the θ=0, z=0 

direction, and x2 lying in the θ=
π
2, z=0 direction. 

 

a.

 

x1

x2

Reference Axis

r
θ

θ
 

 
 Since the axes are identical, the stress components are identical, i.e. 

 

 

  
σ′ = R σ R T =

1 0 0
0 1 0
0 0 1

0 0 0
0 0 σ
0 σ 0

1 0 0
0 1 0
0 0 1

= σ
 

 

b.  x1

x2 r
θ

θ

  

 

R =
cos θ –sin θ 0
sin θ cos θ 0

0 0 1
 

 
(In this case,    r and θ  rotate as the point of interest rotates, but hte cartesian system is fixed.) 

 

  

σ′ = R σ R T =
cos θ –sin θ 0
sin θ cos θ 0

0 0 1

0 0 0
0 0 σ
0 σ 0

cos θ sin θ 0
–sin θ cos θ 0

0 0 1
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=

cos θ –sin θ 0

sin θ cos θ 0

0 0 1

0 0 0

0 0 σ

σ –sin θ σcos θ 0
 

 

  

  

σ′ =
0 0 –σ sin θ
0 0 σ cos θ

–σ sin θ σ cos θ 0

(fixed Cartesian system)  
 
13. Show that if two roots of the characteristic equation are identical (i.e. degenerate), then any 

direction normal to the other principal direction (i.e. the one corresponding to the non-identical 
root) is a principal direction.  Show that if all three roots are identical, all directions are 
principal. 

 
SOLUTION: 
a. Assume that the characteristic equation is of the form: 

 
  λ – σo λ – σ1

2 = 0  , 
 
where  σ  is a degenerate root.  The stress components in the principal axes are 1

 

  σ1 0 0
0 σ1 0
0 0 σo

 , 
 
where  is the principal stress in the  (3rd principal) direction.  A general rotation of 
coordinate system about the  axis may be written as follows: 

  σo   x3
′

  x3
′

 

  

σ =
cos θ sin θ 0
–sin θ cos θ 0

0 0 1

σ1 0 0
0 σ1 0
0 0 σo

cos θ –sin θ 0
sin θ cos θ 0

0 0 1
=

 
 

  

=

σ1 cos2 θ + sin2 θ σ1 –sin θ cos θ + sin θ cos θ 0

σ1 sin θ cos θ – sin θ cos θ σ1 sin2 θ + cos2 θ 0

0 0 σo

=
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σ =
σ1 0 0
0 σ1 0
0 0 σo

for any direction normal to x3
′

 
 

b. If all three roots are degenerate, there are many ways to show that any direction is equivalent.  
The derivation in Part a. can be done for , or one can note that all three roots being 
equivalent is the same as the spherical component (i.e. hydrostatic pressure or tension). 

  σ1 = σo

 
14. It is often convenient to replace one set of forces with another, statically-equivalent set.  For 

example, consider a triangular element of material (assume unit depth normal to the triangle) 
which is assumed to be a small enough piece of a body to feel only a homogeneous stress, σij 
(i,j=1,2, assuming that σi3=0, where x3 is normal to the triangle).  Use a simple, physically-
motivated procedure to replace σij by three forces, f1, f2, f3 acting at the three corners of the 
triangle.  Consider the force transmitted by each face. 

 
SOLUTION: 

Consider a triangle with normals defined to each side with a magnitude equal to the length of the 
side.  (For unit depth of the sides in three dimensions, these are area vectors corresponding to the 
sides.) 

   

1

3

b

c

A

B

C

σ

 

  

where:
A = a
B = b
C = c

 
A, B, C are deduced from a, b, and c by a rotation of -90o, therefore since  a + b + c = 0,  A + B 
+ C = 0.  The forces acting on the planes A, B, and C are    fA = σ A, fB = σ B, fC = σ C

and    fA + fB + fC = σ A + B + C = 0 because A+ B + C = 0. 
 
To assign these forces to the vertices, let's use the unweighted average (although other choices 
might make more physical sense) of the forces on the connected sides: 

 

   f1 = 1
2 fA + fC = 1

2 σ A+ C

f2 = 1
2 fA + fB = 1

2 σ A+ B

f3 = 1
2 fB + fC = 1

2 σ B + C
 

 
15. Physically, why can the entire material loading at a point be reduced to three orthogonal force 

intensities passing through the point?  Why do the shear components disappear along these 
directions? 

 
SOLUTION: 
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For simplicity, let's consider a two-dimensional situation first.  Similar to Figure 3.1, imagine 
making an arbitrary mathematical cut as shown in part (a) of the figure below.  We can find the 
force acting on one of the cut faces required to maintain equilibrium, part (b).  (The opposite 
force is required on the other cut face by equilibrium.)  Then, glue the first cut back togehther 
and using the direction of the force as a guide, make another cut, this one perpendicular to the 
force observed on the first cut.  Find the new force required for equilibrium and, if necessary, 
make another cut perpendicular to the new force.  Continue until the current cut and current 
force are perpendicular, part (c).  If we now relax the forces on the cut plane (and any external 
forces required to maintain equilibrium as the cut face is unloaded), can we be assured that the 
material is completely unloaded?  No, because the direction parallel to the cut face (grey arrow 
in part (c)) is unaffected by the cut and therefore we have no information about it.  Therefore, 
make a cut perpendicular to the final first cut and the force required by equilibrium will by 
necessity be perpendicular to the first force, part (d).  This simple thought exercise demonstrates 
why there are only two independent force intensities passing through a point in a two-
dimensional body, and why they must be perpendicular. 
 
To extend the exercise to three dimensions, follow precisely the same procedure.  Once the first 
plane and normal force are found, there remain two perpendicular planes which must have only 
normal forces acting on them.  

(a) (b) (c) (d)  
 
Although opposite to the usual derivation, it would be possible to derive the symmetry of the 
stress tensor by first noting that this result requires the existence the three perpendicular 
principal directions and that any rotation of axes from this principal set must produce a 
symmetric and real set of tensor components. 

 
16. The two sets of components presented below correspond to the identical stress tensor, as measured 

in two coordinate systems, x1, x2, x3,  and x1', x2', x3' .  Find the rotation matrix to transform 
components from the x i system to the x i'  system, and vice versa.  (Hint:  First find the rotations to 
the common, principal coordinate systems.) 

 
  

σ =
1.000 1.730 1.000
1.730 0.750 0.433
1.000 0.433 0.250

σ′ =
0.500 1.414 0.500
1.414 1.000 1.414
0.500 1.414 0.500

 

 
SOLUTION: 

 
  σ′ = R σ R T
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Define rotation matrices  R1 and R2  such that 

 
  σprincipal = R1 σ R1

T
 

 

 
  σprincipal = R2 σ′ R2

T

 
 
Then, we can find [R] in terms of  R1 and R2  

 
  σprincipal = R1 σ R1

T = R2 σ1
′ R2

T

 
 

 
  R2

T R1 σ R1
T R2 = R2

T R2 σ1
′ R2

T R2 = σ1
′

 
 

Therefore: 
 R = R2

T R1 , R T = R1
T R2  

 
We find  R1 and R2  as usual: 

  

   

σ =
1.0 1.73 1.0

1.73 0.75 0.433
1.0 0.433 0.25

⇒
σ1 = 3
σ2 = 0
σ 3 = –1

⇒
n ↔ (0.707, 0.612, 0.36)
m ↔ (0.0, 0.50, –0.866)

p ↔ (– 0.707, 0.61, 0.36)  
 

So, 

 

R1 =
0.707 0.61 0.36
0.0 0.50 –0.866

–0.707 0.61 0.36
 

 

  

   

σ′ =
0.50 1.414 0.50
1.414 1.0 1.414
0.50 1.414 0.50

⇒
σ1 = 3
σ2 = 0
σ1 = –1

⇒
n ↔ (0.50, 0.707, 0.50)
m ↔ (0.707, 0, –0.707)
p ↔ (– 0.50, 0.707, –0.50)  

 

  

 

R2 =
0.50 0.707 0.50
0.707 0.0 –0.707
–0.50 0.707 –0.50

 Therefore: 

 

R R2
T R1 =

0.71 0.36 –0.61
0 0.86 0.51

0.71 –0.36 0.61
 

 
17. Imagine that we define a new measure of stress, [S], as a matrix of components relating force 

components to area components, but that the force components are defined in two ways:  1.  in 
terms of a different coordinate system than the area components, or 2. the are transformed 
according to a fixed linear operation to represent a new vector in the same coordinate system.  a)  
Is [S][ symmetric?  b)  According to these two definitions, does [S] represent the components of 
tensor?   

 
SOLUTION: 

In either of cases 1 or 2, we note that the new force components (let us call these components gi) 
may be obtained from the standard force components fi as follows (note that by "standard" we 
mean the components of a force as normally defined in the same coordinate system used to 
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express vector area components): 
 

 
  g = L f , where [L] is a linear operator (rotation or other transformation matrix) 

 
a. The definition of [S] follows from the expression of [g]: 

 

 

   g = s a ⇒ L f = s a , ⇒ f = L – 1 s a

σ

∴ σ = L – 1 s , or s = L σ  
 
Since [L] is a general, non-symmetric matrix, [s] is in general not symmetric. 
 

b. In order to examine how the new stress measure [S] transforms, let's imagine that we want to 

express [S] in a new coordinate system:  
  x ′ = R x .  In the new coordinate system, our 

definitions will be expressed as follows: 

 
  g ′ = S′ a ′

, where 
  a ′ = R a  

The central question, the one that differentiates Case I from Case II, is:  What is the meaning of 
  g ′

? 

Case 1 - According to the definition of Case 1, 
  g ′

 is found in the new coordinate system by 
applying the fixed linear operator, [L], to the components of [f] in the new coordinate system: 

 
   g ′ = L f ′ = L R f , 

once this expression for 
  g ′

 is found, we can find how  S  and 
  S ′

 are related: 

 
   g ′ = L R f = S ′ a ′ = S ′ R a  

 
 

 
   f = R T L –1 S′ R a , but note that f = L –1 g

, so 
 

  

   g = L R T L –1 S′ R a

S , and therefore 
 

 
   S = L R T L –1 S′ R , or S′ = L –1 R L S R T

 
 
Clearly this last expression is not the proper transformation for tensor components, so [S] 
defined as in Case 1 does not represent tensor components. 
 

Case 2 - According to the definition of Case 2, 
  g ′

 is found in the new coordinate system by 
simply transforming the compents of g as any other vector in the original coordinate system, i.e. 

 
  g ′ = R g ,  



Page 20 Fundamentals of Metal Forming - Solution Manual Chapter 3 
 

once we have this expression for 
  g ′

, we proceed as before to find the relationship between  S  

and 
  S ′

: 
 

 
  g ′ = R g = S ′ a ′ = S′ R a  

 

 

  g = R T S′ R a

S , and therefore 
 

 
  S = R T S ′ R , or S′ = R S R T

 
 
This last expression is precisely the transformation for tensor components, so [S] defined in Case 
2 does represent tensor components.  Put more simply, S defined according to Case 2 is a proper 
tensor.  In fact, representation of stress in this manner is convenient in some cases, where the 
force or area vectors are rotated to correspond to deformed or undeformed states in a material. 
 

 



CHAPTER 4 - PROBLEM SOLUTIONS 
 

A.  PROFICIENCY PROBLEMS 
 

1. Given:  

   
F ↔

1 2
3 4

 
 

a. Find Eij, and ε , the components of the large and small strain tensors, respectively. ij

 
b. Using E and ε ε directly, find the new length of the vectors OA and AB shown below.  Note 

that the original vectors are of unit length. 

0 1

1

A

B

 
 

c. Why are the deformed lengths of O'A' and O'B' different when calculated using the two 
different measures of deformation? 

 
SOLUTION: 
a. We have from the definitions: 

 
C  = F T F  = 1 3

2 4
 1 2

3 4
 = 10 14

14 20  
 
so that the strain tensor E is: 

 
E  = 1

2
 C  - I   = 4.5 7

7 9.5  
 
while the small strain tensor ε ε is: 

 
ε  = 1

2
 ( F T + F ) - I  = 0 2.5

2.5 3  
 
b. The change of length Δl of the OA vector is such that: 

 
ΔlA

2  = OA T 2 E  OA  =  1 0  2 4.5 7
7 9.5

 1
0

 = 9
 

 

The final length is then:  lA = OA2 + ΔlA
2 = 10 

 
For the OB vector the same approach gives:   

 
ΔlB

2  = OB T 2 E  OB  =  0 1  2 4.5 7
7 9.5

 0
1

 = 19
 

 

with the final length:  lB = OB2 + ΔlB
2 = 20 
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With the small strain tensor [ε] the new lengths are: 

 

  lA
2 = 1 + OA T 2 ε OA = 1 + 1 0 2 0 2.5

2.5 0
1
0 = 1

 
and 

 

  lB
2 = 1 + OB T 2 ε OB = 1 + 0 1 2 0 2.5

2.5 3
0
1 = 7

 
 

c. The results are quite different when we use the two strain measures:  in fact the use of the [ε] 
tensor is not valid here as the strain components are not much less than 1, as required for 
accuracy. 
 

2. Given the figure below for an assumed homogeneous deformation, write down the deformation 
gradient, F: 

 

A'

B'O'

(6.6, 4.6)

(6, 3) (8.1, 3)
A

BO

(0, 2)

(0, 0) (2, 0)

X2

X1
 

 
SOLUTION: 

The unknown deformation gradient is denoted by:  
F  = a b

c d .  We must verify: 

 
a b
c d

 2
0

 = 8.1 - 6
3 - 3

  ⇒  2 a
2 c

 = 2.1
0  

and 

 
a b
c d

 0
2

 = 6.6 - 6
4.6 - 3

  ⇒  2 b
2 d

 = 0.6
1.6  

 

we conclude that:  
F  = 1.05 0.3

0 0.8  
 

3. Given:  
F, with F  = 

0.1 0.2 0.5
0.3 0.4 0.6
0.7 0.8 0.9 . 

 
 Find:  J, E, and ε ε. 

 
SOLUTION: 

From the equality:  [J] = [F] - [I] we get: 

 
J  = 

-0.9 0.2 0.5
0.3 -0.6 0.6
0.7 0.8 -0.1  
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The strain tensor [E] is writen: 

 

E  = 1
2

 F T F  - I  = 1
2

 
0.1 0.3 0.7
0.2 0.4 0.8
0.5 0.6 0.9

 
0.1 0.2 0.5
0.3 0.4 0.6
0.7 0.8 0.9

 - 
1.0 0 0
0 1.0 0
0 0 1.0

 

 

     = 1
200

 
1+3*3+7*7-100 2+3*4+7*8 5+3*6+7*9

sym 2*2+4*4+8*8-100 2*5+4*6+8*9
sym sym 5*5+6*6+9*9-100

 

     = 
-0.205 0.35 0.43
0.35 -0.08 0.53
0.43 0.53 0.21  

 
The small strain tensor is: 
 

 
ε  = 1

2
 

-0.9 0.2 0.5
0.3 -0.6 0.6
0.7 0.8 -0.1

 + 
-0.9 0.3 0.7
0.2 -0.6 0.8
0.5 0.6 -0.1

 = 
-0.9 0.25 0.6
0.25 -0.6 0.7
0.6 0.7 -0.1  

 
4. As shown below, a point in a continuum (O) moves to a new point (O') as shown. 
 

x2

A

B
1.5O

1.5

x1

O' (4,2)

B'

A'

 
 

a. Find the new points A' and B', assuming homogeneous deformation for the following two 
cases: 

 
F ↔ 1 2

3 4
 ,  J ↔ 2 1

4 3  
b. For each deformation, find E the large strain tensor. 

 
SOLUTION: 

By definition of the deformation gradient (when there is an homogeneous deformation), we 
obtain for the first case: 

 
OA → O′A′ with:  O′A′  = F  OA  = 1 2

3 4
 0

1.5
 = 3

6  
 

and 
OB → O′B′ with:  O′B′  = F  OB  = 1 2

3 4
 1.5

0
 = 1.5

4.5  
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so that: 

OA′  = OO′  + O′A′  = 4
2

 + 3
6

 = 7
8

OB′  = OO′  + O′B′  = 4
2

 + 1.5
4.5

 = 5.5
6.5  

 

For the second case we have first:   
F  = J  + I  = 3 1

4 4  
 
The transformation verifies: 

 
OA → O′A′ with:  O′A′  = F  OA  = 3 1

4 4
 0

1.5
 = 1.5

6  
 

and 
OB → O′B′ with:  O′B′  = F  OB  = 3 1

4 4
 1.5

0
 = 4.5

6  
 

so that 

  
OA′ = OO′ + O′A′ = 4

2 + 1.5
6 = 5.5

8

OB′ = OO′ + O′B′ = 4
2 + 4.5

6.0 = 8.5
8  

 
b. For the first case we have 

 
E  = 1

2
 F T F  - I  = 1

2
 1 3

2 4
 1 2

3 4
 - 1 0

0 1
 = 4.5 7

7 9.5  
 
and for the second case 

 

 
E = 1

2 J + J T + J T J = 1
2

2 1
4 3 + 2 4

1 3 + 2 4
1 3

2 1
4 3 = 12 9.5

9.5 8.0
 

 
5. Imagine that a line segment OP is embedded in a material which is deformed to a new state.  The 

line segment becomes O'P' after deformation, as shown below. 
 

O

O'

P(2, 1)

P'ˆ x 2

ˆ x 1
 

 
a. Find the vector components of O'P'  : 

 
F ↔ 1 2

3 4  
 

b. Find the length  of O'P'  if: 
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C = 1 3

3 2  
 

c. Find the components of OP if: 

 
J = 0 2

3 3  
 
SOLUTION: 
a. If the deformation is homogeneous we can write: 

 
OP → O′P′  such that:  O′P′  = F  OP  = 1 2

3 4
 2

1
 = 4

10  
 

b. According to Eq. 4.19: 

 
O′P′2 = OP T C  OP  = 2 1  1 3

3 2
 2

1
 = 2 1  5

8
 = 18

 
 
the final length is then:  O′P′ = 18 ≅ 4.24  
 

c. From [J] we deduce: 

 
OP → O′P′  such that:  O′P′  = J  + I  OP  = 1 2

3 4
 2

1
 = 4

10  
 

6. A homogeneous deformation is imposed in the plane of the sheet.  Two lines painted on the surface 
move as shown below, with coordinates measured as shown: 

(1.8, 2.1)

(2, 1.5)

(1, 1)

Before After

(3.1, 3.3)

(3, 2)
(4.1, 1.9)

1̂ x 

ˆ x 2ˆ x 2

1̂ x 

 
 

a. Find F, the deformation gradient. 
 
b. Starting with F, find C, E, and ε ε. 
 
c. Find the principal strains and axes of E. 

 
SOLUTION: 
a. The method is similar to that used for Problem 2.  We express that the deformation gradient 

applied to the two vectors (as rows) gives their transformed coordinates: 

 
a b
c d

 1 0.8
0.5 1.1

 = 1.1 0.1
-0.1 1.3
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The best method is to invert the matrix on the left hand side: 

 
1 0.8

0.5 1.1
-1

 = 1
0.7

 1.1 -0.8
-0.5 1  

 
so that the unknown deformation gradient is: 

 
a b
c d

 = 1.1 0.1
-0.1 1.3

 1
0.7

 1.1 -0.8
-0.5 1

 = 1
0.7

 1.16 -0.78
-0.76 1.38

 ≅ 1.66 -1.11
-1.09 1.97  

 
b. The usual tensors are computed: 
 

 
C  = 1

0.7
  1.16 -0.76

-0.78 1.38
  1

0.7
  1.16 -0.78

-0.76 1.38
 = 1

0.49
  1.9232 -1.9536

-1.9536 2.5128
  ≅  3.92 -3.99

-3.99 5.13  
 

 
E  = 1

2
 3.92-1 -3.99

-3.99 5.13-1
 = 1.46 -2

-2 2.07  
 

 
ε  = 1

2
 1.66-1 -1.11

-1.09 1.97-1
 + 1.66-1 -1.09

-1.11 1.97-1
 = 0.66 -1.10

-1.10 0.97  
 
(But again in this case the small strain tensor has no precise meaning, as its components are not 
small with respect to 1). 
 

c. The principal strains are solutions of the eigenvalue problem: 

 

1.46-λ -2

-2 2.07-λ
 = 0, or  (1.46- λ) (2.07-λ) - 4 = 0

 
 
which is also:   
  λ2 - 3.53 λ - 0.98 = 0  with solutions  E1 = -0.26  and  E2 = 3.79
 
The principal axes v  are such that their components verify: 1 and v 2

 

(1.46 + 0.26) v11 - 2 v21 = 0  ⇒  v1  = 0.76
0.65

(1.46 - 3.79) v12 - 2 v22 = 0  ⇒  v2  = -0.65
0.76  

 
 

7. At time t, the position of a material particle initially at (X1, X2, X3) is 
 

 x1 = X1 + a X2 
 
 x2 = X2 + a X1 
 
 x3 = X3 
 

 Obtain the unit elongation (i. e. change in length per unit initial length) of an element initially in 
the direction of x1 + x2. 

 
 
SOLUTION: 
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The deformation gradient is here: 
F = Žx

ŽX
 ,  F  = 

1 a 0
a 1 0
0 0 1  

 

and the Cauchy strain tensor is immediately deduced: 

C  = 
1+a2 2a 0

2a 1+a2 0

0 0 1  
 

The initial unit vector is: 

dS  ↔ 

1
2
1
2
0

 
 
The length of the final corresponding vector verifies:   

 

ds2 = dS T C  dS  = 1
2

1
2

0  dS 
1+a2 2a 0

2a 1+a2 0

0 0 1

 

1
2
1
2
0

 dS = (1 + a)2 dS2

 
 
so that ds = (1 + a) dS and the unit elongation is:  E = a. 
 
 

8. Take fixed right handed axes x1, x2, x3.  Write down the deformation gradient matrix, 

∂Xi
∂xj , for the 

deformation of a body from x to X for 
 

a. right handed rotation of 45o about x1. 
 
b. Left handed rotation of 45o about x2. 
 
c. Stretch by a stretch ratio of 2 in the x3 direction. 
 

d. Stretch by a stretch ratio of 
1
2  in the x2 direction. 

 
e. Right handed rotation of 90o about x3. 

 
 Find the total deformation matrix for these motions carried out sequentially.  Using this result, 

check the final volume ratio. 
 

 
SOLUTION: 

The deformation gradients are computed at each step: 
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Fa =

1 0 0

0 1
2

- 1
2

0 1
2

1
2

, Fb =

1
2

0 - 1
2

0 1 0

1
2

0 1
2  

 

 
Fc =

1 0 0
0 1 0
0 0 2

, Fd =
1 0 0
0 1/2 0
0 0 1

, Fe =
0 -1 0
1 0 0
0 0 1

 
 
The combined transformation has a deformation gradient: 

 

F  = Fe  Fd  Fc  Fb  Fa  =  

0 - 2
4

2
4

2
2

- 1
2

- 1
2

2 1 1
 

 

The Cauchy strain tensor is then evaluated: 

 

C =
2.5 1.06 1.06

1.06 1.38 1.12
1.06 1.12 1.38

 
 
We see immediately that:  C = 1,  i. e. the deformation takes place with no volume change. 
 
 

9. From the following mapping, find C, U, and R: 

 

x1
x2
x3

 = 
2 0 0
0 3 4
0 4 -3

 
X1
X2
X3  

 
 Check whether this is a permissible deformation in a continuous body. 
 
SOLUTION: 

The Cauchy strain tensor is first calculated by: 

 
C  = 

2 0 0
0 3 4
0 4 -3

  
2 0 0
0 3 4
0 4 -3

 = 
4 0 0
0 25 0
0 0 25  

 
The polar decomposition is written:  [F] = [R] [U];  with [U]2 = [C] we deduce: 

 

U  = 
2 0 0
0 5 0
0 0 5

  and   R  = F  U -1 = 
2 0 0
0 3 4
0 4 -3

 

1
2

0 0

0 1
5

0

0 0 1
5

 = 

1 0 0

0 3
5

4
5

0 4
5

- 3
5  

 
But we see that R = - 1 so that [R] is not a rotation, but rather an inversion. 
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10. Check the compatibility of the following strain components: 

 

ε ε ↔ 
x1+x2 x1+2x2 0
x1+2x2 x1+x2 0

0 0 x3

       ε ε ↔ 
x12 x12+x22 x2x3

x12+x22 x22 0

x2x3 0 0  
 

SOLUTION: 

From the strain tensor: 

  

ε =
x1+x2 x1+2x2 0

x1+2x2 x1+x2 0
0 0 x3

 
 
the components of which are first order polynomials, we see that: (see also Problem 15)   

 

Ž2εii

Žxj
2

 + 
Ž2εjj

Žxi
2

 = 2 
Ž2εij

Žxi ∂xj
 = 0

 
 
so that the field is compatible. 

The second strain tensor is: 

ε  = 
x12 x12+x22 x2x3

x12+x22 x22 0

x2x3 0 0  
 

we observe that: 

Ž2ε2

Žxj
2

 + 
Ž2εjj

Žxi
2

 = 2 
Ž2εij

Žx1 ∂x2
 = 0

 
 

   

Ž2ε22

Žx3
2

 + Ž
2ε33

Žx2
2

 = 0 = 2 Ž2ε23

Žx2 ∂x3  
 

   

Ž2ε33

Žx1
2

 + Ž
2ε11

Žx3
2

 = 0 = 2 Ž2ε13

Žx1 ∂x3  
 
So that this tensor field is also compatible. 
 
 

B. DEPTH PROBLEMS 
 
11. Consider the extension of an arbitrary small line element AB.  Start by examining how (A'B')2 is 

related to (AB)2 using the small extensional strain along that direction, en.  Show that for small 
strains and displacements, rotations do not cause extension, i.e. if extensions are zero, strains are 
zero. 

 
SOLUTION: 

We put:  AB  = a dl, where a is a unit vector, and write Eq. 4.18 in the form: 
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  A′B′2 = (a dl)T C a dl = dl2 aT(I + J)T (I + J) a = AB2 aT (I + JT + J + JT J) a
 
Using the small strain approximation we obtain: 

  A′B′2 ≅ AB2 aT (I + JT + J) a = AB2 aT (I + 2 ε ε) a
 
As the components of the strain tensor are small with respect to unity we can also write: 
  A′B′ ≅ AB (1 + 2 aT  ε ε a)1/2  ≅ AB (1 + aT  ε ε a)
 
If we have only an extension en in the x1 direction, the previous equation becomes: 

 
A′B′ ≅ AB (1 + en)  (where we used   a  = 

1
0
0

)
 

 
If there is zero extension in any direction we have: 
  A′B′ = AB = AB (1 + aT  ε ε a)
 
for any a, that is also: 
 aT  ε ε a = 0 
 
If a is a principal direction, the above equality shows that the corresponding principal strain must 
be zero, so that we come to the conclusion that the strain tensor must be null. 
 
 

12. In sheet forming, one often measures strains from a grid on the sheet surface.  Then, one can plot 
these strains as a function of the original length along an originally straight line: 

 

���
���

Original Line
Strain 

Original Position

��
��

Die Die

����PUNCH

 
 
 As shown in the second figure (for a simple forming operation), this originally straight line is 

curved and stretched. 
 
 If the edges of the sheet do not move (stretch boundary conditions), develop a rule that the 

measured strain distribution must follow.  Consider that the original sheet length lo becomes l at 
some later time. 

 
SOLUTION: 

We consider the strain εl or e1 (true or engineering definition) corresponding to the elongation in 
the initial direction of the line.  A small vector dl0 on the initial line will be transformed into a 
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small vector dl so that its new length verifies:  dl = exp( .  Therefore the final 
length of the line will be: 

εl) dl0 = (1 + e1) dl0

 
l = exp(εl) dl0

0

l0

  = (1 + e1) dl0
0

l0

 
 
 
 
 
 

13. Consider a 1" square of material deformed in the following ways: 

0 3

2

dx1

dx2

a) 0

32 dx1dx
2

b)

30°

0 3

2
dx1

dx2

c)

3

0

3
2 dx 1

dx 2 45°

d)

0 1

1

dx1

dx2

 
Find F for each case. 
Find C and E. 
Find the principal values and directions of E. 
Find the material principal directions after deformation. 
Which of these cases (a-d) are mechanically the same under isotropic conditions?  Under 

general anisotropy? 
 
SOLUTION: 

a.  We have: 
F  = 3 0

0 2
  ,    C  = 9 0

0 4
  ,    E  = 4 0

0 3/2  
 
The principal strains are obviously:  E , the principal axes and the material axes 
after deformation are the ox1 and ox2 axes. 

1 = 3/2, E2 = 4

 
b. The new vectors are projected on the ox1 and ox2 axes so that we have: 

 
F  = 3 3/2 -1

3/2 3
  ,    C  = 3 3/2 3/2

-1 3
  3 3/2 -1

3/2 3
 =  9 0

0 4
  ,    E  = 4 0

0 3/2  
 
The remaining is the same as case a. 
 

c.   
F  = -3 0

0 -2
  ,    C  = 9 0

0 4
  ,    E  = 4 0

0 3/2  
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The remaining is the same as case a. 
 

d.  
F  = 3 2/2 - 2

3 2/2 2
  ,    C  = 3 2/23 2/2

- 2 2
 3 2/2 - 2
3 2/2 2

 = 9 0
0 4

  ,    E  = 4 0
0 3/2  

 
The remaining is the same as case a. 
 
For isotropic materials the four cases a-d are equivalent by definition, as a rotation has no effect 
on the material properties.  Under general anisotropy case a is equivalent to the undeformed 
configuration (if the deformation does not introduce any change in the anisotropic coefficients), 
while cases b, c, d correspond to rotations of 30°; 180° and 45° respectively, and the material 
properties will be rotated by the same rotation. 
 

14. Given that 
C  = 1 0

0 2 , find F when  
 

a. the principal material axes do not rotate, and 
 

b. the principal material axes rotate by 30o counterclockwise.  Express your answers in the 
original coordinate system. 

 
SOLUTION: 
a. We use the polar decomposition:  F = RU, if there is no rotation, then R = I, F = U is symmetric 

and C = FF so that here F is easily computed: 

 
F  = U  = 1 0

0 2  
 

b.  The rotation matrix is: 

R  = 
3
2

- 1
2

1
2

3
2  

 
The [U] stretch tensor is the same and the deformation gradient is: 

 

F  = R  U = 
3
2

- 1
2

1
2

3
2

 
1 0

0 2
 = 

3
2

- 2
2

1
2

6
2  
 

 
15. Derive a set of compatibility equations corresponding to Eq. 4.52 for the three-dimensional case. 
 
SOLUTION: 

 A non diagonal (small) strain component is calculated according to: 

 
εij  = 1

2
 (ŽUi

Žxj
 + 

ŽUj
Žxi

)   for   i ° j
 

 
so that we obtain: 
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2 

Ž2εij
Žxi Žxj

 = Ž3Ui

Žxi Žxj
2
 + 

Ž3Uj

Žxi
2 Žxj

   for   i ° j
 

 
which is also, with the definition of the diagonal terms (without summation on i and j): 

 
2 

Ž2εij
Žxi Žxj

 = Ž
2εii

Žxj
2

 + 
Ž2εjj

Žxi
2

 
 



CHAPTER 5 - PROBLEM SOLUTIONS 
 
 
A.  PROFICIENCY PROBLEMS 
 
1. Adapt the demonstration of the Green theorem of Eq. 5.1 to: 
 

- a curve C, and show that: 

 
f dg

dl
 dl

C
 = f(B) g(B) - f(A) g(A) - df

dl
g dl 

C  
 
      where A and B are the extremities of the curve. Examine the case when the curve is closed 

(A=B). 
 
- a surface S defined in the plane (with coordinates x1 and x2), so that: 

 

f Žg
Žxi

 dS
S

 = f g ni dl
ŽS

 - Žf
Žxi

 g dS 
S

 
 
 i = 1 or 2, ∂S is the curve limiting the surface S (with no hole), and n is the unit normal vector 

to ∂S. 
 

SOLUTION 
We suppose that the curve is represented by parametric equations of the form: 

, where l  is the arc lenght measured from the origine A of the curve.  f and g 
can be considered as functions of the arc lenght l  on the curve and will be denoted as: 
xi = xi(l)   for 0 ≤ l ≤ L

  F(l) = f(x1(l), x2(l), x3(l))   and   G(l) = g(x1(l), x2(l), x3(l))
 
so that the left hand side of the 1-D equivalent of the Green equation becomes: 

 
f dg

dl
 dl

C
 = F(l) dG(l)

dl
 dl 

0

L

 
 
Using a general property of integrals of functions of one variable, we can write: 

 

 
d
dl

G(l) F(l) dl
0

L
= F(L) G(L) - F(0) G(0) =

dF(l)
dl

G(l) dl
0

L
+ F(l)

dG(l)
dl

dl
0

L

 
 
If this equation is combined with the previous one, we get: 

 
 F(l) dG(l)

dl
 dl 

0

L
 = F(L) G(L) - F(0) G(0) - dF(l)

dl
G(l) dl 

0

L

 
 
which is the desired equality when we come back to the initial notations. 
 
The proof for the 2-D Green formula is very similar to the proof for the 3-D case.  The surface S is 
represented in the figure below. 
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x2

x1xA xB

S

ŽSU

ŽSL

 
 
The boundary of S is divided into an upper part ∂ΩU, and a lower part ∂ΩL the equations of which 
are respectively: 
  x2 = hU(x1)  ;  x2 = hL(x1)
 

Using these notations, we can write: 

f Žg
Žx2

 dS
Ω

 = f Žg
Žx2

 dx2
hL(x1)

hU(x1)
 dx1

xA

xB

 
 
The above equation is transformed in a similar way as Eq. 5.3 so that: 

 

f Žg
Žx2

 dx2
hL

hU

 = fU gU - fL gL - Žf
Žx2

 g dx2
hL

hU

 
 
This equation is now integrated with respect to x1: 

 

f Žg
Žx2

 dS
S

 = fU gU - fL gL  dx1
xA

xB

 - Žf
Žx2

 g dx2
hL

hU

 dx1

xA

xB

 
 
In a way similar to Eqs. 5.3a and 5.3b, the component nU2 of the normal to ∂ΩU is such that 
dx1 = nU2 dl and an analogous equation for the lower part of the boundary.  Then we get: 

 
fU gU - fL gL  dx1

xA

xB

 = fU gU nU2 dl
xA

xB

 - fL gL nL2 dl
xA

xB

 = fg dl 
∂S

 
 

 
When this last result is put into the previous equation we obtain the 2-D form of the Green theorem: 

 

f Žg
Žx2

 dS
S

 = fg n2 dl
∂S

 - Žf
Žx2

 g dS 
S

 
 

2. Apply the 2-D form of the Green theorem (see problem 1) to the functions f = x1 + x2 and g = x1 - 
x2 in the square domain [0,1]2, for i = 1 and for i = 2.  Compute directly the integrals and verify 
the Green theorem on this specific example. 
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SOLUTION: 

We must show that the following equality holds: 

 

f Žg
Žx2

 dx2
0

1
 dx1

0

1

 = fg n2 dl
∂S

 - Žf
Žx2

 g dx2
0

1
 dx1

0

1

 
 
The first integral in the above equation is computed according to: 

 

0

1
(x1 + x2) (-1) dx20

1
dx1 = 01- x1x2 +

x1
2

2 x2=0

x2=1

dx1 = - (x1 +
1
2

) dx1
0

1
= -

x1
2

2
+

x1

2 0

1

= -1  

On the boundary of the square, the n2 component is non-zero only on the segments corresponding to 
x2 = 0 or 1, so that the second integral is: 

 
 fg n2 dl

∂S
 = (x1 + 1) (x1 - 1) dx1

0

1
 - x1

2 dx1
0

1
 = -1

 
 
Finally the third integral is written: 

 

 

(x1 - x2) dx20

1
dx1

0

1

= x1x2 -
x1

2

2 x2=0

x2=1

dx1

0

1

= (x1 -
1
2

) dx1
0

1
=

x1
2

2
-

x1

2 0

1

= 0

 
 
Using the numerical values of the three contributions allows verification of the Green theorem for 
this particular case. 
 

3. A 2-D velocity field is given by the expressions: 
 

 

v1 = a x1
2 + 2 b x1 x2 + c x1 x2

v2 = a′x1
2 + 2 b′x1 x2 + c′x1 x2  

 
 depending on the 6 parameters a, b, c, a', b', c'.  Determine the relations the parameters must 

satisfy in order that the velocity field is incompressible.  Keeping these relations in mind, show 
directly that the material flow through the hatched unit triangle pictured below is equal to zero. 
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O x1

x2

1

1  
 
SOLUTION: 

The partial derivatives are first evaluated by: 

 
Žv1
Žx1

 = 2 a x1 + 2 b x2  ;  Žv2
Žx2

 = 2 b′ x1 + 2 c′ x2
 

 
They permit us to express the incompressibility equation as: 
  div(v) = 2(a + b′) x1 + 2(b + c′) x2 = 0
 
which can hold in a 2-D domain only if: 
  a + b′ = 0  and  b + c′ = 0
 
The hatched triangular domain is denoted by S, with boundary ∂S;  the material flow through ∂S 
(with outward normal) is evaluated by; 

 
v .n dl

∂S
 = - v2 dx1

0

1
 - v1 dx1

0

1
 + (v1 + v2)

2
 2dx1

0

1

 
 
We see immediately that: 

 

   
v2 dx10

1
= a′ x1

2 dx10

1
=

a′
3

, and v1 dx10

1
= c v2

2 dx10

1
=

c
3

 
 
The last integral is evaluated on the side with equation x2 = 1 - x1: 

 

   
(v1 + v2) dx10

1
= (ax1

2 + 2bx1(1-x1) + c(1-x1)2 + a′x1
2 + 2 b′x1(1-x1) + c′(1-x1)

2) dx10

1

= 1
3

(a + b + c + a′ + b′ + c′)
 

 
The three contributions are added to get (a + b + b , which was shown to be equal to zero 
when the velocity field is incompressible. 

′ + c′)/3

 
4. A porous material with an initial relative density ρr

0 < 1 is densified by a uniform rate of volume 
change equal to c. Express the law of relative density ρr as a function of time t, the beginning of 
the process corresponding to t = 0. 
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SOLUTION: 

We suppose that the initial volume of porous material is V0 so that the current volume is V = V0 - ct 
(with c > 0), and the initial mass is m.  By definition the density will be: 

 
ρ = m

V
 = m

V0 - ct
 = m

V0
 1
1 - c t/V0

 = ρ0 1
1 - c t/V0  

 
where ρ0 is the initial density.  Dividing each members of the previous equalities by the maximum 
density ρm (which corresponds to a perfectly dense material), we obtain the relative density: 

 
ρr =   ρr0 1

1 - c t/V0
  for  t  ≤  v0

c  (1 - ρr0)
 

as a function of time and the initial relative density ρr0. 
If we consider now that the relative volume rate of change is constant we shall put V/V = - c′, so that 
with Eq. 5.42 we can write: 
 ρ/ρ = ρr/ρr= - div(v) = - V/V = c′ 
 
The last equation is easily integrated with respect to time: 

 
ln(

ρr
ρr0

) = c′t
 

 
and the final expression for relative density change is: 

 
ρr = ρr0 exp(c′t)  for  0 ≤ t ≤ 

- ln(ρr0)

c′  
 

5. The plane strain upsetting of a rectangular section with height 2h and width 2a is considered (see 
figure below). 

2a

2h

x

y

0

v0

-v0

 
 
 The velocity field at any moment is given by : 

 

 vx = + v0
x
h

, vy = - v0
y
h  

 where vo is the (constant) upsetting velocity. 
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 Express the kinematic energy K in the section, and the time derivative 
dK
dt .  Calculate the local 

acceleration of any material point with coordinate (x,y), and the local density of the time 
derivative of kinematic energy ; verify that the integral of this density gives the previous value for 
dK
dt . 

 
SOLUTION: 

The kinetic energy K is computed by: 

K = 1
2

 ρ v2 dS
Ω

 = 4 1
2

 ρ (v0
2 x2

h2
 + v0

2 y
2

h2
) dx

0

a
 dy

0

h

 
 

after explicit integration one obtains: 
K = 2

3
 ρ v0

2 (a3

h
 + ah)

 
 

The time derivative of the kinetic energy is: 
dK
dt

 = 2
3

 ρ v0
2 (3a2

h
 + h) da

dt
 + (-a3

h2
 + a) dh

dt  
 

Using the expression of the velocity field, we get:  
 da

dt
= vx(a) = v0

a
h

,
dh
dt

= vy(h) = - v0
 

 

which permits us to rewrite the derivative of the kinematic energy: 
dK
dt

 = 8
3

 ρ v0
3 a3

h2  
 
Now the acceleration field is calculated by differentiation of the velocity field: 

 

  
γx =

dvx
dt =

v0
h (vx -

x
h

dh
dt ) =

2 v0
2

h2 x , γy =
dvy
dt = -

v0
h (vy -

x
h

dh
dt ) = 0

 
 

and the local rate of change of kinetic energy is: 
ρ γ γ.v  = 

2 ρ v0
3

h3
 x2

 
 
The integral of the above function in the rectangular domain is: 

 

 ρ γ γ.v dS
Ω

 = 4 
2 ρ v0

3

h3
 x2 dx

0

a
 dy = 8

3
 ρ v0

3 a3

h2
0

h

 

 ,   which is equal to 
dK
dt . 

 
6. With the help of the general variational theory outlined in section 5.5, verify that the functional Π 

defined by: 

 

Π(u) = 1
2

 λ ( εii�
i

)2 + 2 μ εij
2�

ij
 dV - Ti ui�

i
 dS 

∂Ω s
Ω
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 corresponds to the linear elastic problem for a material obeying the Hooke law, with a prescribed 

stress vector T on the boundary ∂Ωs. 
 
SOLUTION: 

According to Eq. 5.82 we put: 
F = 1

2
 λ ( εii�

i
)2 + 2 μ εij

2�
i,j

  and  f = - Ti ui�
i  

 

 

ŽF
Žui

 = 0  ;  ŽF
Žεii

 = λ εii�
i

 + 2 μ εii  = σii   ;  
ŽF
Žεij

 = 2 μ εij  = σij   for i ≠ j
 

 
According to the Hooke linear elastic theory, the last two terms were identified whith the 
corresponding stress components, so that Eq. 5.83 is equivalent to the equilibrium equation with 

components: 

Žσij
Žxj

�
j

 = 0  in  Ω
 

 

Now f is differented with respect to ui: 
Žf
Žui

 = - Ti
, so that Eq. 5.84 gives:  , 

which is the desired boundary condition. 

- Ti + σij  nj�
j

  on ∂Ωs

 
7. A cylindrical sample is considered with length L and radius R, subjected to a prescribed tension 

force F at its right end, while the left one remains fixed (see figure below). 
 

L

R F

x1

x2
x3

 
 

 A linear displacement u is introduced with the form: 
u = 

u1 = U x1
u2 = V x2
u3 = W x3  

 
 Compute the energy functional Π (Eq. 5.104) for an elastic material with Lamé coefficients λ and 

μ.  The minimization of Π allows to determine explicitly the unknown parameters U, V, W.  Show 
that the usual simple formulas are obtained when the Young modulus E end the Poisson ν 
coefficient are used.  It is recalled that the following equalities hold: 

 
E = 

μ (3λ + 2μ)

λ + μ
      ν = λ

2 (λ + μ)  
 
SOLUTION: 

The components of the strain tensor ε ε are derived from the given displacement field: 
  ε11 = U ; ε22 = V ;  ε33 = W ; εij  = 0  for i ≠ j
 
The prescribed stress in the ox1 direction on the right hand side of the sample is: 

 
T1 = F

S
  with S = π R2
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Then the functional associated to our problem is written: 

 

Π(u) = 1
2

 λ (U + V + W)2 + 2 μ (U2 + V2 + W2  dV
Ω

 - F
S

 U L dS 
∂Ω s

= 1
2

 π R2 L λ (U + V + W)2 + 2 μ (U2 + V2 + W2  - F U L
 

 
The minimization of Π with respect to the unknown parameters U, V, W is performed by writing: 

 

ŽΠ
ŽU

 = 0 = π R2 L λ (U + V + W) + 2 μ U - F L

ŽΠ
ŽV

 = 0 = π R2 L λ (U + V + W) + 2 μ V

ŽΠ
ŽW

 = 0 = π R2 L λ (U + V + W) + 2 μ W
 

 

After summing up the above three equations we have: 
(3 λ + 2 μ) (U + V + W) =  F

π R2  
 

so that we obtain: 

  
U =

λ + μ
μ

1
3 λ + 2 μ

F
π R2 =

1
E

F
π R2 , V = W =

- 1
2 μ

1
3 λ + 2 μ

F
π R2 = -

ν
E

F
π R2

 
 

8. Find the viscoplastic potential for a material obeying the following constitutive equation: 

 s  = 2K( 3)m-1 ε0
2
 + ε

2 m-1
2  ε ε  

 
 where ε0 is a (small) positive constant.  Show that when ε << ε0 the material constitutive equation 

is equivalent to a Newtonian behavior with the general form: 

 s  = 2η  ε ε  
 and that if ε >> ε0, then it is equivalent to a Norton-Hoff behavior, Eq. 5.110. 
 
SOLUTION: 

The definition of the equivalent strain rate is: 
ε = 2

3
 εij

2�
i,j  

 

from which we deduce immediately: 
d(ε0

2
 + ε

2
) = 4

3
 εij  dεij�

i,j  
 

On the other hand, for any viscoplastic potential ϕ we have: 
dϕ =  

Žϕ
Žεij

 dεij�
i,j  

which is transformed with the help of the constitutive equation and of Eq. 5.106: 

 
dϕ =  2 K ( 3)m-1 (ε0

2
 + ε

2
)(m-1)/2   εij  dεij�

i,j  
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Using the above result on the differentiation of (ε0
2
 + ε

2
) we obtain: 

 
dϕ =  2 K ( 3)m-1 (ε0

2
 + ε

2
)
(m-1)/2

  3
4

 d(ε0
2
 + ε

2
)�

i,j  
 

This equation is easily integrated, giving: 
ϕ = K

m+1
 ( 3)m+1 (ε0

2
 + ε

2
)
(m+1)/2

 - ε0
m+1

 
 
The integration constant was chosen so that ϕ(0) = 0.  We verify that when ε0 = 0 the usual 
viscoplastic potential is found (Eq. 5.110). 

 
B.  DEPTH PROBLEMS 
 
9. A potential ϕ(ε ε) is convex if for any ε ε1 and ε ε2 we have: 

 ϕ λ ε ε1 + (1- λ) ε ε2  Š λ ϕ(ε ε1) +(1-λ) ϕ(ε ε2)  for 0 Š λ Š 1  
 
 Apply the above inequality to ε ε1 = 0 and ε ε2 = ε ε and express the derivative of each side at  λ = 0 to 

show that: 

 

Žϕ
Žε ε

 ε ε :ε ε � ϕ(ε ε) � 0
 

 
SOLUTION: 

The convexity condition is written in the general form: 
 ϕ(λ ε ε1 + (1 - λ) ε ε2) ≤ λ ϕ(ε ε1) + (1 - λ) ϕ(ε ε2)  for 0 ≤ λ ≤ 1 
 
We put ε ε1 = 0 and ε ε2 = ε ε in the previous equation so that: 
 ϕ((1 - λ) ε ε) ≤ (1 - λ) ϕ(ε ε)  for 0 ≤ λ ≤ 1 
 
For λ = 0 both sides of the above equation are equal to ϕ(λ):  therefore it can be rewritten after 
substracting ϕ(λ) from both sides, dividing by λ and changing the signs: 

 
- 

ϕ((1 - λ) ε ε) - ϕ(ε ε)

λ
 ≥ ϕ(ε ε)  for 0 ≤ λ ≤ 1

 
When λ tends to zero the left side tends to the derivative so that

 

Žϕ(ε ε)
Žεij

 εij�
i,j

 ≥ ϕ(ε ε)  for 0 ≤ λ ≤ 1
 

which is one of the desired inequalities, the other one resulting from the positiveness of ϕ which is 
assumed by hypothesis. 
 

10. Give the proof for the generalized expression of the variational formulation to mechanical 
problems in section 5.5. 

 
SOLUTION: 

We start from the functional of Eq. 5.82 and evaluate a small variation: 
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δI  (u) = ŽF
Žui

 δui�
i

 - F
Žεij

 δεij�
i

 dV
Ω

 + Žf
Žuj

 δuj�
j

 dS 
∂Ω s

 
 
Taking into account the symmetry of the strain tensor we verify that: 

 
ŽF
Žεij

 δεij  + ŽF
Žεji

 δεji  = ŽF
Žεij

 δ(Žui
Žxj

) + ŽF
Žεji

 δ(
Žuj
Žxi

)
 

 
Then the Green theorem is used to write: 

 

ŽF
Žεij

 Ž(δui)
Žxj

 dV
Ω

 =  ŽF
Žεij

 δui nj dS
∂Ω

 -  
Ž(ŽF

Žεij
)

Žxj
 δui dV 

Ω  
 
Recalling that u is prescribed on Ωu and has variation δu only on Ωs, the variation of the 
functional can be written: 

 

δI  (u) = ŽF
Žui

 - 
Ž(ŽF

Žεij
)

Žxj
�

i
 δui�

i
 dV

Ω

 + Žf
Žui

 + ŽF
Žεij

 nj  δui�
i

 dS 
∂Ω s

 
 
At first we use a displacement field δu which is nill on the boundary:  the above equation shows that 
δI  = 0 only if Eq. 5.83 holds.  Then with displacement fields δu which can take any value on the 
boundary Ωu, we see that the second integral of the above equation must be nill with the 
consequence that Eq. 5.84 is satisfied. 
 

11. From the variational formulation given by Eq. 5.111, derive the constitutive equation and the 
equilibrium equation for a Norton-Hoff viscoplastic material (Eq. 5.112).  To obtain the 
appropriate form it is suggested to utilize the following mathematical property of an 
incompressible vector field v: 

 if div(v) = 0, then a vector potential ξ ξ exists so that:  v = curl (ξ ξ)  
 
 First verify that:   curl , where s is the deviatoric stress tensor.  Then, with the help of 

the previous mathematical result, it is possible to show that div(s) is the gradient of a scalar field, 
which is identified with the pressure field p. 

(div(s )) =0

 
SOLUTION: 

A variation of the functional is calculated according to: 

 

δΦ(v) = 2K 3 ε
m-1

εij  δεij�
ij

 dV
Ω

 - Ti
d.δvi�

i
 dS

∂Ω s
 

 
Using the constitutive equation (Eq. 5.111) this is equivalent to: 



Chapter 5 Fundamentals of Metal Forming - Solution Manual Page 11 
 

 

δΦ(v) = sij  δεij�
ij

 dV
Ω

 - Ti
d.δvi�

i
 dS

∂Ω s
 

 
The Green theorem is used to transform the above equation in the same way as in Problem 10, 
leading to: 

 

δΦ(v) = sij  δvi nj�
i,j

 dS 
∂Ω s

 - 
∂sij

∂xj
 δvi�

ij
 dV

Ω

 - Ti
d.δvi�

i
 dS 

∂Ω s

 
 
Now δv as well as v are incompressible fields.  Then it can be shown mathematically that a vector 
field δξ  does exist so that:  ξ

 

δv = curl (δξ ξ)   with components  
δv1

δv2

δv3

 = 
Ž/Žx2(δξ3) - Ž/Žx3(δξ2)

Ž/Žx3(δξ1) - Ž/Žx1(δξ3)

Ž/Žx1(δξ2) - Ž/Žx2(δξ1)  
At least it is easy to verify that a velocity field δv, derived that way from a vector field δξ , is 
necessarily incompressible. 

 ξ

 
The only volume integral occuring in the variational form is transformed using the Green theorem to 
give: 

 
- div(s ).curl (δξ ξ) dV

Ω
 = curl (div(s ).δξ ξ dV

Ω
 - div(s ).(n×δξ ξ) dS 

∂Ω  
 
If the vector field δξ  is chosen with a zero value on the boundary, we obtain:  ξ

 
δΦ = curl (div(s )).δξ ξ dV

Ω
 
 

 
which can be always null only if curl .  This last condition is mathematically equivalent 
to the existence of a function, which is denoted by p for convenience, which satisfies 

(div(s )) = 0

div(s ) = grad (p).   
 
This relation permits us to substitute div(s) in the initial functional variation: 

 

δΦ(v) = sij  δvi nj�
i,j

 dS 
∂Ω s

 - 
∂p

∂xi
 δvi�

i
 dV

Ω

 - Ti
d.δvi�

i
 dS 

∂Ω s

 
 
Using one more time the Green theorem, we can write: 

 

∂p

∂xi
 δvi�

i
 dV

Ω

 = p δvi ni�
i

 dS 
∂Ω s

 - p 
∂δvi

∂xi
�

i
 dV

Ω  
 
As δv is incompressible the third integral in the above equation is equal to zero, so that: 
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δΦ(v) = sij  δvi nj�
i,j

 dS 
∂Ω s

 - p ni δvi�
i

 dV
Ω s

 - Ti
d.δvi�

i
 dS 

∂Ω s

 
 
The velocity variation δv can take any value on the boundary ∂Ω , therefore we obtain the equality: 

s

 
sij  nj�

j
 - p ni = σij  nj�

j
 = Ti

d  on ∂Ωs

 
 
Which is the desired boundary condition. 

 



CHAPTER 6 - PROBLEM SOLUTIONS 
 
 
A. PROFICIENCY PROBLEMS 
 
1. Consider a cubic crystal with c11 = 2, c12 = 1, and c44 = 1.5. 
 

a. Find c12', referred to the new coordinate system, if the x i'  axes are rotated 30o 
counterclockwise about x3 .  The x i axes are aligned along the crystal axes. 

 

x2' x2

x1'

x1
30°

 
 

b. What is the anisotropy parameter for this crystal? 
 

SOLUTION: 

a. According to Chap. 2, Eq. 2.23, the rotation matrix is:  

R  = 

3
2

1
2

0

- 1
2

3
2

O

0 0 1
 

 
If the fourth rank notation is used for the anisotropic tensor Eq. 6.9 shows that: 

  
c′12 = c′1122  = R1m R1n R2o R2p cmnop�

m,n,o,p=1

2

 
Here the summations on m, n, o and p extend from 1 to 2 only as R13 = R23 = 0.  Now the only 
non vanishing terms (with indices 1 or 2) in the c tensor for a cubic material are (see Eq. 6.18): 

  
c1111  = c11, c2222  = c11, c1122  = c2211 = c12
c1212  = c2112  = c1221  = c2121  = c44

 
The requested component of the c' is then: 

 

  c′1122 = R11
2 R21

2 c 1111 + R12
2 R22

2 c2222 + R11
2 R22

2 c1122 + R12
2 R21

2 c2211

+ R11 R12 R21 R22 c1212 + R12 R11 R21 R22 c2112
+ R11 R12 R22 R21 c1221 + R12 R11 R21 R21 c2121

= 2
3
4

1
4

c 11 + (
3
4

3
4

+
1
4

1
4

) c 12 - 4
3
4

1
4

c44 =
3
8

c11 +
5
8

c 12 -
3
4

c 44

= 3
8

2 + 5
8

1 - 3
4

1.5 = 0.25
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b. The anisotropy ratio is defined in Eq. 6.28:   
A = 2 c44

c11 - c12
 = 2x1.5

2-1
 = 3

 
 

2. Repeat Problem 1, b, for c11 = 1, c12 = 2, c44 = 0.5. 
 
SOLUTION: 
 The same relation as in Problem 1 holds, giving: 

 
c′12 = 3

8
 c11 + 5

8
 c12 -  3

4
 c44 = 3

8
 1 + 5

8
 2 -  3

4
 0.5 = 5

4
 = 1.25

 
 

The anisotropy ratio becomes:   
A = 2 c44

c11 - c12
 = 2x0.5

1-2
 = -1

 
 

3. Use symmetry to reduce the general 6x6 elastic constant matrix to the proper form for a tetragonal 
cell as shown.  (Note:  all angles are 90o and a = b, so there is 90o rotational symmetry about x2 
and 180o rotational symmetry about x3.) 

c

b

a

x1

x2

x3  
 
SOLUTION: 

The starting point is the orthotropic material where the anisotropic elasticity constants are given 
by Eq. 6.17.  Additional symmetry is taken into account:  the 90° rotation around the x2 vector.  
The transformation is such that: 
 

 

x1 → x3

x2 → x2

x3 → -x1   and   

σ11 = σ1 → σ33 = σ3

σ33 = σ3 → σ11 = σ1

σ23 = σ4 → - σ21 = - σ6

σ12 = σ6 → σ23 = σ4

 
We conclude that the following equalities must hold:   c  11 = c33, c12 = c23, c44 = c66
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 The anisotropic coefficients are then:   

c11 c12 c13 0 0 0
c12 c22 c12 0 0 0
c13 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c44  

 
 
 
4. a. Is ψ (x, y) = x4 + y4 - 12x2y2 a valid Airy stress function in terms of both              

equilibrium and compatibility requirements?  Show why or why not. 
b. Assuming that the ψ (x, y) in Part a. is correct, find the stress components at the point 

(1, 2). 
c. Find the strain components for the point (1, 2) assuming plane stress conditions (σ31 = 0).  

Leave your answers in terms of general Young's modulus (E) and Poisson's ration (ν). 
 
SOLUTION: 
a. From:ψ = x4 + y4 - 6 x2 y2 

 

we compute:   

Ž4ψ
Žx4

 = 24 ;  
Ž4ψ
Žy4

 = 24 ;  2 
Ž4ψ

Žx2 Žy2
 = - 48

 
 
which shows that the compatibility condition (Eq. 6.59) is satisfied. 
 

b. The stress components are computed according to: 

 
σxx = 

Ž2ψ
Žy2

 = 12 y2 - 12 x2 ;  σyy = 
Ž2ψ
Žx2

 = 12 x2 - 12 y2 ;  σxy = - 
Ž2ψ

Žx ∂y
 = 24 x y

 
 
The equilibrium equation is automatically satisfied;  that can be verified on this peculiar case: 

 

Žσxx
Žx

 + 
Žσxy

Žy
 = -24 x + 24 x = 0

Žσxy
Žx

 + 
Žσyy

Žy
 = 24 y - 24 y = 0

 
 

c. The corresponding strain components are as follows 

 

εxx = 1 + ν
E

 σxx - 1
E

 (σxx + σyy) = 12 1 + ν
E

 (y2 - x2)

εyy = 1 + ν
E

 σyy - 1
E

 (σxx + σyy) = 12 1 + ν
E

 (x2 - y2)

εxy = 1 + ν
E

 σxy = 24 1 + ν
E

 xy
 

 
 

5. Given:  ψ = 3xy5 + 3x5y - 10x3y3 
 

a. Verify that ψ meets the condition for a proper Airy stress Function.  Show your work. 
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b. Find the stresses as functions of x and y that correspond to ψ. 
c. Check to see if the stresses in Part b. satisfy equilibrium.  Show your work. 
d. With a little manipulation using the stresses in Part b and Hooke's Law for plane stress, 

obtain the strain functions shown below.  Verify that these strain functions satisfy the 
compatibility conditions for strains.  Show your work. 

 
SOLUTION: 
a. The Airy function has the form:  ψ = 3 x y55 + 3 x5 y - 10 x3 y3 

 
We see that the partial derivatives in Eq. 6.59 are: 

 

Ž4ψ
Žx4

 = 360 x y ;  
Ž4ψ
Žy4

 = 360 x y ;  
Ž4ψ

Žx2 ∂y2
 = -360 x y

 
 
so that Eq. 6.59 which expresses the compatibility condition is satisfied. 

 

b. We deduce the stress components according to:   

σxx = 
Ž2ψ
Žy2

 = 60 (x y3 - x3 y)

σyy = 
Ž2ψ
Žx2

 = 60(x2 y - 12 x y3)

σxy = - 
Ž2ψ

Žx ∂y
 = -15 (x4 + y4) + 90 x2 y2

 
 

c. The equilibrium equation is automatically verified by stress components deduced from an Airy 
function, on our example we have: 

 

Žσxx
Žx

 + 
Žσxy

Žy
 = 60 y3 - 180 x2 y + (- 60 y3 + 180 x2 y) = 0

Žσxy
Žx

 + 
Žσyy

Žy
 = - 60 y3 + 180 x2 y + 60 y3 - 180 x2 y = 0

 
 

 

εxx  = 4 b (xy3 - x3y)

εyy  = 4 b (x3y - xy3)

εxy  = b (-x4 - y4 + 6x2y2)

           where: b ≡ 15 (1 + ν)
E  

 
d. The components of the strain tensor are calculated in the following way: 
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εxx = 1 + ν
E

 σxx - 1
E

 (σxx + σyy) = 60 1 + ν
E

 (x y3 - x3 y)

εyy = 1 + ν
E

 σyy - 1
E

 (σxx + σyy) = 60 1 + ν
E

 (x3 y - x y3)

εxy = 1 + ν
E

 σxy = 1 + ν
E

 (- 15 x4 - 15 y4 + 90 x2 y2)
 

 

When we put 
b = 15 1 + ν

E , the desired form is obtained. 
 
The compatibility condition is written here: 

 

Ž2εxx

Žy2
 + 

Ž2εyy

Žx2
 - 2 

Ž2εxy

Žx ∂y
 = 24 bxy + 24 bxy - 2 (24 bxy) = 0

 
 
 

6. Verify that Eqs. 6.38-6.42 follow from the traditional definitions of elastic constants. 
 

SOLUTION: 
We consider a uniaxial tensile test in the x direction.  Hooke's law in terms of Lamé coefficients 
(Eqs.6.31a-f) reduces to: 

  

σxx = λ (εxx + 2 εyy) + 2 μ εxx

σyy = σzz = λ (εxx + 2 εyy) + 2 μ εyy = 0
 
These equations can be compared to Eq. 6.1 - 5 for the same case: 

 
εxx = 1

E
 σxx ;  εyy = - ν

E
 σxx   or   εyy = - ν εxx 

 
We obtain the equalities: 

  

σxx = E εxx = (λ(1 - 2 ν) + 2 μ) εxx

σyy = (λ(1 - 2 ν) - 2 μ ν) εxx = 0
 

From which we deduce by subtracting the second one to the first one: 
μ = E

2 (1 + ν) 
 

Then μ is immediately deduced (provided 1 - 2 ):  ν ≠ 0 λ = E ν
2 (1 + ν) (1 - 2 ν) 

 
From the Hooke's equation with the Lamé coefficients the equality G = μ  is obvious.  The bulk 

modulus B is defined by:  
B = 

1
3

 σ11 + σ22 + σ33

ε11 + ε22 + ε33
 = 1

K 
 
The easiest way to establish the relation is to consider a spherical strain tensor so that 
εxx = εyy = εzz = ε.  According to Hooke's law, the stress state is  σxx = σyy  = σzz = (3 λ + 2 μ) ε, 

and the bulk modulus is: 
B = λ + 2

3
 μ
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The other form of Hooke's equation is here: 
εxx = 1

E
 σxx - ν

E
 (σyy + σzz) = 1 - 2 ν

E
 σxx 

 

so that the bulk modulus becomes: 

B = σxx

3 1 - 2 ν
E

 σxx
 = E

3 (1 - 2 ν)
 

 
Finally the relation between λ, μ and E, ν can be written: 
2 (1 + ν) μ = E

(1 + ν) (1 - 2 ν) λ = E ν
 or   

2 (1 + ν) μ = E

(1 - 2 ν) λ
μ

 = ν
 

 

from which we deduce easily: 
ν = λ

2 (λ + μ)
  and   E = 

(3 λ + 2 μ) μ

λ + μ  
 
 

7. Solve Eqs. 6.31 for strains and verify that the result is identical to Eqs. 6.1-5. 
 
SOLUTION: 

First we see from Eqs. 6.31d-f and Eq. 6.38: 
for  i ≠ j  εij  = 1

2μ
 σij  = 1 + ν

E
 σij

 
 

Then we add Eqs. 6.31a-c: 
σkk�

k=1

3
 = (3 λ + 2 μ) εkk�

k=1

3
 or   εkk�

k=1

3
 = 1

3 λ + 2 μ
 σkk�
k=1

3

 
 

Eq. 6.31a-c can be rewritten: 
εii  = 2 μ σii  - λ

2 μ (3 λ + 2 μ)
 σkk�
k=1

3

 
 

Using Eqs. 6.38-39 and 6.42, we obtain:  

λ
2 μ (3 λ + 2 μ)

 = ν
E

, so that the last equation is 

transformed into: 
εii  = 1 + ν

E
 σii  - νE

 σkk�
k=1

3

 ,  which is the desired result. 
 
 

B.  DEPTH PROBLEMS 
 
8. Discuss any material restrictions which apply to the compatibility conditions Eqs. 6.52 and 6.55.  

Consider anisotropy, elasticity vs. plasticity or other constitutive equations, possible presence of 
body forces, and the possibility of voids and cracks developing during deformation. 

 
SOLUTION: 

Eq. 6.52 does not use any additional physical assumption regarding the material.  It is only based 
on the continuity of the third order derivatives of the displacement field.  In the presence of 
cracks or a non differentiable boundary, this hypothesis must be analyzed carefully as the 
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displacement field may be discontinuous, thus violating the idea of a continuum of material upon 
which compatibility is based. 
 
On the other hand, Eq. 6.55 is established from Eq. 6.52 and the constitutive equation, so that it 
can be valid only for isotropic linear elasticity (with or without body forces).  This equation must 
not be used for anisotropic elasticity, plasticity, elastoplasticity, etc....  An equivalent form can 
be derived for a given relationship between stress and strain for other cases. 
 
 

9. a. Show that the elastic work done during small straining is given by  

 
w =  1

2
 cjkl  εij  εkl.  

 
b. Write the elastic work in terms of stresses alone. 
 
c. Write results for parts a and b for the isotropic case. 

 
 
 
SOLUTION: 
a. We suppose for convenience that the strain is applied with a so called radial loading, i. e. we 

suppose that loading is performed from 0 to t, and that for any time τ, with 0 ≤ τ ≤ t, the strain 

tensor is:  
ε ετ = τ

t
 ε ε

 and the corresponding stress tensor:  
σ στ= c:ε ετ = τ

t
 c:ε ε

.  During the time 

increment dτ the strain increment is:  
dε ετ = dτ

t
 ε ε

, so that the increment of work is deduced with 

the help of Eq. 4.54:  
dw = σ στ:dε ετ= τ

t
 c:ε ε :ε ε dτ

t  
 

The total work is obtained by time integration:  
w = τ

t
 c:ε ε :ε ε dτ

t0

t
 = 1

2
 c:ε ε :ε ε = 1

2
 cijkl  εij  εkl�

ijkl  
 
The assumption of radial loading is not required since, by definition, the elastic response is 
conservative, i. e. no work is done in a closed loading cycle returning to the same loading state. 
 

b. The compliance tensor s is introduced (see Exercise 6.1) which permits us to write:  ε ε = s :σ σ and 

the work in the form:  
w = 1

2
 s :σ σ :σ σ = 1

2
 sijkl  σij  σkl�

ijkl  
 

c. The isotropic expressions are derived from Eqs. 6.31 and 6.1 - 4: 

 
w = λ

2
 εii�

i

2 + μ εij
2�

ij
 = - ν

2 E
 σii�

i

2 + 1 + ν
2 E

 σij
2�

ij  
 
 

10. a. Show that Hooke's Law for an isotropic material may be written in the following form 

 
εij  = 2μ  εij  + ν

1 - 2ν
 εij  δ ij  
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b. Find the equilibrium equation in indicial form in terms of strains alone. 
 
 
SOLUTION: 

a. Hooke's law is written:  
σij  = λ εkk δij  + 2 μ εij  = 2 μ (εij  + λ

2 μ
 εkk δij )

 
 

with the help of Eq. 6.39 it is easy to obtain the desired result:  
σij  = 2 μ (εij  + ν

1 - 2ν
 εkk δij) 

 

b. The equilibrium equation is expressed as:  
div(σ σ)i = 

Žσij
Žxj

 = 2 μ (
Žεij
Žxj

 + ν
1 - 2ν

 Žεkk
Žxj

 δij ) = 0
 

 
11. Consider a plane-strain isotropic linear elastic problem defined in a given domain.  Assume the 

displacement vector field takes the form: 

 
u =  μ1 = a x12 + 2b x1x2 + c x22

μ2 = a' x12 + 2b' x1x2 + c' x22  
 

a. Write the strain tensor as a function of x1 and x2. 
 
b. Compute the stress tensor as a function of x1 and x2 with the isotropic Hooke law. 
 
c. Write the stress equilibrium equation assuming no body forces, and determine the relation 

between the coefficients a, b, c, a', b', and c' that we must impose. 
 
d. Calculate the stress vector on each side of a square (see figure below). 

-1
1

-1

1

x1

x2

0

 
 

 Verify that the external forces on the square are in equilibrium when the condition defined 
in Part c is fulfilled. 

 
SOLUTION: 
a. The derivatives of the displacement components are 

Žu1
Žx1

 = 2 a x1 + 2 b x2, Žu1
Žx2

 = 2 b x1 + 2 c x2

 
Žu2
Žx1

 = 2 a′ x1 + 2 b′ x2, Žu2
Žx2

 = 2 b′ x1 + 2 c′ x2
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The strain rate tensor is immediately obtained:  
ε  = 

2 a x1 + 2 b x2 (b+a′) x1 + (c+b′)x2

(b+a′) x1 + (c+b′)x2 2 b′ x1 + 2 c′ x2  
 

b. The components of stress tensor are now:  

σ11 = 2λ (a+b′) x1 + (b+c′) x2  + 4 μ (a x1 + b x2)

σ12 = 2 μ (b+a′) x1 + (c+b′)x2

σ22 = 2λ (a+b′) x1 + (b+c′) x2  + 4 μ ( b′ x1 + c′ x2) 
 

c. The equilibrium equation is written:  

Žσ11
Žx1

 + Žσ12
Žx2

 = 2 λ (a+b′) + 4 μ a + 2 μ (c+b′) = 0

 
Žσ12
Žx1

 + Žσ22
Žx2

 = 2 μ (b+a′) +  2 λ (b+c′) + 4 μ c′ = 0
 

 
 

d. The stress vector on the upper side and its integral on this side are: 
 

 

σ12
σ22

 = 
2 μ (b+a′) x1 + (c+b′)

2λ (a+b′) x1 + (b+c′)  + 4 μ ( b′ x1 + c′) , 

σ12
σ22

 dx1
-1

1
 = 

4 μ  (c+b′)

4 λ  (b+c′) + 8 μ c′     
 
On the lower side: 

 

- σ12
- σ22

 = 
- 2 μ (b+a′) x1 - (c+b′)

-2λ (a+b′) x1 - (b+c′)  - 4 μ ( b′ x1 - c′) , 

-σ12
-σ22

 dx1
-1

1
 = 

4 μ  (c+b′)

4 λ  (b+c′) + 8 μ c′  
 
On the right hand side: 

 

σ11
σ12

 = 
 2λ (a+b′) + (b+c′) x2  + 4 μ (a + b x2)

2 μ (b+a′) + (c+b′)x2 ,  

σ11
σ12

 dx2
-1

1
 = 

4λ (a+b′) + 8 μ a

4 μ(b+a′)  
 
 On the left hand side: 

 

-σ11
-σ12

 = 
- 2λ -(a+b′) + (b+c′) x2  - 4 μ (a + b x2)

-2 μ (b+a′) - (c+b′)x2 ,  

-σ11
-σ12

 dx2
-1

1
 = 

4λ (a+b′) + 8 μ a

4 μ(b+a′)  
 
When all these contribution are added and the result equated to zero we obtain: 

  ,  which are equivalent to the equations we found in c. 

4 μ (c+b′) + 4 λ (a+b′) + 8 μ a = 0

4 λ (b+c′) + 8 μ c′ + 4 μ (b+a′) + 0
 

12. Consider 3 elastic bars of equal length which are pinned at the ends as shown and to which a 
vertical force F is applied. 
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F

 
 

 Each bar has a length l, a section area s, a Young's modulus E.  We assume the links between the 
bars do not permit any torque, the bars remain straight and the contact with the horizontal plane 
is frictionless.  Compute the variation of length of each bar, with the hypothesis of small 
displacements.  Consider the case where the variation of length is no longer negligible as 
compared to the initial geometry. 

 
SOLUTION: 

Qualitatively we can see that a compression force F1 will occur in the two rods AB and AC, 
while the horizontal rod BC will be subjected to a tension force F2.   

F
A

B CF2

F1 F1

α
 

 
The equilibrium of vertical forces at point A gives:  F = 2 F1 sin(60°)  or  F1 = F/ 3.  If the 
length variation Δl1 of AB or AC is introduced, we have also:

 
F1 = F/ 3 = E a Δl1

l
  or  Δl1 = F l

E a 3  
 

The horizontal force exerted in B on rod BC by rod AB is:  
F2 = F1 cos(60°) = F

2 3  and the 

length variation Δl2 of BC is computed by: 
F2 = F

2 3
 = E a Δl2

l
  or  Δl2 = F l

2 3 E a
 
 

 
When the displacements are no longer neglected, we suppose that the new lengths of the rods 
are: 
  AB = AC → l1 = l + Δl1;  BC → l2 = l + Δl2
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The same approach gives:  

F1 = F
2 sinα

 = F
2

 l + Δl1
(l + Δl1)2 - 1

4
 (l + Δl2)2

 = E a Δl1
l

 
 

and for rod BC: 

F2 = F1 cosα = F
2

 cosα
sinα

 = F
4

 l + Δl2
(l + Δl1)2 - 1

4
 (l + Δl2)2

 = E a Δl2
l

 
 
We obtain a non linear system of two equations with the unknown Δ , which can be 
solved iteratively with the Newton-Raphson method.  Here we assumed Hooke's law and 
suppose the sections of the rods did not change:  the approach can then be still improved be 
considering a nonlinear elasticity law and taking into account the area changes. 

l1 and Δl2

 
13. Consider a plane-strain compression test of a sample with height h, imposing a displacement u at 

the top as shown in the figure, assuming no friction on the plates. 

0

u

x2

x1
 

 
 Write the displacement field using a linear expression and taking into account the boundary 

conditions and the symmetry of the problem:  an unknown parameter α should be introduced in 
the x1 component.  Calculate the strain tensor, the stress tensor with the isotropic Hooke law, and 
the elastic energy.  Show that the solution of the problem can be obtained by minimizing the elastic 
energy with respect to the unknown parameter α.  Verify that the stress on the vertical sides are 
equal to zero. 

 
SOLUTION: 

The displacement and strain fields are: 

u  = u1
u2

 = 
α x1

- u x2
h

  ;   ε  = 
α 0

0 - u
h  

 
and the stress tensor is deduced immediately with the help of the Hooke law: 

 

σ  = 
λ (α - u

h
) + 2μ α 0

0 λ (α - u
h

) - 2μ u
h  

 
The elastic density of energy w is homogeneous in the 2-D domain so that it is easily integrated 

to give: 
W = 1

2
 λ (α - u

h
)2 +  2μ (α2 - (u

h
)2) 2 a h
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where 2 a is the width of the sample.  Minimization of the elastic energy yields: 

 
ŽW
Žα

 = 0 = λ (α - u
h

) +  2μ α  2 a h
 

 

The optimum parameter is:  
α = λ

λ + 2 μ
 u
h

 and the corresponding stress tensor is written: 

 

σ  = 
0 0

0 - 4μ 
λ+μ

λ+2μ
 λ  u

h
 

 
We see that it is the exact solution of our problem. 
 

14. Repeat Problem 13 for a cubic crystal where x1 and x2 are oriented along four-fold symmetry 
axes. 

 
SOLUTION: 
 The displacement and strain fields are the same as those in problem 13, the non zero components 

of the stress tensor become: 
 

σ11 = c11 ε11 + c12 ε22
σ22 = c12 ε11 + c11 ε22

 

 
 The elastic energy is derived according to: 
 

W = 1
2

 (c11 ε11
2  + 2 c12 ε22 ε11 + c11 ε22

2 ) 2 a h 
 

 The minimization of the elastic energy is achieved by putting: 
 

ŽW
Žα

 = (c11 α +c12 (- u
h

)) 2 a h  ⇒  α = c12
c11

 u
h

 

 
 The final solution in stress is: 
 

σ11 = 0 ,  σ22 = - c11
2  - c12

2

c11
 u
h

 
 
 

15. Repeat Problem 13 with a 3-D sample and an orthotropic material. 
 
SOLUTION: 

The approach is similar to that of problems 13 and 14.  We have: 
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u1
u2
u3

 = 

α x1

β x2

- u
h

 x3

     ε  = 

α 0 0

0 β 0

0 0 - u
h  

 
The non-zero components of the stress tensor are calculated with Eq. 6.17: 

 

σ11 = c11 α + c12 β + c13 (- u
h

)

σ22 = c12 α + c22 β + c23 (- u
h

)

σ33 = c13 α + c23 β + c33 (- u
h

)
 

 
and the elastic energy takes the form: 

 
W = 1

2
 4abh c11 α2 + c22 β2 + c33 (- u

h
)2 + 2 c12 α β + 2 c13 α (- u

h
) + 2 c23 β (- u

h
)

 
 
if 2a is the length and 2b the width of the sample.  Minimization with respect to the two 
unknown parameters gives the linear system of two equations: 
 

 

ŽW
Žα

 = 0 = 4abh c11 α + c12 β + c13(- u
h

)   ⇒  σ11 = 0

ŽW
Žβ

 = 0 = 4abh c12 α + c22 β + c33(- u
h

)   ⇒  σ22 = 0
 

 

The solution of which is: 

α = c22 c13 - c12 c23

c11 c22 - c12
2  

 u
h

β = c11 c23 - c12 c13

c11 c22 - c12
2  

 u
h

 
 
 

16. Show that the only incompressible isotropic elastic medium is a liquid by computing the shear 
modulus, μ. 

 
SOLUTION: 

An isotropic linear elastic medium which obeys Hooke's law is incompressible if (see 

Eq. 6.1 - 5):   
0 = ε11 + ε22 + ε33 = 1 - 2 ν

E
 (σ11 + σ22 + σ33)

 ,  which holds when ν = 0.5.  

According to Eq. 6.41 we can also write:  

1
2

 = λ
2 (λ+ μ) , that is μ = 0 for any finite value of λ, so 

that σij = 0 for any i ≠ j.  Moreover the diagonal terms of the stress tensor do not depend on the 
strain tensor so that by isotropy we have:  σ .  That corresponds to an inviscid 
fluid. 

11 = σ22 = σ33 = - p

 
17. The Airy Stress Function for a screw dislocation in an isotropic crystal is given by 
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ψ = μby

4π (1-ν)
 ln x2 + y2 ,where b = Burger's vector, a small constant.

 
 

a. Find the stresses and strains for the screw dislocation. 
 

b. Is compatibility satisfied everywhere?  Why or why not? 
 
c. Do plane strain or plane stress condition hold? 
 

 
SOLUTION: 

a. We first put 
k = 

μ b
4 π (1 - ν) and r  in order to simplify the expressions.  Eq. 6.46 gives 

the stress components: 

2 = x2 + y2

 

  
σxx =

Ž2ψ
Žy2 = 2 k y

3 x2 + y2

r4 , σyy =
Ž2ψ
Žx2 = 2 k y

y2 - x2

r4 , σ xy = -
Ž2ψ
Žx ∂y

= 2 k x
y2 - x2

r4
 

 
According to Eq. 6.1 - 5 the strain components are: 

 

  
εxx = 2 k y

r4
1
E

(3 x2 + y2) -
ν
E

(y2 - x2) , εyy = 2 k y
r4

- ν
E

(3 x2 + y2) + 1
E

(y2 - x2)

εzz =
- ν
E 4 k

y
r2 , εxy =

1 + ν
E 2 k x

y2 - x2

r4
 

 

b. We put: 
ϕ = 

Ž2ψ
Žx2

 + 
Ž2ψ
Žy2

 = 4 k y
r2  

 

we have to compute: 

Ž2ϕ
Žx2

 = - 8 k y (y2 - 3 x2)
r2

   and   
Ž2ϕ
Žy2

 = 8 k y (y2 - 3 x2)
r2  

 

so that the compatibility condition:  

Ž2ϕ
Žx2

 + 
Ž2ϕ
Žy2

 = 0
 is fulfilled everywhere except at the origin. 

 
c. The mechanical problem is obviously plane stress but not plane strain. 

 
 

18. The elastic fields of a screw dislocation are most simply derived by considering the displacements 
in polar coordinates: 

 
uz (r, θ) = bθ

2π
 = b

2π
 tan-1 yx,  where b = the Burger's vector, a small constant.

 
 

a. Find the stresses and strains for the screw dislocation. 
 
b. Is compatibility satisfied everywhere?  Why or why not? 
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c. Do plane strain or plane stress conditions hold? 
 

SOLUTION: 
a. From the given displacement field we compute the strain and stress tensors in the usual way: 

 

ux = 0

uy = 0

uz = b
2π

 tan-1y
x

   →   ε  = 

0 0 - 
b′
2

 y
r2

0 0
b′
2

 x
r2

- 
b′
2

 y
r2

b′
2

 x
r2

0

   →   σ  = 

0 0 - μb′ y
r2

0 0 μb′ x
r2

- μb′ y
r2

μb′ x
r2

0
 

 

where we put:  
r2 = x2 + y2 and b′ = b

2π  
 

b. Compatibility is necessarily satisfied everywhere (except at the origin) as the strain tensor is 
obtained by differentiation of a displacement field.  
 

c. By examining the strain and stress tensors we conclude that we have both plane strain and 
stress tensor fields (with respect to plane Oxy). 

 



 
CHAPTER 7 - PROBLEM SOLUTIONS 

 
A. PROFICIENCY PROBLEMS 
 
1. What is the meaning of stress states lying outside of yield surface? 
 
SOLUTION: 

They are states accessible only by changing the material properties - by strain hardening or heat 
treatment perhaps.  In either case, the yield surface must change in order to achieve these 
stresses. 
 

2. A researcher has found a way to measure the yield surface of sheet metal rapidly and 
automatically.  He inserts a sheet into a biaxial testing machine and loads along proportional 
paths until, while he measures strains in the two directions, he obtains the 0.2% offset strength.  
Then he unloads, chooses a slightly different ratio and does the same thing, until he has generated 
many yield points. 

 
 Criticize this procedure. 
 
SOLUTION: 

The major criticism is that the material properties are different after the first and each subsequent 
test because the approximately 0.002 plastic strains accumulate and the material strain hardens.  
Therefore, the various yield stresses measured are not for a single material and do not represent a 
yield surface at an instant.  A secondary criticism is the use of the 0.002 offset strength as the 
yield strength.  In practice, this is not a very practical problem, but the yield strength measured 
in this way could be considerably greater or less than the actual yield. 

 
3. Critically evaluate the yield functions presented below in terms of isotropy, pressure-dependence, 

and existence of a Bauschinger effect.  Demonstrate your results.  Why would you choose to use 
each yield function?  

 
a. Hill's1 Quadratic Yield Function (1948) 

 
  f = F σ2 - σ3

2 + G σ1 - σ3
2 + H σ1 - σ2

2

 
 
b. Hill's2 Non-Quadratic Yield Function (1979) 

 
  f = F σ2-σ3

M + G σ1-σ3
M + H σ1-σ2

M

 
 
c. Bourne and Hill3 (σ3 = 0, not principal axes): 

  
  f = 3σx

3 - 6σ x
2σy - 6σxσy

2 + 4σy
3 + (4σx+21σy) σ xy

2

 

                                                 
1 R. Hill:  The Mathematical Theory of Plasticity, Clarendon Press, 1950, p. 318. 
 R. Hill:  Proc. Roy. Soc., 1949, vol. 198, p. 428. 
 
2 R. Hill:  Math. Proc. Camb. Philos. Soc., 1979, vol. 85, p. 179. 
 P.B. Mellor and A. Parmar, Mechanics of Sheet Metal Forming, D.P. Koistinen and N.M. Wang, Plenum Press, 1978, p.67. 
3 L. Bourne and R. Hill:  Philos. Mag., 1950, vol. 41, p. 671. 
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d. Drucker4:   
  f = J 2

′ 3
– c J3

′ 2
, where c = constant  

 
e. Edelman and Drucker5: 

 
  f = 1

2 cijkl σ ij
′ - M εij

P σkl
′ - M εkl

P , cijkl, M = constants, εkl = plastic strain
 

 
f. Gotoh6 (σ3 = 0):  

 

  f = A o σx+σy
4+A 1σx

4+A 2σx
3σy+A3σ x

2σy
2+A 4σxσy

3+A 5σy
4

+ A6σx
2+A 7σxσ y+A8σy

2 σxy
2+A 9σxy

4, A 1 = constants.
 

 
g. Bassani7 (σ3 = 0):  

 
  f = σ1 + σ 2

N + (1 + 2r) k σ1 - σ2
M,

   r, k, M = constants.  
 
h. Jones & Gillis8 (σ3 = 0):   

  
  f = c11σx

2 + c 12σxσy + c13σxσxy + c22σy
2 + c 23σyσxy + c33τxy

2, cij = constants
 

i. Gupta9:  
  f = J 2

′ - αp J1, α = constant.
 

 
SOLUTION: 
a. • Not isotropic (unless F = G = H) 

 • Pressure-independent [since 
  f σ i + p = f σ i ] 

 • No Bauschinger effect [since   f σ i = f –σ i ] 
 • Modification of von Mises to handle simple anisotropy - for example, for rolled sheet.  

Allows different strains in two lateral directions in tensile test. 
 
b. • Not isotropic (unless F = G = H) 
 • Pressure-independent 
 • No Bauschinger effect 
 • Includes the anisotropy of Part a., but allows further adjustment of shape to account for 

higher or lower flow strength in plane-strain or balanced biaxial tension (relative to uniaxial 
tension) for a given r value. 

 
c. • Not isotropic 
 • Cannot determine pressure-dependence since only two principal stresses are represented 
 • A Bauschinger effect is inherent (because of the cubic terms) 
 • This is a purely 2-D yield function with fixed constants that was fit to experimental data from 

                                                 
4 D.C. Drucker:  J. Appl. Mech., Trans. ASME, 1949, vol. 16, p. 349. 
5 F. Edelman and D.C. Drucker:  J. Franklin Inst., 1951, vol. 251, p. 581. 
6 M. Gotoh:  Int. J. Mech. Sci., 1977, vol. 19, p.505. 
7 J.L. Bassani:  Int. J. Mech. Sci., 1977, vol. 19, p. 651. 
8 (unpublished) 
9 Y.M. Gupta:  Acta Metall., 1977, vol. 25, p. 1509. 
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tensile tests conducted at various angles in a sheet of metal.  It provides a detailed variation 
of   σy vs. θ but has no consistent 3-D form. 

 
 
d. • Isotropic (use of invariants proves this) 
 • Pressure-independent (use of deviatoric components demonstrates this) 
 • No Bauschinger effect (the odd invariant, , has been squared to avoid this.  J3

′

 • This is a very interesting generalization of the simplest yield function, , which satisfies 
pressure-independence, isotropy, and no Bauschinger effect.  Because it is isotropic, it cannot 
contribute to fitting strain ratio effects on sheet tensile tests, however.  It is similar in concept 
to Part b., with F = G = H. 

  J2
′ = k

 
e. • Not isotropic (unless )   Cijkl = Cmnop, M = 0, or ε ij = 0
 • Pressure-independent (from use of deviatoric components) 
 • Bauschinger effect (unless M = 0) 
 • This is the logical extension to the most general quadratic yield function in terms of 

anisotropy, with kinematic hardening depending on total plastic strain. 
 
f. • Not isotropic 
 • Cannot determine pressure-dependence since only two principal stresses are represented 
 • A Bauschinger effect is inherent (because of the cubic power terms) 
 • This is a purely 2-D yield function with fixed constants that was fit to experimental data from 

tensile tests conducted at various angles in a sheet of metal.  It provides a detailed variation 
of   σy vs. θ but has not consistent 3-D form. 

 
g. • Isotropic  (cannot distinguish σ1 and σ2 because of absolute values) 
 • Cannot determine pressure dependence since only two principal stresses are represented 
 • A Bauschinger effect is present (unless N and M are even) 
 • Very similar to Part b., but the different power for the two terms means it must be handled 

numerically. 
 
h. • See Parts c. and f. 
 
i. • Isotropic (use of invariants) 
 • Pressure-dependent (unless )   αp = 0

 • Bauschinger effect (unless )   αp = 0
 • This yield function is the simplest one which includes a pressure dependence, which is its 

purpose.  For example, compressible materials such as powders or sponges could be treated 
with this function. 

 
 
4. Write each of the yield functions in Problem 3 in terms of each of the following definitions of 

effective stress: 
 

a. tensile test in the x1 direction, σ = σ1 
 
b. tensile test in the x2 direction, σ = σ2 
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c. balanced biaxial test,    σ1 = σ 2 = σ  
 
d. shear test, same principal axes,  σ1 = σ , σ2 = – σ  
 
 

SOLUTION: 

a.  
  x1 tension: G + H σ2 = f   

 

 
  x2 tension: F + H σ2 = f   

 

 
  Bal. Biax: F + G σ2 = f  

 
Shear (assume that  occurs  from principal axes, i.e. as stress state consisting of  
is equivalent to 

  τ = τxy
′   45°  τxy

  σ1 = σ, σ2 = –σ: 
 

 
  F + G + 4H σ 2 = f  

 
 

b.  
  x1 tension: = G + H σM = f  

 

 
  x2 tension: F + H σM = f  

 

 
  Bal. Biax: F + G σ M = f  

 

 
  Shear: F + G + 2MH σM (where σ1 = σ, σ2 = –σ)

 
 
 

c.    x1 tension: 3 σ3 = f  
 
   x2 tension: 4 σ3 = f  
 
   Bal. Biax: –5 σ3 = f  
 
   Shear: –σ3 = f (where σ1 = σ, σ2 = –σ)  
 
 

d.  

  

x1 tension: σ =
σ 0 0
0 0 0
0 0 0

, σ′ =

2
3σ 0 0
0 – 1

3σ 0
0 0 – 1

3 σ
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J2

′ = – σ11
′ σ22

′ + σ22
′ σ33

′ + σ11
′ σ33

′ = – 2
3 – 1

3 σ2 + – 1
3 – 1

3 σ2 + 2
3 – 1

3 σ 2 = 1
3 σ2

 

 
  J3
′ = σ11

′ σ22
′ σ33

′ = 2
27 σ3

 
 

 
  1

27 σ6 – C 4
729 σ6 = 1

27 1 – 4
27 C σ6 = f

 
 
 Same as x  because of isotropy  x2 tension: 1

 

 

  

Bal. Biax: σ =
σ 0 0
0 σ 0
0 0 0

, σ′ =

1
3σ 0 0
0 1

3σ 0
0 0 –2

3σ
 

 
This is the same as x  and  tension because of a) isotropy and b) no Baushinger effect, so that a 
stress state of  σ

1 x2

ij is equivalent to -  σij 
 

 

  
Shear: σ =

σ 0 0
0 – σ 0
0 0 0

, σ′ =
σ 0 0
0 – σ 0
0 0 0

 
 

 
  J2
′ = – –σ2 + 0 + 0 = σ2

 
 
   J3

′ = σ11
′ σ22

′ σ33
′ = 0 , so σ6 = f [same as von Mises]  

 
 

e.  

  

x1 tension: σ′ =

2
3σ 0 0
0 – 1

3σ 0
0 0 – 1

3σ
 

 
 For simplicity, we assume no initial loading, such that εij = 0, then: 

 

 

  
1
2 C1111

2
3

2
3 σ2 + C1122

2
3 –1

3 σ2 + C1133
2
3 –1

3 σ2 +

C2211 –1
3

2
3 σ 2 + C2222 –1

3 –1
3 σ2 + C2233 –1

3 –1
3 σ2 +

C3311 – 1
3

2
3 σ2 + C3322 – 1

3 –1
3 σ 2 + C3333 –1

3 –1
3 σ2 = f
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σ2

18 4 C1111 –2 C1122 + C1133 + C2211 + C3311 + C2222 + C2233 + C3322 + C3333 = f

 
 

 

  x2tension:

σ2

18 4 C2222 –2 C1122 + C2211 + C3311 + C1133 + C1111 + C3333 + C1133 + C3311 = f

 
 

 

  
Bal. Biax: σ 2

18 4 C3333 –2 C1133 + C3311 + C2233 + C3322 + C1111 + C2222 + C1122 + C2211 = f

 
 

 
  Shear: σ 2

2 C1111 + C2222 – C1122 – C2211 = f, where: σ1 = σ, σ2 = – σ
 

 
 

f.  
  x1 tension: σ4 A 0 + A 1 = f  

 

 
  x2 tension: σ4 A 0 + A 5 = f  

 

 
  Bal. Biax: σ4 16 A 0 + A 1 + A 2 + A 3 + A 4 + A 5 = f

 
 

 
  Shear: σ4 A 1 – A 2 + A 3 – A 4 + A 5 = f , where: σ 1 = σ, σ2 = –σ

 
 
 

g.  
  x1 tension: σN + 1 + 2r K σM = f  

 

 
  x2 tension: σN + 1 + 2r K σM = f  

 

   Bal. Biax: 2N σN = f  
 

 
  Shear: 1 + 2r k 2M σM = f , where: σ1 = σ, σ 2 = –σ  

 
h.    x1 tension: c11 σ 2 = f  

 
   x2 tension: c22 σ 2 = f  
 
   Bal. Biax: c11 σ2 + c12 σ2 + c22 σ2 = f  
 
   Shear: c11 σ2 – c12 σ 2 + c22 σ2 = f, where: σ1 = σ, σ 2 = –σ  
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i.  
  x1 tension: J2

′ = 1
3 σ 2 J1 = σ , therefore: 1

3 σ – αp σ = 1
3 – α p σ = f

 
 
   x2 tension: (same as x1, isotropic)
 

 
  Bal. Biax: J2

′ = 1
3 σ2 , J1 = 2 σ, therefore: 1

3 – 2 αp σ = f
 

 
   Shear: J 2

′ = σ2 J1 = 0 , therefore: σ = f, where: σ1 = σ, σ 2 = – σ  
 
 

5. Derive the normality condition for each of the yield functions in Problem 3. 
 
SOLUTION: 

a.  
  dε1 = 2dλ G + H σ1 – Hσ2 – G σ3

 
 

 
  dε2 = 2dλ F + H σ2 – Hσ1 – F σ3

 
 

 
  dε3 = 2dλ F + G σ3 – Gσ1 – F σ2

 
 

b. Assume that  (other cases can be handled separately), then:   σ1 > σ2 > σ3 > 0
 

 

  
dε1 = Mdλ G σ1 – σ 3

M–1
+ H σ1 – σ2

M–1

 
 

 

  
dε2 = Mdλ F σ2 – σ3

M–1
– H σ1 – σ2

M–1

 
 

 

  
dε3 = Mdλ –F σ2 – σ3

M–1
– G σ1 – σ3

M–1

 
 

c.  
  dεx = dλ 9 σx

2 – 12 σx σy – 6 σy
2 + 4 σxy

2

 
 

 
  dεy = dλ –6 σ x

2 – 12 σx σy + 12 σy
2 + 21 σxy

2

 
 

 

  
dεxy = dλ 4 σx + 21 σy 2σ xy

 
 

d. 

  
dε1 = dλ ∂f

∂σ1
= dλ 3 J2

′ 2 ∂J 2
′

∂σ1
– 2 c J3

′ ∂J 3
′

∂σ1
= dλ 3 J2

′ 2
σ1

′ – 2
3 c J 3

′ J2
′ + 3σ2

′σ3
′
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= dλ J 2
′ 2

2σ 1 – σ2 – σ3 – 2
9 c J3

′ 2σ1
2 – σ2

2 – σ3
2 – 2σ1 σ2 – 2σ1 σ3 + 4σ2 σ3

 
 

  
dε2 = dλ ∂f

∂σ2
= dλ 3 J2

′ 2 ∂J 2
′

∂σ2
– 2 c J3

′ ∂J 3
′

∂σ2
= dλ 3 J2

′ 2
σ2

′ – 2
3 c J 3

′ J2
′ + 3σ1

′σ3
′  

  

 

  

= dλ J 2
′ 2

2σ 2 – σ1 – σ3 – 2
9 c J3

′ 2σ2
2 – σ1

2 – σ3
2 – 2σ1 σ2 + 4σ 1 σ3 – 2σ2 σ3

 
 

  
dε3 = dλ ∂f

∂σ3
= dλ 3 J2

′ 2 ∂J 2
′

∂σ3
– 2 c J3

′ ∂J 3
′

∂σ3
= dλ 3 J2

′ 2
σ3

′ – 2
3 c J 3

′ J2
′ + 3σ1

′σ2
′  

 

 

  

= dλ J 2
′ 2

2σ 3 – σ1 – σ2 – 2
9 c J3

′ 2σ3
2 – σ1

2 – σ2
2 + 4σ1 σ2 – 2σ 1 σ3 – 2σ2 σ3

 
 
where, from Eqs. 3.34 and 3.35: 

  
J2

′ = 1
6 σ1 – σ2

2 + σ1 – σ3
2 + σ 2 – σ3

2 = 1
3 σ 1

2 + σ2
2 + σ3

2 – 1
3 σ1σ2 + σ1σ3 + σ2σ3  

 
  J 3
′ = σ1

′ σ2
′ σ3

′ = 1
27 2σ1 – σ 2 – σ3 2σ2 – σ1 – σ3 2σ 3 – σ1 – σ2

= 2
27 σ1

3 + σ 2
3 + σ3

3 – 1
9 σ1σ 2

2 + σ1
2σ2 + σ1σ3

2 + σ1
2σ3 + σ2σ3

2 + σ2
2σ 3 + 4

9 σ1 σ2 σ3

 

 

e. Consider only the start of deformation, when  and write in principal axes.   ε ij
P = 0,

 

  ,    f = Cij σ i
′ σ j

′

  
∂f

∂σm
= Cij

∂
∂σm

σ i
′ σ j

′ = Cij σ i
′
∂σ j

′

∂σm
+ σ j

′ ∂σ1
′

∂σm  
 

but note that since , where , that   σ i
′ = 2 σ i – σ j – σ k  i ≠ j ≠ k

 ∂σ j
′

∂σm
= 2 if j = m

– 1 if j ≠ m
 

 
Therefore, we can write: 

 

  dε1

dλ = 2 2C11 + C12 + C13 + C21 + C31 σ1
′

– 1 2C22 + C21 + C23 + C12 + C13 σ2
′

– 1 2C33 + C31 + C32 + C13 + C23 σ3
′

  ,  or 
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  dε1

dλ = 2
3 2C11 + C12 + C13 + C21 + C31 2σ 1 – σ2 – σ3

– 1
3 2C22 + C21 + C23 + C12 + C13 2σ2 – σ 1 – σ3

– 1
3 2C33 + C31 + C32 + C13 + C23 2σ3 – σ 1 – σ2  

 
The other components follow by inspection.  (For example  would look the same except that 

the coefficients on the three terms would be, respectively, 

 dε2

 – 1
3, 2

3 , – 1
3  , or for  the 

coefficients would become 

 dε2

 – 1
3, – 1

3 , 2
3  . 

 

f.  
  dεx

dλ
= 4A o σx + σ y

3 + 4A 1σx
3 + 3A 2σx

2σy + 2A 3σxσy
2 + A 4σy

3 + 2A 6 σxσxy
2 + A 7σyσ xy

2

 
 

 

  dεy

dλ
= 4A o σx + σ y

3 + A 2σx
3 + 2A 3σx

2σ y + 3A 4σxσy
2 + 4A 5σy

3 + A 7σxσxy
2 + 2A 8σyσxy

2

 
 

 

  dεxy

dλ
= 2 A 6σx

2 + A 7σxσy + A 8σy
2 σxy + 4A 9σxy

3

 
 

g. Assume that  for simplicity.  Other cases may be derived separately.   σ1 > σ2 > 0
 

 

  
dε1 = dλ N σ 1 + σ2

N–1 + 1 + 2r k M σ1 – σ2
M–1

 
 

 

  
dε2 = dλ N σ 1 + σ2

N–1 – 1 + 2r M σ1 – σ2
M–1

 
 

h.  
  dεx = dλ 2c11 σx + c12 σy + c13σxy  

 

 
  dεy = dλ c12 σx + 2c22 σy + c23σxy  

 

 
  dεxy = dλ c13 σx + 2c23 σy + 2c33σxy  

 

i.  

  
J2

′ = +1
6 σ1

2 – σ2
2 2

+ σ1
2 – σ 3

2 2
+ σ2

2 – σ3
2 2

, J1 = σ1 + σ2 + σ3

 
 

 
  f = J2

′
1
2 – α p J1  , therefore:  

 ∂f
∂σ1

= 1
2 J2

′ – 1
2 ∂ J2

′

∂ σ 1
– α p

∂ J1

∂ σ 1  
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  dε1
dλ =

2 σ1 – σ2 – σ3

6 J 2
′

– αp =
2 σ1 – σ2 – σ3

σ1 – σ2
2 + σ2 – σ3

2 + σ1 – σ3
2

1
2

– αp

 
 
   dε2, dε3 follow directly  
 

6. Assume that σi3 = 0 and that we are working in principal axes for each yield function in Problem 

3.  Letting α = σ2/σ1 and β , find expressions for α(β) and for β(α).  = dε2/dε1

 
SOLUTION: 

a.  

  
β = dε2

dε1
=

F + H σ2 – H σ1

G + H σ1 – H σ2

=
F + H α – H

G + H – H α  
 

 

  
α = σ 2

σ 1
=

β G + H + H
F + H + β H  

 

b. Assuming that :   σ1 > σ2 > 0

  
β =

dε2

dε1
=

F σ2
M–1 – H σ1 – σ2

M–1

G σ1
M–1 + H σ1 – σ2

M–1 =
F αM–1 – H 1 – α M–1

G αM–1 + H 1 – α M–1
 

 
   (Because of the form,   α = ?   α β  is transcendental, so   α β  must be found numerically.)  
 

c.  

  
β =

dεy

dεx
=

–6 – 12 α + 12 α2

9 – 12 α – 6 α2
 

 

 

  
α =

– 2 β – 1 ± 10 β2 + 8 β + 12

2 β + 2  , 
 

which is found by using the quadratic formula on β α . 
 

d.  

  
dε1 = dλ 1

3 σ1
2 + σ2

2 – σ1 σ2 2 σ1 – σ2 – 2
243 2 σ 1 – σ2

, or  
 

 

  
= dλ 2 σ2 – σ1 σ1 + σ2 2 σ1

2 – σ2
2 – 2 σ1 σ2

 
 

 

  
dε2 = dλ 1

3 σ1
2 + σ2

2 – σ1 σ2 2 σ2 – σ1 – 2
243 2 σ 1 – σ2

 , or 
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= dλ 2 σ2 – σ1 σ1 + σ2 2 σ2

2 – σ 1
2 – 2 σ1 σ2

 
 

 

  

β = dε2
dε1

=

2α – 1 1 + α2 – α – 2
81 2 – α 1 + α 2 α2 – 1 – 2α

2 – α 1 + α 2 – α – 2
81 2α – 1 1 + α 2 – α2 – 2α

 
 
 hopeless to do in closed form unless the numerator and denomerator can be factored.   α =
 

e.  

  
β = dε2

dε1
=

c12 + c21 2σ1 – σ2 +c22 2σ2 – σ1 + c23 + c32 – σ1 – σ2

2 c11 2σ1 – σ2 + c12 + c21 2σ2 – σ1 + c13 + c31 – σ1 – σ2  
 

 

  
β =

c12 + c21 2 – α +c22 2α – 1 + c23 + c32 – 1 – α

2 c11 2 – α + c12 + c21 2α – 1 + c13 + c31 – 1 – α  
 

 

  
α =

2 c12 + c21 – c22 – c23 – c32 + β – 4 c11 +c12 +c21 +c13 +c31

c12 + c21 + c23 + c32 – 2 c22 + β – 2 c11 +2 c12 +c21 – c13 –c31
 

 

f.  

  
β = dε2

dε1
=

4 A 0 1 + α 3 + A 2 + 2 A 3 α + 3 A 4 α2 + 4 A 5 α3

4 A 0 1 + α 3 + 4 A 1 + 3 A2 α + 2 A 3 α2 + A 4 α 3
 

 
  is a cubic equation and may be solved numerically or in closed form.   α(β)

 

g.  

  
β = dε2

dε1
=

N 1 + α N–1 – 1 + 2r M 1 – α M–1

N 1 + α N–1 + 1 + 2r M 1 – α M–1

 
 
   α(β) = transcendental 
 

h.  
  β = dε2

dε1
= c12 + 2 c22 α

2 c11 + c12 α  
 

 
  α = c12 – 2 β c11

β c12 – 2 c22  
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i.  

  dε1 = 2 σ1 – σ2

2 σ1
2 + σ 2

2 – σ1 σ2

– αp , and dε2 = 2 σ2 – σ 1

2 σ1
2 + σ2

2 – σ1 σ2

– αp

 
 

 

  
β = dε2

dε1
=

2 α – 1 – α p 2 σ1
2 + σ2

2 – σ1 σ 2

2 – α – αp 2 σ1
2 + σ2

2 – σ1 σ2  
 
  appears to be transcendental, and thus must be found numerically.   α(β)
 

7. Construct a full set of useful equations expressed in principal axes for the following yield 
functions.  Useful equations include the yield function in terms of σ, the associated flow rule, the 
normality equations (forward and inverse), definition of dλ in terms of σ and dε (where x1 tension 
is the standard state), dε in terms of dε1, dε2 and  dε3, α(β), and β(α); where α = σ2/σ1 and 

.  (The last sets of equations were derived in Problem 6.) β = dε2/dε1

 

a. von Mises:   
  f = (σ1-σ2)2 + (σ1-σ 3)

2 + (σ 2-σ3)
2

 

b. Hill quadratic:   
  f = F(σ 2-σ3)

2 + G(σ1-σ3)
2 + H(σ1-σ 2)

2

 
c. Hill normal anisotropic:  modify function #2 such that the x1 and x2 axes are equivalent 

and the strain ratio dε2/dε1 in an x1 tensile test is r.  (x3 is the sheet-thickness direction). 
 

d. Hill non-quadratic (Case IV), (σ3 = 0)::  
 f = (1+2r) |σ1-σ2|

M + |σ1+σ2|
M

 (You may restrict your attention to one octant, where σ2>σ1>0). 
 

e. Bassani 2-D (σ3 = 0): 
  f = σ 1+σ2

N + (1+2r) k σ 1-σ2
M

 
 

SOLUTION: 

a. von Mises:  
  f = σ1 – σ 2

2 + σ1 – σ3
2 + σ2 – σ3

2

 
 

x1 - Yield:   

  
σ = 1

2
σ1 – σ2

2 + σ1 – σ3
2 + σ2 – σ 3

2
1
2

 
 

Flow Rule:  

  dε1
2 σ1 – σ2 – σ3

= dε2
2 σ2 – σ1 – σ3

= dε3
2 σ3 – σ1 – σ2

= dε i

σ i
′

 
 

Normality:  
  dε1 = 2dλ 2 σ1 – σ2 – σ3  

 

    
  dε2 = 2dλ 2 σ2 – σ1 – σ3  
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  dε3 = 2dλ 2 σ3 – σ1 – σ2  

 

Normality (inverse): 
  σ1 – σ2 = 1

6dλ dε1 – dε2  
 

    
  σ2 – σ3 = 1

6dλ dε2 – dε3  
 

    
  σ1 – σ3 = 1

6dλ dε1 – dε3  
 

Lambda:   
  dλ = dε

4σ based on usage shown above
 

 

Effective Strain:  

  
dε = 2

3 dε1 – dε2
2

+ dε2 – dε3
2
+ dε1 – dε3

2
1
2

 
 

    

  
= 2

3 dε1
2 + dε2

2 + dε3
2

1
2

 
 

Ratios  
  σ3 = 0 :  

  α = σ2
σ1

= 2β + 1
2 + β  

 β = dε2
dε1

= 2α – 1
2 – α  

 

b. Hill quadratic:  
  f = F σ 2 – σ3

2 + G σ1 – σ3
2 + H σ1 – σ 2

2

 
 

x1 - Yield:   

  
σ =

1
G + H

F σ2 – σ3
2 + G σ1 – σ3

2 + H σ1 – σ2
2

1
2

 
 

Flow Rule:  

  dε1

G σ1 – σ3 + H σ1 – σ2
=

dε2

F σ2 – σ3 – H σ1 – σ2
=

 
 

     

  dε3

–F σ2 – σ3 – G σ1 – σ3  
 

Normality:  
  dε1 = 2dλ G σ1 – σ3 + H σ1 – σ2

 
 

    
  dε2 = 2dλ F σ2 – σ3 – H σ 1 – σ2

 
 

    
  dε3 = 2dλ –F σ2 – σ3 – G σ 1 – σ3

 
 

Normality (inverse): 
  σ1 – σ2 = 1

2 κ dλ F dε1 – G dε2  
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  σ2 – σ3 = 1

2 κ dλ G dε2 – H dε3  
 

    
  σ1 – σ3 = 1

2 κ dλ F dε1 – H dε3  
 

          
  where κ = FG + FH + GH

 
 

Lambda:   

  dλ = dε
2 G + H σ

based on usage shown above
 

 
Effective Strain: 

  

  
dε = G + H

FG + FH + GH F Gdε2 – Hdε3

2
+ G Fdε1 – Hdε3

2
+ H Fdε1 – Gdε2

2

1
2

 
 

 Ratios   σ3=0 :  

  
α = σ2

σ1
=

G+H β + H

F+H + Hβ  

 
β = dε2

dε1
=

F+H α – H

G+H – Hα  
 

c. Hill normal anisotropic: 

  
f = σ2 – σ 3

2 + σ1 – σ3
2 + r σ 1 – σ2

2

 
 

x1 - Yield:   

  
σ = 1

1 + r
σ2 – σ3

2 + σ1 – σ3
2 + r σ 1 – σ2

2
1
2

 
 

Flow Rule:  

  dε1

σ1 – σ3 + r σ1 – σ2

= dε2

σ2 – σ3 – r σ1 – σ2

= dε3
2 σ 3 – σ1 – σ 2

 
 
 
Normality:    dε1 = dλ σ1 – σ3 + r σ1 – σ2  
 
      dε2 = dλ σ2 – σ3 – r σ1 – σ2  
 
      dε3 = dλ 2 σ3 – σ1 – σ2  
 

Normality (inverse): 
  σ1 – σ2 = 1

1 + 2r dλ
dε1 – dε2

 
 

    
  σ1 – σ3 = 1

1 + 2r dλ
dε1 – r dε3

 
 

    
  σ2 – σ3 = 1

1 + 2r dλ
dε2 – r dε3

 



Chapter 7 Fundamentals of Metal Forming - Solution Manual Page 15 
 

 

Lambda:   
  dλ = dε

(1 + r) σ  
 

Effective Strain:  

  
dε = 1 + r

1 + 2r
dε1

2 + dε2
2 + 2r

1 + r dε1 dε2

1
2

 
 

Ratios 
  σ3=0 :  

  
α = σ2

σ1
=

β 1+r + 1

1+r + rβ   

 
β = dε2

dε1
=

α 1+r – 1

1+r – rα  
 

d. Hill non-quadratic (Case IV): 
  f = 1 + 2r σ1 – σ 2

M + σ1 + σ2
M , where σ2 > σ2 > 0

 
 

x1 - Yield:   

  

σ = 1
2 1 + r

2r + 1 σ1 – σ2
M + σ1 + σ2

M

1
M

 
 
Flow Rule:   

  dε1

2r + 1 σ1 – σ2
M–1 + σ1 + σ2

M–1 = dε2

– 2r + 1 σ1 – σ2
M–1 + σ1 + σ2

M–1 = dε3

–2 σ1 + σ2
M–1  

 

Normality:  

  
dε1 = dλ 2r + 1

2 1 + r
σ1 – σ 2

M–1 + 1
2 1 + r

σ1 + σ2
M–1

 
 

    

  

dε2 = dλ
– 2r + 1

2 1 + r
σ1 – σ2

M–1 + 1
2 1 + r

σ1 + σ2
M–1

 
 

    
  dε3 = dλ –1

1 + r σ 1 + σ2
M–1

 
 

Normality (inverse): 

  
σ1 – σ2 = 1

dλ 1 + 2r

1
M–1

dε1 – dε2

1
M–1

 
 

    
  

σ1 + σ2 = 1
dλ

1
M–1 dε1 + dε2

1
M–1

 
 

Lambda:   
  dλ = dε

σM – 1  
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Effective Strain: 

  

dε = 1
2

1 + r
1 + 2r

1
M–1 dε1 – dε2

M
M–1 + 1

2 1 + r
1

M–1 dε1 + dε2

M
M–1

M–1
M

 
 

Ratios   σ3=0 :  

  
α = σ2

σ1
=

1 + 2r 1 + β
1

M–1 – 1 – β
1

M–1

1 + 2r 1 + β
1

M–1 + 1 – β
1

M–1
 

 

    

  
β = dε2

dε1
=

– 1 + 2r 1 – α M–1 + 1 + α M–1

1 + 2r 1 – α M–1 + 1 + α M–1

 
 

e. Bassani yield function: 
  f = σ1 + σ2

N + k σ1 – σ2
M

 
        where σ1 > σ2 > 0  
 
 Virtually nothing can be done with this yield function in closed form.  In fact, it is not 

dimensionally correct, because k must take the dimensionless form 

 
k =

N 2r + 1
M  (Eq. 7.75), 

and thus the two terms in the yield function have different units and thus cannot even be added. 
 
 

8. Verify that Figs. 7.21 represent the von Mises yield function when balanced biaxial tension and 
pure shear are used to define the effective stress. 

 
SOLUTION: 

 
  k = σ1 – σ2

2 + σ1 – σ3
2 + σ2 – σ3

2

 
 

a. Balanced biaxial tension:   σ1 = σ2 = σ , σ3 = 0  
 

 
  k = σ2 + σ 2 = 2σ 2 same as Eq. 7.19

 
 

b. Shear:   σ1 = –σ2 = σ , σ3 = 0  
 

 
  k = 2σ 2 + σ2 + σ 2 = 6σ 2

 
 

 
9. Consider the strain paths A, B, and C shown in the figure. 
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ε2

A

C

B

(2, 1)

(2, 2)

ε1
(2,0)

C2

B2

 
 

 Find the effective strain for each path using the following yield functions: 
 

a. von Mises 
 
b. Hill - Orthotropic, Quadratic (rRD = 2, rTD = 1.5) 
 
c. Hill - Normal Quadratic  (r = 1.75) 
 
d. Hill - Nonquadratic   (r = 1.75, M = 2.5) 
 
e. Hosford    (r = 1.75, M = 6) 
 
f. Bassani    (r = 1.75, N = 2, M = 4) 

 
SOLUTION: 

Path A:  Proportional from (0,0) to (2,1) =   ε1, ε2  
 
Path B:  B1 proportional from (0, 0) to (2, 0), plus 
   B2 proportional from (2, 0) to (2, 1) 
 
Path C:  C1 proportional from (0, 0) to (2, 2), plus 
   C2 proportional from (2, 2) to (2, 1) 
 

a. von Mises: 

  
dε = 2

3 dε1
2 + dε2

2 + dε3
2

1
2

 or, for a proportional path, 
 

   

  
Δε = 2

3 Δε1
2 + Δε2

2 + Δε3
2

1
2

 
 

 Path A: 

  
εA = 2

3 22 + 12 + –3 2
1
2

= 3.06
 

 



Page 18 Fundamentals of Metal Forming - Solution Manual Chapter 7 
 

 Path B: 

  
B1: Δε1 = 2

3 22 + 02 + –2 2
1
2

= 2.31
 

 

   

  
B2: Δε2 = 2

3 02 + 12 + –1 2
1
2

= 1.15 ⇒ εB = 3.46
 

 

 Path C: 

  
C1: Δε1 = 2

3 22 + 22 + –4 2
1
2

= 4.00
 

 

   

  
C2: Δε2 = 2

3 02 + –1 2 + 1 2
1
2

= 115 ⇒ εC = 5.15
 

 
b. Hill orthotropic quadratic (see Eq. 7.56).  For proportional paths and  ,   rRD = 2, rTD = 1.5

 

  

  
Δε = 0.157 2 1.5 Δε2 – 3 Δε3

2
+ 1.5 2 Δε1 – 3 Δε3

2
+ 3 2 Δε1 – 1.5 Δε2

2

1
2

  
 

 Path A: 

  
εA = 0.157 2 10.5 2 + 1.5 13 2 + 3 2.5 2

1
2

= 3.49
 

 

 Path B: 

  
B1: Δε1 = 0.157 2 6 2 + 1.5 10 2 + 3 4 2

1
2

= 2.58
 

 

   

  
B2: Δε2 = 0.157 2 4.5 2 + 1.5 3 2 + 3 1.5 2

1
2

= 1.22 ⇒ εB = 3.80
 

 

 Path C: 

  
C1: Δε1 = 0.157 2 15 2 + 1.5 16 2 + 3 1 2

1
2

= 4.54
 

 

   

  
C2: Δε2 = 0.157 2 –4.5 2 + 1.5 –3 2 + 3 1.5 2

1
2

= 1.22 ⇒ εC = 5.76
 

 
c. Hill normal quadratic (see Eq. 7.64) for proportional paths,  r = 1.75  

 

  
  

Δε = 1.30 Δε1
2 + Δε2

2 + 1.27 Δε1 Δε2

1
2

 
 

 Path A: 

  
εA = 1.30 22 + 12 + 1.27 2 1

1
2 = 3.57
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 Path B: 

  
B1: Δε1 = 1.30 22 + 02 + 1.27 2 0

1
2 = 2.60

 
 

   

  
B2: Δε2 = 1.30 02 + 12 + 1.27 0 1

1
2 = 1.3 ⇒ εB = 3.90

 
 

 Path C: 

  
C1: Δε1 = 1.30 22 + 22 + 1.27 2 2

1
2 = 4.70

 
 

   

  
C2: ε2 = 1.30 02 + –1 2 + 1.27 0 –1

1
2

= 1.30 ⇒ εC = 6.00
 

 
 
 
 

d. Hill non-quadratic (see Eq. 7.69),  r = 1.75, M = 2.5: 
 

For proportional paths: 

  
Δε = 0.99 0.51 Δε1 – Δε2

1.667
+ Δε1 + Δε2

1.667
0.60

 
 

 Path A: 
  εA = 0.99 0.51 1 1.667 + 31.667

0.60
= 3.11

 
 

 Path B: 
  B1: Δε1 = 0.99 0.51 2 1.667 + 21.667

0.60
= 2.54

 
 

   
  B2: Δε2 = 0.99 0.51 2 1.667 + 11.667

0.60
= 1.40 ⇒ εB = 3.81

 
 

 Path C: 
  C1: Δε1 = 0.99 0.51 0 1.667 + 41.667

0.60
= 3.96

 
 

   
  C2: Δε2 = 0.99 0.51 1 1.667 + –1 1.667

0.60

= 1.27 ⇒ εC = 5.23
 

 
10. Assume that the tensile stress-strain curve for a standard material is well-known to be 
 

 σ = 500 ε0.25   (MPa).  
 
 Consider a plane-strain tension test where x1 = RD = principal tensile axis, x2 = TD = zero strain 

direction, and σ3 = 0. 
 

a. Use the yield functions in Problem 9 and find σ1 as a function of ε1 for this test. 
 
b. Plot the tensile stress-strain curves and σ1-ε1 curves obtained in Part b on the same graph. 
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c. What is the stress ratio σ2/σ1, for each plane-strain case? 
 

SOLUTION: 
Parts a and c -  Strain ratios:       Stress ratios:       ε, 0, –ε   σ1, σ2, 0

 

a. von Mises 
  σ3 = 0, dε2 = 0 ⇒ σ2 = σ1

2  (see Eqs. 7.20 and 7.3-3) 
 

 

  
σ = 1

2
σ1 – σ1

2
2

+ σ1
2 + σ1

2
2

1
2

 , 
 σ = 3

2 σ1  
 

 

  
Δε = 2

3 dε1
2 + 02 + –dε1

2

1
2

= 2
3

dε1

 
 

 

  σ = 500 ε0.25 ⇒ 3
2 σ1 = 500 2

3
ε1

0.25

 
 

 
  σ1 = 2

3
500 2

3
0.25

ε1
0.25 = 598 ε1

0.25

 
 

b. Hill orthotropic quadratic (see Eqs. 7.54, 7.55b, and 7.56),   rRD = 2, rTD = 1.5
 

 
  σ3 = 0, dε2 = 0 ⇒ rRD σ2 – rRD rTD σ1 – σ2 = 0  

 

 
  –1 + rTD σ2 = rTD σ1  

 

 

  
σ2 =

rTD

1 + rTD
σ1 = 1.5

2.5 σ1 = 0.60 σ1
 

 

 

  
σ =

1
1.5 3

1
2

2 σ2
2 + 1.5 σ1

2 + 3 σ 1 – σ2
2

1
2

 
 

 

  
= 0.222

1
2 2 0.6 2 + 1.5 + 3 0.4 2

1
2

σ1 = 0.774 σ1
 

 

 

  
ε = 0.157 2 0 + 3 ε1

2
+ 1.5 5 ε1

2
+ 3 2 ε1

2
1
2

 
 

 
  ε = 0.157 18 + 37.5 + 12

1
2 ε1 = 1.29 ε1  
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So, 
  0.774 σ1 = 500 1.29 ε1

0.25 , or σ1 = 687 ε1
0.25

 
 

c. Hill normal quadratic (Eqs. 7.61b, 7.63, and 7.64),   r = 1.75
 

 
  dε2 = 0, σ2 = r

1 + r σ 1 = 0.64 σ 1  
 

 

  
σ = 1 + 0.64 2 – 1.28 1 0.64

1
2

σ1 = 0.76 σ1
 

 

 
  

ε = 1.68
1
2 1 + 02 + 1.28 0 1

1
2 ε1 = 1.30 ε1  

 

So, 
  0.76 σ1 = 500 1.30 ε1

0.25 ⇒ σ1 = 694 ε1
0.25

 
 
 

d. Hill non-quadradic (see Eqs. 7.67, 7.68, and 7.69), r = 1.75, M = 2.5 
 

 
  dε2 = 0, 2r + 1

2 1 + r
σ1 – σ2

M–1 = 1
2 r + 1

σ1 + σ2
M–1

 
 

 

  2r + 1
1

M–1 σ1 – σ2 = σ1 + σ2

k = 2.72  
 

 
  k – 1 σ1 = k + 1 σ2 , or 

 σ2 = k – 1
k + 1 σ1 = 0.46 σ1  

 

 

  
σ = 0.82 0.53 2.5 + 0.18 146 2.5

1
2.5

σ1 = 0.83 σ1
, 

 ε = 0.51 + 1
0.60

ε1 = 1.32 ε1  
 

So, 
  0.83 σ1 = 500 1.32 ε1

0.25 ⇒ σ1 = 646 ε1
0.25

 
 

Part b. - The plots are shown below. 
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11. Repeat Problem 9 for a balanced biaxial test where σ1 = σ2 and σ3 = 0.  Also find the strain ratios 

for each case. 
 
SOLUTION: 
a. von Mises (see Eqs. 7.20 and 7.3-3)  isotropic,   ε1 = ε2 , ε3 = 2ε1

 

 
  σ = 1

2
σ1

2 + σ1
2

1
2 = σ1  

 

 

  
dε = 2

3 Δε1
2 + Δε1

2 + 4 Δε1
2

1
2

= 2Δε1
 

 

 
  σ = 500 ε0.25 ⇒ σ1 = 500 2 ε1

0.25 = 595 ε1
0.25

 
 

b. Hill orthotropic quadratic (see Eqs. 7.54, 7.55, and 7.56),   rRD = 2, rTD = 1.5
 

 

  
σ = 1

1.5 1 + 2

1
2

2 σ1
2 + 1.5 σ1

2
1
2 = 0.88 σ1

 
 

 

  d ε2

d ε1
=

rRD

rTD
, or d ε2 =

rRD

rTD
d ε1 = 4

3 d ε1 d ε3 = – 7
3 d ε1

 
 

 

  

ε = 0.157 2 1.5 4
3 ε1 + 3 7

3 ε1

2

+ 1.5 2 d ε1 + 3 7
3 ε1

2

+ 3 2 ε1 – 1.5 4
3 ε1

2

1
2

 
 

 
  ε = 0.157 162 + 121.5 + 0

1
2 ε1 = 2.64 ε1  
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  σ = 500 ε0.25 ⇒ 0.88 σ1 = 500 0.51 ε1

0.25
, or σ1 = 724 ε1

0.25
 

 
c. Hill normal quadratic (see Eqs. 7.63 and 7.64) r = 1.75 

 

 

  
σ = 1

2.75 σ 1
2 + σ1

2
1
2

= 0.85 σ1
 

 

 

  d ε2
d ε1

=
1 – r

1 + r
1 – r

1 + r
= 1

 
 

 

  
ε = 2.75

4.5
1 + 1 + 3.5

2.75 1
1
2

ε1 = 2.35 ε1
 

 

 
  σ = 500 ε0.25 ⇒ 0.85 σ1 = 500 2.35 ε1

0.25

,  or   σ1 = 728 ε1
0.25

 
d. Hill non-quadratic (see Eqs. 7.67, 7.68, and 7.69),  r = 1.75, M = 2.5 

 

 
  

σ = 2 1
5.5

1
2.5 σ1 = 1.01 σ1  

 

 
  d ε1

d ε2
= σ1

M–1

σ1
M–1 = 1

 
 

   ε = 0.99 2 ε1 = 1.98 ε1   
 σ = 500 ε0.25 ⇒ 1.01 σ1 = 500 1.98 ε1

0.25

 
 
    σ1 = 587 ε1

0.25

 
12. Plot the 1st quadrant of the yield functions in Problem 9. 
 
SOLUTION: 

The plot below is in terms of normalized stresses, where the tensile flow stress in the x1 direction 
is taken to be unity. 
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13. By plotting, show how r affects Hill's normal quadratic yield function.  Take values of r = 1/2, r = 

1 (von Mises), r = 2, r = 4 for illustration. 
 
SOLUTION: 

0

0.5

1

1.5

2

0 0.5 1 1.5 2

N
or

m
al

iz
ed

 X
2 S

tr
es

s

Normalized X 1 Stress

r=0.5

r=1.0

r=2.0

r=4.0

 
 
 
14. By plotting, show how M affects Hill's normal non-quadratic yield function.  For r = 1, take values 

of M = 1.5, M = 2 (von Mises), M = 4, and M = 10. 
 
SOLUTION: 
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15. Compare the form of Hill's normal non-quadratic yield function and Hosford's yield function by 

assuming that r = 2 and finding M in each case such that σ1 (balanced biaxial tension) is equal to 
1.2 σB (uniaxial tension). 

 
SOLUTION: 

For r = 2,   σ  (balanced biaxial tension)  =  1.1 σ1  
 
Hill normal non-quadratic (Eq. 7.67) 
 

 
  

σ = 1
6 ⋅ 2M

1
M σ1 , therefore 1 = 1

6
M

2 1.1 , or M = 2.272 (Hill)
 

 
Hosford (Eq. 7.70) 
 

 
  σ = 1

3
M

2 σ1 , therefore 1 = 1
6

M
2 1.1, or M = 1.39 (Hosford)

 
 
The corresponding yield functions are thus 
 

 Hill:  
  σ2.27 = 5

6 σ1 – σ2
2.27

+ 1
6 σ1 + σ2

2.27

 
 

 Hosford: 

  
σ4.25 = 1

3 σ1
4.25 + σ 2

4.25 + 2 σ1 – σ2
4.25

 
 
 
The following plot of the first quadrant shows the differences of the two representations for the 
same r value and balanced-biaxial-to-tensile yield stress ratio. 
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B. DEPTH PROBLEMS 
 
16. It has been proposed that the direction of the plastic strain increment, dε ε, is not always normal to 

the yield surface.  Instead, the proposer suggests that dε ε  is intermediate in direction between 
dε ε(n), the normal direction, and dσ σ, the stress increment direction [i.e.  

  dε = α dε(n) + (1-α) dσ, where α = 0 < α < 1 ].  Criticize this model in terms of stability 
arguments and your knowledge of real materials. 

 
 
SOLUTION: 

dσ
Possible

dε
dε

(n )

}

σ1

σ2

 
 
The situation is as shown in the figure, where the choice of α, which might be a material 
property. 
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Clearly, the choice of  dε for all α, between 0 and 1 satisfies second-order stability since dε lies 

closer in direction to  dσ than does   dε(n)
.  In general, the second-order work will be higher, for a 

given stress or strain path, which will be exhibited as higher work hardening. 
 
The implication of the new direction of dε allows first order stability with some possible 
relaxation of convexity, depending on the choice of α. 
 
 

17. It is convenient to introduce factors which can be used to multiply the effective stress or strain to 
obtain the stress or strain in a given state.  For example: 

 
 σ1BB = Fσ

(BB) σ   or  
 
 ε1BB = Fε

(BB) ε  
 
 might be used to find the in-plane strains and stresses in balanced biaxial tension (BB) for a given 

yield function at a given hardness of ε, σ. 
 

a. Show that Fσ and Fε are constants with respect to strain for a given yield function when 
isotropic hardening is obeyed 

 
b. Find the specific values of Fσ(PS) and Fε(BB) in terms of r which relate plane-strain tension 

to uniaxial tension using Hill's normal quadratic yield criterion. 
 
c. Repeat part b for Hill's normal nonquadratic yield function, finding Fσ and Fε in terms of r 

and M. 
 
SOLUTION: 

The form of a yield function for an isotropic hardening material does not change as straining or 
hardening proceeds. 
 

a. For a specified stress ratio (α) for a two dimensional state of stress, 
 

 

  
σ = σ σ1, σ2 = σ σ1, α σ 1 = fσ α σ1, or

σ1

σ
= Fσ

 
 
where f(α) and  are reciprocals fixed by the   Fσ(α) form of the yield function alone.  (Note that 
for uniaxial tension,  F   and  f  are identically unity because σ σ  σ = σ1 .  A similar argument 
follows for Fε by noting that the plastic work is given by 
 

   σ dε = fσ α σ1 Fε β dε1 = fσ α Fε β σ 1 dε1,  
 
where f and F are constant functions, i.e. they do not depend on hardening. 
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b. For Hill's normal quadratic yield in two dimensions   σ3 = 0 , we use Eqs. 7.63 and 7.64.  For 
plane-strain (x2 is the direction of zero extension): 
 

 

  
0 = dε2 =

dε
σ

σ 2 – r
1 + r σ1 , so

 
 

 

  
α =

σ2

σ1
= r

1 + r , σ2 = α σ1, σ 2 = r
1 + r σ1

 
 
Then we can find  from Eq. 7.63,   Fσ

(PS)

 

 

  
σ2 = σ1

2 + r
1 + r

2
σ1

2 – 2r
1 + r

r
1 + r σ1

2

 
 

 
  σ = 1 + 2r

1 + r σ 1, Fσ
(PS) = 1 + r

1 + 2r  
 

And, similarly for   Fε
(PS)

 from Eq. 7.64: 
 

 

  
d ε2 =

1 + r 2

1 + 2r d ε1
2 + 02 + 2r

1 + r d ε1 0
2

 
 

 
  d ε = 1 + r

1 + 2r
d ε1, Fε

(PS) = 1 + 2r
1 + r  

The procedure is identical for balanced biaxial tension, where α = 1 and  (from Eq. 
7.63a and b): 

  d ε1 = d ε2

 

 

  
σ = 1 + 1 – 2r

1 + r 1 1 σ1
, 

 σ = 2
1 + r σ1, Fσ

(BB) = 1 + r
2  

 

 

  
d ε = 1 + r

1 + 2r
2 + 2r

1 + r

1
2 d ε1

, 

 d ε = 2 1 + r d ε1, Fε
(BB) = 1

2 1 + r  
 

c. The solution fowllows Part b with the use of Eqs. 7.67-7.69. 
 
For plane-strain tension: 
 

 

  
d ε2 = 0 ⇒ α = σ2

σ1
=

2r + 1
1

M–1 – 1

2r + 1
1

M–1 + 1
= κ – 1

κ + 1 , where: κ ≡ 2r + 1
1

M–1
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Fσ
(PS) =

1 + κ 1 + r
1

M–1

2κ

M–1
M

 , 

  
Fε

(PS) = 2κ
1 + κ 1 + r

1
M–1

M–1
M

 
 

For balanced biaxial tension 
  σ1 = σ2, d ε1 = d ε2 : 

 

 

  

Fσ
(PS) =

2 1 + r
1
M

2  , 

  
Fε

(PS) = 1
2 1 + r

1
M

 
 

d. Inspection shows that in plane strain tension: 
 

 
  Fσ
(PS) = 1

Fε
(PS)

. 
 
This result follows the definition of effective strain from the principle of equivalent plastic work: 
 
   σ d ε = σ1 d ε1 + σ2 d ε2 + σ3 d ε3.  
 
For plane-strain tension,   σ3 = 0, d ε2 = 0, so, 
 
   σ d ε = σ1 d ε1 = Fσ σ Fε d ε, so Fσ Fε ≡ 1 . 
 
 

18. In view of results from Problem 17, what can you say about the complexity of yield function which 
would be required to account for the following observations?  (Assume only normal anisotropy.) 
a. In uniaxial tension,  σ1 = 500 ε10.25 
 In plane-strain tension, σ1 = 600 ε10.25 

 
b. Same as part a, but r = 2 from the tensile test. 
 
c. In uniaxial tension,   σ1 = 500 ε10.25 
 In plane-strain tension, σ1 = 600 ε10.35 

 r = 2. 
 
SOLUTION: 
a. The difference in strength coefficient can be accounted for by a single value of r, so Hill's normal 

quadratic theory is sufficient. 
 

b. If r is known independently, then we need a second adjustable parameter, M, to fit the data. 
 

c. None of the standard, isotropic-hardening theories can account for different hardening rates.  
See, however, R. H. Wagoner:  Metall. Trans. A., 1980, vol. 11A, pp. 165-175 for a modification 
of standard theories to account for such behavior. 

 
 
19. Various authors have attempted to introduce work hardening parameters, particularly to compare 
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various strain states or to compare material hardness when true strain is unknown.  Here are 
three such quantities: 

  dσ
dε

dσ
σ dε

=
d ln σ

dε
ε dσ
σ dε

=
d ln σ
d ln ε  

Based on your knowledge of isotropic hardening and results from Problems 17 and 18, which of 

 
OLUTION: 

that effective quantities, 

 
 

these do you think is most suitable for comparing hardening in various strain states? 

S
σ and εRemember , depend on the choice of yield function.  For a given 

set of   σ1 – ε1 data (from a plane-strain test, for example), the corresponding σ - ε will be 
obtained after assumption of a yield function, and the corresponding quantities   Fσ and Fε: 
 

 

  d σ
d ε

=
Fε d σ1

Fσ d ε1  
 

 

  d ln σ
d ε

=
d σ

σ d ε
=

Fε d σ1

d ε1
the

d σ
σ

remains Fσ

 
 

 

  d ln σ
d ε

=
ε d σ
σ d ε

=
ε1 d σ1

σ1 d ε1
=

d ln σ 1

d ln ε1  
 
Therefore, the third measure of work hardening is invariant to the choice of yield function, 

ee R. H. Wagoner:  Metall. Trans. A

contrary to the other two. 
 
S , 1981, vol. 12A, pp. 2142-2145 for a more thorough 

 

discussion of work-hardening measures. 
 



 
CHAPTER 8 - PROBLEM SOLUTIONS 

 
 
A. PROFICIENCY PROBLEMS 
 
1. In an effort to refine the upper bound estimate to density, ρ, that a vertical embankment of height h 

can sustain, you propose a trial displacement field that is different than shown in Exercise 8.1.  
The field is shown below, where the boundary between the slipping and stationary parts of the 
embankment is a quarter circle of radius R, from θ = 0 to π/2.  Calculate the new upper bound to 
the density. 

 

g hδ

θ

l
R

 
 
SOLUTION: 

Take dδ, the relative displacement across the boundary, to equal Rdφ, where dφ is the 
incremental rotation of the quarter circle of material about the center.  The internal work per unit 
depth of embankment is given by 

 IW =
2πR

4
kRdφ  . 

 
The external work is given by considering a piece of material with differential area, r dr dθ, on 
which a downward gravitational force, fg = ρgr dr dθ, acts per unit depth of embankment.  The 
work increment per unit area of material is then fg r cosθ dδ, where the factor cosθ is required to 
project fg onto the same direction as dδ.  The external work is then 

 EW = ρgdφ r2 cosθdrdθ
0

π/ 2

∫
0

R

∫ =
ρgR3dφ

3
 . 

 
Equating IW to EW produces the following upper bound,  
 ρ ≤

3πk
2gR

 . 

 
The minimum upper bound on ρ is given by making R = h, the largest value possible.  For this 
assumed displacement field, 
 ρ ≤ ρmin =

3πk
2gh

 . 

 
The "quarter circle" deformation mode produces a better upper bound than the linear shearing off 
mechanism presented in Exercise 8.1. 
 

2. Consider the proposed deformation field shown in Fig. 8.3(a).  Discuss why for general θ1, θ2 the 
stress state at the lower tip of triangular block d can not be an equilibrium stress state. 
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SOLUTION: 

Below is a sketch of the lower tip of triangular block d.  One can not construct a Mohr's circle 
for the stress state at this point.  In particular, if you rotate couterclockwise by 180-θ1-θ2, the 
shear stress must change from a maximum of k on the plane 1 to -k on plane 2.  This is not 
possible for general θ1, θ2. 

kk d

180-θ -θ 1 2

 
 
 

3. Construct a lower bound for the indentation load, P, per unit depth, based on a three-sector stress 
field.  Vary the angle θ to obtain the best lower bound. 

P, δ

θ
A

B

C

 
 
 

SOLUTION: 
The optimal lower bound is given by setting θ = 90°, so that the Mohr's circle construction for 
the two sectors, A and B, is two circles of radius k as shown below. 

σrr

rθσ

θθσ,-4k -2k

AB

 
 The best lower bound here is P = 4kw. 

 
4. Using the yield condition, Eq. 8.13, show why hydrostatic loading, σ11 = σ22 = σ33 = σ, cannot 

cause yield on any slip system, regardless of the orientation of the slip system to the loading axes. 
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SOLUTION: 

If the stress state, σ11 = σ22 = σ33 = σ is substituted into the yield condition, Eq.. 8.13, then 
  ± s1

(α)m1
(α) + s2

(α)m2
(α) + s3

(α)m3
(α)( )≥ τc

(α)

 
or equivalently, ± s(α) ⋅ m(α)( )σ ≥ τc

(α)  
 
For slip planes, s and m must be perpendicular to one another, so that s·m = 0 for all slip 
systems.  This statement and the rephrased yield condition above predict that yield can never be 
reached under hydrostatic loading. 
 
 

5. Experiments which apply hydrostatic loading to engineering materials have shown that materials 
such as steel, aluminum, copper, or silicon will yield, although the magnitude of hydrostatic 
loading to cause yield is many times that required for simple tension or compression.  Discuss why 
materials do yield in hydrostatic loading. 

 
 

SOLUTION: 
Typically, engineering grades of materials contain grain boundaries, inclusions, and voids.  All 
serve to act as stress concentrators, so that under nominal hydrostatic loading, the stress state is 
not homogeneous and entirely hydrostatic.  Yield can then occur. 

 
6. A single crystal is indented with a square knife edge as shown below.  The candidate slip systems 

are oriented at discrete angles θ1, θ2, and θ3.   
 

a. Construct a deformation field out of rigid, sliding triangles, produce the corresponding 
hodograph, and determine an upper bound to the indentation load. 

 
b. If the crystal had only two slip planes, could you construct a deformation field?  Support 

your answer with some sketches.  What would the indentation load P be under such a case? 
 
 

m

s

m
s

m
s

W
θ2=60o θ1=30o

θ3=0o

P

 
 

 
SOLUTION: 
a.  The deformation field and the corresponding hodograph are: 
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C'CD

w
w

ww
w

P, v

A

B D'
  

v
2v

3v

v/ 31.5v

v/2

2v/ 3

v/2 3

v/ 3

d

c

a, b

c'

d'

O

 
 
The external dissipation rate is Pv.  The internal dissipation rate is  
 k[lBC'VBC' + lC'OVC'O + lC'DVC'D + lD'OVD'O +lBCVBC + lCOVCO + lCDVCD + lDOVDO].   
 
Substituting the values for lIJ derived from the deformation diagram and values for vIJ derived 
from the hodograph, the internal dissipation rate is approximately 6.93 kwv.  Equating the 
external and internal dissipation rates gives:  P = 6.93 kw. 
 

b.  It is not possible to construct a deformation field to this geometry with only two slip directions, 
provided that the sample is infinitely thick.  Triangular blocks must be constructed for a 
successful deformation field, and the three sides of the block will require three slip directions. 

 
7. In the upper bound analysis of a block of dimensions l1, l2, and l3, which is sheared by an amount 

b along a direction s, on a plane with normal m (see Fig. 8.2), the internal dissipation is 
 IW* = k Ab 

 
and the external dissipation is 

 EW* = σ11* Abm1s1 + σ22*  Abm2s2  
 
where σ11* and σ22* are uniform stresses, and A is the area of slipped plane. 
 
a. Sketch the resulting upper bound load to the collapse surfaces in σ11*-σ22* space, 

assuming the inclination angle, θ, shown in Fig. 8.2 equals 30°. 
 
b. Although the internal strain is concentrated at the slip plane, define an appropriate 

average, or macroscopic strain state for the block, after a slip of b has occurred on the 
plane. 

 
c. Do your macroscopic strains in Part b satisfy normality with the collapse surface in Part 

a?  Explain why.  If they do not propose a definition of macroscopic strain that will satisfy 
normality. 

 
SOLUTION: 
a.  We note that k = σ11∗m1s1 + σ22*m2s2, where for this problem, m1 = cos 60, s1 = +cos 30, m2 = 

cos 30, and s2 = -cos 60.  When values of mi and si are substituted into the expression,  
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 (σ11∗ - σ22*) = ±
4
3   k 

where the ± sign on the RHS is produced by considering positive or negative values of slip on 
the plane.  The result is shown below. 

σ
11
*

σ
22
*

2.3k

2.3k-2.3k

-2.3k

direction of  
strain increment

direction of  
strain increment

(ε   )22
*

(ε   )11
*

 
b.  Using Eq. 8.23, 

 dε- ij = 
1
2 

Ab
l1l2l3 (mjsi + misj)  

 
so that using the particular values for the mi, si, 

 dε- 11 = ± 3
4  

Ab
l1l2l3  

 

 dε- 22 =   m
3

4  
Ab

l1l2l3  

 
c.  The macroscopic strains defined in part (b) do satisfy normality.  The strain increments may be 

plotted in the σ11*-σ22* diagram in (a), where the ε11* axis is constructed parallel to the σ11* 
axis, and the ε22* axis is constructed parallel to the σ22* axis.  The incremental strains are then at 
+135°, -45° angles measured counterclockwise from the horizontal axis.  They are perpendicular 
to the yield surface. 
 

8. Construct the projection of the f.c.c. yield surface on to the σ11-σ12 stress plane.  Compare your 
answer to the prediction based on a Tresca yield criterion, σ1 − σ3 = ±2k, where σ1 and σ3 are the 
maximum and minimum principal stresses, respectively. 

 
SOLUTION: 

We note Eq. 8.17 and pick σ1 = σ11 and σ6 = σ12 (=σ21) to be the only non-zero components of 
stress.  The resulting yield condition becomes 
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±
1
6

σ11
σ11 + σ12

σ12
−σ11 + σ12

−σ12
−σ11

−σ11 + σ12
σ12
σ11
σ11

σ11 + σ12
σ12

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

≥
k

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
 ⎥
 
 

 

⎥
⎥

 
Here, the assumption is made that the critical resolved shear stress for each plane is k.  The 
corresponding yield surface is constructed from lines generated from the twelve slip systems 
represented in the above equation. 
 
The corresponding Tresca yield condition is generated from |σ1 - σ3| = 2k.  This condition states 
that the diameter, D, of Mohr's circle, constructed in σ11-σ12 space, can not exceed 2k.  The 
diameter of Mohr's circle for this stress state is 

 D = 2σ122 + 
1
2 σ112 ( = 2k) 

 
Accordingly, the above is an equation of an ellipse for which the σ11 intercept is ±2k and the σ12 
intercept is ±k.  It is shown in the figure below. 

σ11
*

σ22
*

6 k

k

2k
-  6 k

6 k

-  6 k
 

 
9. Imagine that you can load a f.c.c. crystal along any crystallographic direction.  Assume that the 

potential slip systems are of the type {111}/<110>, as listed in Table 8.1.  Find a crystallographic 
direction along which the tensile stress to yield is a minimum, and report the minimum value of 
tensile stress in terms of τc, the critical resolved shear stress to activate slip. 
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SOLUTION: 

Use the yield condition, Eq. 8.13, expressed in the form, 
   , τ(α) = (s(α) ⋅e(1' ))(m(α) ⋅ e(1' ))σ ≥ ±τc

(α)

 
where s(α) and m(α) are the slip direction and slip plane normal of slip system (α), and e(1') is the 
direction along which the tensile stress, σ, is applied.  The minimum σ is found by making the 
factor involving the dot products as large as possible.  The largest dot products are obtained by 
first choosing e(1') to lie in the plane containing s(α) and m(α).  Since s(α) and m(α) are 
orthogonal to each other, the relative orientations of vectors is depicted below, where s(α) · e(1') 
= sinθ and m(α) · e(1') = cosθ.  Therefore,  

 σ =
τc

sin θcosθ
  , 

 
and the minimum value, σ = 2τc, occurs when θ = 45°, 135°, 225°, or 315°.  There are several 
possible crystallographic directions of the type e(1')= ±(s(α)±m(α))/ 2 .  A possible direction for 
the {111}/<110> slip systems considered here are [ 2 + 3  2 - 3  2 ]/2 3 . 
 

10. A biaxial stress state is applied to a single crystal of f.c.c. material.  However, the crystal is 
oriented so that one applied stress, σ1'1', is along the [111] crystallographic direction, and the 
other applied stress, σ2'2', is along the [1-1 0] crystallographic direction.  Assume that all slip 
planes of the type {111}/<110> (see Table 8.1) slip when the critical resolved shear stress reaches 
τc.  Construct a projection of the yield surface onto the σ1'1'-σ2'2' stress plane.  Comment on the 
difference between this projection and the one shown in Fig. 8.4. 

 
SOLUTION: 

A relatively simple approach is to revert to the yield condition, Eq. 8.13, and compute directly 
the resolved shear stress on each of the twelve slip systems according to 
   , τ(α) = (s(α) ⋅e(1' ))(m(α) ⋅ e(1' ))σ1'1' + (s(α) ⋅ e(2' ))(m (α) ⋅ e(2' ) )σ2'2' ≥ ±τc

(α)

 
where e(1') and e(2') corresponds to the crystallographic directions [111]/ 3  and [1-1 0]/ 2 , and 
the vectors s(α) and m(α) correspond to the slip directions and slip plane normals, respectively, 
of slip system (α).  The dot products involved project the components of stress, applied along the 
1' and 2' directions, on to the s(α) and m(α) directions.  The twelve slip systems listed in Table 
8.1 are used in the yield condition and produce twelve equations of the form, 

 

σ2'2'
6

≥ ±τc (slip systems 7,5)

2σ1'1'
3 6

≥ ±τc (slip systems 6,9,11,12)

2σ1'1'
3 6

+
σ2'2'

6
≥ ±τc (slip systems 4,8)

  . 

 
The result indicates that two or more slip systems can produce the same yield condition.  Slip 
systems 1, 2, 3, and 10 have zero resolved shear stress on them, and hence, will never yield. 
 
 
The yield surface is depicted by the dotted line in the figure below.  For comparison, the 
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projection of the yield surface on to the σ11-σ22 plane is reproduced from Fig. 8.4 and is 
indicated by the solid line.  The differences in yield surfaces demonstrates that yield behavior 
depends on the choice of loading axes relative to the crystal basis. 

6τc

6τc

− 6 τ
c

6τc−
(3, 5, 8, 12)

(1, 6, 9, 10)
(2, 4, 7, 11)

(1, 6, 9, 10)

(3, 5, 8, 12)

(2, 4, 7, 11)

(7, 5)

(7, 5)

(6, 9, 11, 12)

(6, 9, 11, 12) (4, 8)

(4, 8)

σ22 or σ2'2'

σ11 or σ1'1'

6τc1.56τc1.5

 
 
A more involved approach is to use Eq. 8.17. The components, σi, of stress in that equation refer 
to the cube basis of the f.c.c. crystal.  However, the applied stress is expressed in terms of 
components along the [111] and [1-1 0] directions.  Thus, Eq. 8.17 may be used only if the 
applied stress state, σ1'1' and σ2'2', is expressed in terms of the components in the crystal basis.  
Let the basis e(1), e(2), and e(3) correspond to the crystallographic directions, [100], [010], and 
[001], and the basis e(1') and e(2') corresponds to the crystallographic directions [111]/ 3  and [1-
1 0]/ 2 , as before.  Then 
  . σ ij = AikA jl ′ σ kl
 
where Aik = e(i) · e(k'), σij corresponds to components in the e(i) basis, and σ'ij corresponds to 
components in the e(i') basis.  Accordingly, 

 Aik'[ ]=
1 / 3 1 / 2 *
1 / 3 −1/ 2 *
1 / 3 0 *

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
  , 

 and the computed components of stress are 

σ1
σ2
σ3
σ4
σ5
σ6

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

≡

σ11
σ22
σ33
σ23
σ13
σ12

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=
σ1'1'

3
+

σ2'2'
2

1
1
0
0
0
−1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

  . 

 
Substitution into Eq. 8.17 produces the same three types of yield conditions derived from the 
first approach. 
 

11. A sphere with radius r = 1cm is a single f.c.c. crystal.  Slip systems 1, 6, and 12 listed in Table 8.1 
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are activated, so that a slip of 1μm in the corresponding +s directions listed occurs on slip planes 
which pass right through the center of the sphere.  Calculate the resulting macroscopic strain in 
the crystal. 

 
SOLUTION: 

The resulting macroscopic strain is given by 

 ε ij =
1
2α

∑ As
(α)b(α)

V
mi

(α)s j
(α) + mj

(α)si
(α)( ) 

 
where the sum α is over slip systems 1, 6, and 12.  The slip area As = πr2 and the amount of slip 
b(α) = 1μm for the three slip systems.  Also, V = 4πr3/3, where r = 1 cm.  Consequently, the 
equation for average strain above yields contributions for each of the three active slip systems, 

 ε ij =
3

8 6
⋅10−4 m jsi + mis j( )(1)

+ m jsi + mis j( )(6)
+ m jsi + mis j( )(12)⎡ 

⎣ 
⎤ 
⎦ 

 

 

Substituting values of mj and si for each of the slip systems, ε ij[ ]=
3

8 6
⋅10−4

0 1 3
1 2 0
3 0 −2

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

 

 
12. Consider the portion of the yield surface in Fig. 8.4 that is contributed by slip systems 2, 4, 7, and 

11.  Using Eq. 8.25, show that operation of any individual or linear combination of these slip 
systems produces a strain increment which is perpendicular to that portion of the yield surface 
shown in the figure. 

 
SOLUTION: 

The relevant equation is  ε ij =
dγ (α)

2α
∑ mis j + m jsi( )(α)

 

 

Applying this to slip systems 2 and 11, we find  dε 11
(α) =

dγ (α)

6
, dε 22

(α) = 0  

 

and applying this to slip systems 4 and 7,  dε 11
(α) = −

dγ (α)

6
, dε 22

(α) = 0  . 

 
Since each individual system produces zero dε22, any linear combination of operation of these 
slip systems will do the same.  When plotted in ε11-ε22 space, the strain increment is 
perpendicular to the yield surface lines contributed by slip systems 2, 4, 7, and 11 in Fig. 8.4.  
Note that components of strain other than ε11 may be non-zero here, but that the projected strain 
increment in ε11-ε22 space is still normal to the yield surface in σ11-σ22 space shown. 
 

13. Equation 8.24 states that external and internal plastic work increments are equal.  Show that this 

equation may be converted to the notation, σidεi = , where the components [σi] = [σ1, 
σ2, σ3, σ4, σ5, σ6] = [σ11, σ22, σ33, σ23, σ13, σ12], and the components [dεi] are defined by the 
identity, Eq. 8.31. 

(τcdγ )(α)�

SOLUTION: 
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Equating internal and external plastic work increments produces  σ  ijdεij = τc
(α)dγ (α)

(α)
∑

 
or if the contracted notation σi, dεi is used, then the following must hold for each slip system (α) 
   . σidεi

(α) = τc
(α)dγ (α)

 
Equilibrium requires that the stress state produces a resolved shear stress on each active slip 
system such that 

  

τc
(α) = σ1 m1s1( )(α) + σ2 m2s2( )(α) + σ3 m3s3( )(α)

+σ4 m2s3 + m3s2( )(α)

+σ5 m1s3 + m3s1( )(α)

+σ6 m1s2 + m2s1( )(α)

 
When this is used to replace τc(α) in Eq. (*) above, then there equivalence of work only if 

  

dε1
(α) = m1s1( )(α)dγ (α)

dε2
(α) = m2s2( )(α) dγ (α)

dε3
(α) = m3s3( )(α)dγ (α)

dε4
(α) = m2s3 + m3s2( )(α)dγ (α)

dε5
(α) = m1s3 + m3s1( )(α) dγ (α)

dε6
(α) = m1s2 + m2s1( )(α)dγ (α)

Eq. 8.31 is shown using the correspondence above and invoking that 

 dεij
(α) =

dγ (α)

2
mjsi + misj( )(α)

 . 

 
14. Use Eq. 8.25 to show that no combination of slip systems can produce dilatation. 
 
SOLUTION: 

Eq.. 8.25 states that  dεij =
dγ (α)

2
mjsi + misj( )(α)

α
∑  . 

 
Since dε11 + dε22 + dε33 is the incremental volume change per unit volume, the above relation is 
used to find the volume change associated with activated slip systems, 

 

dε11 + dε22 + dε33 = dγ (α) m1s1 + m2s2 + m3s3( )(α)

α
∑

= dγ (α) m(α) ⋅
α
∑ s(α)

 . 

 
Since m·s = 0 for each slip system α, the above relation indicates that dε11 + dε22 + dε33 = 0. 

15. Of the twelve slip systems listed in Table 8.1, choose slip systems 1, 2, and 6.  Determine whether 
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these 3 slip systems are independent. 
 

SOLUTION: 
Using Eq. 8.23, the respective strain increments contributed by slip systems 1, 2, and 6 in Table 
8.1 are 

 

  

ε ij
(1) =

dγ (1)

2 6

2 0 1
0 −2 −1
1 −1 0

, ε ij
(2) =

dγ (1)

2 6

2 1 0
1 0 −1
0 −1 −2

, ε ij
(6) =

dγ (1)

2 6

−2 0 1
0 2 1
1 1 0

 . 
 
or equivalently, the short-hand notation, dεi(α)=dγ(α)ni(α), from Eq. 8.22 may be used, where the 
ni(α) are determined according to Eq. 8.16,

 ni
(1)[ ]=

1
6

1
−1
0
−1
1
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

ni
(2)[ ]=

1
6

1
0
−1
−1
0
1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

ni
(6)[ ]=

1
6

−1
1
0
1
1
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 . 

The systems are linearly independent if no values of x and y can satisfy xεij(1) + yεij(2) = εij(6), 
for all components ij, or equivalently, if no values of x and y can be found that satisfy xni(1) + 
yni(2) = ni(6) for all components i.  After some examination, x = -1 and y = 0 appear to satisfy the 
above relations for all components except dε13 (or equivalently, dε5).  Accordingly, these three 
slip systems are independent, since no combination of x and y can be found to satisfy the above 
relations. 
 

16. Suppose you load in tension along the [3 8 6] direction in a f.c.c. material in which the candidate 
slip systems are of the type listed in Table 8.1.  The crystal begins to yield at a tensile stress of 
10MPa.  Assume that all slip systems require the same critical resolved shear stress, τc, for 
activation.  What slip system will be activated first?  What is the value of τc?  To what 
crystallographic direction will the tensile axis rotate?  What is the axis about which the tensile 
axis rotates? 

 
SOLUTION: 

The yield condition, Eq. 8.13, can be used to determine that slip system 6 in Table 8.1 will 
require the smallest tensile stress to activate it.  The yield condition for that slip system is stated 
as 

 [110]
2

⋅
[386]

109
⎛ 
⎝ 

⎞ 
⎠ 

[−111]
3

⋅
[386]

109
⎛ 
⎝ 

⎞ 
⎠ 10MPa = τc   . 

 
so that τc to yield is approximately 4.5MPa.  As indicated in Eq. 8.37, the tensile axis will rotate 
toward the slip direction, [110].  The direction, r, about which the rotation occurs is given by 
T∞s, so that r is parallel to [-6 6 -5]. 
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17.  Derive the results,    

Ý β = −
Ý b 

Ho sin βo
sin2 β

Ý β = − Ý ε TT
sin β
cos β

 

 by analyzing the 2D slip plane geometry below, where Ý b and Ý ε TT  are the increment in slip on the 
plane and average strain increment parallel to the current tensile axis, respectively.  The other 
parameters are labeled in the sketch.  Do not use the general formulation associated with the 
discussion of Fig. 8.5(a,b), but rather, derive the expression from a trigonometric analysis of the 
2-D geometry below. 

kk d

180-θ -θ 1

σ

m s

T

σ

s

m

T

β

Ho

2
βo

 
SOLUTION: 

The geometry below is used, and application of the law of sines produces 

  

H
sin(180 − βo)

=
Ho

sinβ
b

sin(βo −β)
=

Ho
sinβ

 

s

H

o180-β β

Ho

TTo

 
Noting that sin(βo-β) = sinβocosβ - cosβοsinβ and differentiating the second relation, 
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 Ý b = −
H o sinβo

sin2 β
Ýβ  

 
Differentiate the first relation and then divide each side by the originating terms in the first 
relation.  Substitute Ý H / H = Ý ε TT  to get 

 Ý β = −
sinβ
cosβ

Ý ε TT . 

 
18. Eq. 8.56 defines the increment, dεij*, in components of strain that are expressed in the reference 

coordinate system.  Derive this relation, beginning with a statement of the Principle of Virtual 
Work that σij*dεij* = ∑τ(β)dγ(β) . 

 
SOLUTION: 

We begin with a statement of the Principle of Virtual Work, τ(β )∑ dγ (β ) = σij
*dεij

*   . 
 

and note from Eq. 8.48 that since σij* = σji*, then  τ (β ) =
1
2

σij
* si

*(β )mj
*(β ) + sj

*(β )mi
*(β )( )  . 

 
If the expression for τ(β) is substituted in the statement of the Principle of Virtual Work, then 
dεij* must be defined according to Eq. 8.56. 
 

19. Suppose you have a similar geometry as in Problem 11, but instead, there are two competing slip 
systems, (m(1), s(1)) and (m(2), s(2)).  βo is the initial angle between s(1) and the initial tensile axis 
direction, To, and γo is the corresponding initial angle for slip system (2). 

 
 Suppose you have documented the angle β as a function of macroscopic strain, εTT, along the T 

(not To!) axis.  Explain how you could determine the relative amount of slip, b(1) and b(2), on each 
system.  Do you have enough information? 

 
SOLUTION: 

First, we note the assumption that all m(α) and s(α) for both systems are coplanar with T and use 
the geometry below. 
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H

β

Ho

TTo

s (1)

(2)s

o

β
s (1)

γo
b

 
 

First, note that  
Ý H = Ý b (1) cosβ + Ý b (2) cos γ
Ý β = Ý γ 

 

 
The second condition is holds since the lattice rotates rigidly, relative to the T axis.  Also note 
that 

  
Hcos(β − βo) = Ho + b(1) cosβo + b(2) cosγ o

Hsin(β − βo) = b(1) sinβo + b(2) sin γ o
 
Each of these relations may be divided through by Ho, any occurrence of H/Ho in these relations 
may be replaced by exp(ε- TT),.  The two equations relate the two unknowns, b(1)/Ho and b(2)/Ho, 
to the current tensile strain, ε- TT, the starting angles γo and βo, and the current angle β.  Final 
expressions are left to the reader to derive. 
 

20. Consider a material in which the critical resolved shear stress to shear a plane with normal m(α) 
depends on the stress normal to the plane, according to 

 τc
(α) = τo − μf mi

(α)σijm j
(α)( ) 

 
 where τo is the critical resolved shear with zero normal load, and μf is a coefficient of friction.  

Such behavior is consistent with a hard sphere atomic picture of materials, in which the activation 
barrier to slide particles past one another increases with confining pressure on the material.  
Show that when a macroscopic stress with non-zero components σ11 and σ22 is applied, the yield 
condition for a slip system (α) with slip direction s(α) and slip plane normal m(α) is 

 ±s1
(α) + μ f m1

(α)( )m1
(α)σ11 + ±s2

(α) + μ fm2
(α)( )m2

(α)σ22 ≥ τo  
 
 where ± must be interpreted as either + for both terms (+s1(α) and +s2(α)) or - for both terms (-

s1(α) and -s2(α)). 
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 Further, produce a projection of the yield surface onto the σ11-σ22 plane, assuming that σ11 and 

σ22 are applied along the cube directions of a f.c.c. single crystal, and that μf = 0.1.  Compare 
your result to the yield surface projection in Fig. 8.4. 

 
SOLUTION: 

Under such a case, the yield condition, Eq. 8.13, may be rewritten as 
 ±si

(α)σijmj
(α) ≥ τo + μf mi

(α)σijm j
(α)( ), 

 
and this may be rearranged into the final form,  
  ±s1

(α) + μ f m1
(α)( )m1

(α)σ11 + ±s2
(α) + μ fm2

(α)( )m2
(α)σ22 ≥ τo

 
The yield condition above consists of lines in the σ11-σ22 plane, with intercepts σ11o and σ22o 
along the axes given by 

 σ11
o(α) =

τo
±s1

(α) + μf m1
(α)( )m1

(α) , σ22
o(α) =

τo
±s2

(α) + μ fm2
(α)( )m2

(α)   . 

 
The yield surface is plotted below with dashed lines, and the thicker dashed lines show the inner 
locus.  For comparison, the result from Fig. 8.4 corresponding to μf = 0 is shown with solid lines.  
The case for non-zero μf is distorted, so that yield in compression is different than yield in 
tension.  This occurs since tension lowers the critical resolved shear stress for slip, while 
compression increases that resolved shear stress. 

(1
, 6

, 9
, 1

0)

(1, 6, 9, 10)

σ22

σ11

2,4,7,11

2,
4,

7,
11

3,5,8,12

3,5,8,12
6 τo

6 τo

1
-1.5 18

1

0.75

18

-1.5

-1

-1

 
 

21. Consider the previous example where the critical resolved shear stress for a slip plane depends on 
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the stress normal to the plane.  Construct a yield function for this case that reduces to Eq. 8.26 
when the coefficient, μf = 0.  Find the normal to the yield surface.  Compare your result to dεij(α) 
predicted by Eq. 8.23.  Is the strain increment normal to the yield surface? 

 
SOLUTION: 

An appropriate yield function is given by 

 φ(α) =
1
2

(simj + s jmi)
(α) σij

⎡ 
⎣ 

⎤ 
⎦ 

2
− τo − μ fmi

(α)σijmj
(α)[ ]2 = 0 at yield[ ]. 

 
Taking the derivative with respect to σij and applying that φ(α) = 0, 

 
∂φ(α)

∂σij
= τc

(α) (sim j + s jmi)
(α) + μ fmi

(α)m j
(α)[ ] . 

 
For comparison, Eq. 8.23 states that 

 dεij =
dγ
2

(mjsi + misj ). 

 
It appears that the strain increment is different than the normal to the yield surface, in that the 
yield surface normal contains the added component, μfmi(α)mj(α), where (α) refers to the 
critically stressed slip system on that portion of the yield surface. 
 

22. Assume that you have a polycrystalline wire with a bamboo type structure, in which each grain α 
occupies a slice of the wire as shown below.  Also, each grain has a single slip system described 
by slip plane normal m(α) and slip direction s(α).  The critical resolved shear stress to operate any 
slip system is 10MPa, and the amount of slip on any plane is assumed to be negligible compared to 
the diameter, D, of the wire.  A single angle β(α) = T·s(α) describes the orientation of the slip 
system relative to the wire axis T, along which there is an applied stress, σ.  Initially, the 
probability, P, of finding a grain with angle β(α) = γ is the same, regardless of the value of γ, 
which ranges form 0 to 90°. 

 
 Sketch the probability of finding a grain with angle β(α)= γ, as a function of γ, after loading the 

wire to four different values of tension:  σ = 0, 20, 30, and 40 MPa.  To obtain your result, use a 
lower bound approach and make the approximation that the stress state in each grain is one of 
simple tension, σ.  What aspect of compatibility is not satisfied here? 
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D

T

σ

σ  
SOLUTION: 

The assumption that the stress state in each crystal is simple tension violates compatibility across 
the grain boundaries in the bamboo structure.  To begin, we sketch that the probability P of 
finding a grain with a certain angle β(α) is uniform, and since β may span from 0 to 90°, the 
initial probability must be 1/90 for all possible angles.  This is sketched below and labeled σ = 0, 
20 MPa. 
 
The analysis for other levels of stress is done by imposing that each grain that meets or exceeds 
the yield condition will continue to strain, and therefore rotate until the yield condition is 
exceeded.  When the tensile stress is 20MPa, then we check for any grain orientation angle β for 
which the resolved shear stress exceeds 10MPa, i.e., for which 
 τ = 20MPa cosβ sin β ≥ τc (= 10MPa) 
 
The yield condition above is just met for any grain at angle 45°.  As soon as rotation occurs, so 
that β = 45°-Δβ, the rotation stops, for the yield condition is no longer met.  Therefore, at a 
tensile stress of 20MPa, grains with orientation angle β = 45° just meet the yield criterion.  The 
rotation is negligible at this point, assuming that τc remains at 10MPa even after slip is activated. 
 
At a tensile stress of 30MPa, the yield condition is stated as:    30 MPa ⋅ cos β ⋅ sin β ≥ 10 MPa  
 
Therefore, yield is exceeded for all grains with β in between 21° and 69°.  All such grains 
continue to rotate until β = 21°.  Thus, in a bamboo structure with 90 grains (and equally 
distributed with angle), 48 of those grains would displace to the 21° position, for a total 
probability of 49 grains out of 90 having an angle β = 21°, zero probability for β in between 21° 
and 69°, and P = 1/90 for all other angles. 
 
At a tensile stress of 40MPa, the yield condition reveals that all grains with initial angles 
between 15° and 75° must rotate to the 15° position.  Therefore, the probability is P = 61/90 at β 
= 15°, zero for all angles between 15° and 75°, and P = 1/90 for all other angles.  The results are 
summarized in the figure below. 
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0 30 60 90

P = Probability of finding a grain with angle β +/- 0.5

1/90

47/90

60/90

15 21 69 75
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σ= 40MPa

o

orient. angle β  
 
23. Outline the components of a computer program which will calculate the uniaxial stress-strain 

response of a f.c.c. single crystal loaded in tension.  The tensile axis T is a material one, similar to 
the case depicted in Fig. 8.5, and initially, T is parallel to [1 12 11].  The sample is loaded from 0 
to 40MPa over a period of 300s, so that the stress rate, dσTT/dt is constant.  Use a rate-dependent 
constitutive relation as described in Eqs. 8.73 and 8.74 with the following parameters: 

 

 

Ý γ o
(α ) = 10−3 / s

m = 20

τo
(α ) = 10MPa (initially, prior to any slip)

Case A: hαβ =
0MPa if α = β
5MPa if α ≠ β
⎧ 
⎨ 
⎩ 

Case B: hαβ =
5MPa if α = β
0MPa if α ≠ β
⎧ 
⎨ 
⎩ 

 

 
 Note that Case A simulates a larger latent hardening situation, and Case B simulates a larger self 

hardening situation. 
 
 Produce for each case the tensile stress-tensile strain curves along T, from εTT= 0 to 

approximately 0.8.  Note the direction of T in each case when εΤΤ = 0.8.  For each case, discuss 
the dominant slip system(s) when εΤΤ = 0 and when εΤΤ = 0.8. 

SOLUTION: 
The generic outline of the computer program is to 

• define the time increment, Δt, to be sufficiently small, e.g., Δt=0.01s 
• define the tensile loading rate, dσTT/dt = 40MPa/300s. 

• initialize τo(α) = 10MPa. 
• define the unit vector T along the tensile axis to be parallel to [1 12 11].  In general, the 

components of all quantities will be referred to the crystal basis rather than the reference 
(*) basis containing T. 

• define all twelve sets of mi(α) and si(α) according to Table 8.1. 
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• define the components hαβ of the 12 by 12 matrix according to either of the two cases 
mentioned.  For case A, hαβ = 5MPa if α ≠ β, and hαβ = 0 if α = β.  For case B, hαβ = 0 
if α ≠ β, and hαβ = 5MPa if α = β. 

• begin an outer loop in which the time is incremented by Δt until the strain along the 
tensile axis exceeds 0.80.  In this loop... 

  -increment σTT by Δt(dσTT/dt). 
  -compute all τ(α) according to Eq. 8.13, or equivalently, 
   τ (α ) = σTT s(α ) ⋅T( )m(α ) ⋅ T( )  . 
  -calculate the increment, 

   dγ (α ) =
10−3

s
τ (α )

τo
(α )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

20

Δt   . 

  -compute the components, 
   dT = dγ (α ) m(α) ⋅ T( )∑ s(α) − s(α ) ⋅ T( )T{ }  . 

  -in order to define the strain increment, dεTT, first compute the work,  

    dw = ∑|τ(α)dγ(α)| , and then define 

   dεTT =
dw
σTT

  . 

  -update the total strain according to εTT = εTT + dεTT 
  -update T according to Ti = Ti + dTi 

  -update the τo(α) according to τo(α) = τo(α) + ∑hαβdγ(β)  
  -print out εTT, σTT. 

• end the outer loop 
 
Results for Case A (larger latent hardening) and Case B (larger self hardening) are shown below.  
The tensile flow stress for the larger self hardening case is larger, particularly at larger strains.  
For both cases, slip system 6 in Table 8.1 has the larger resolved shear stress initially, and slip 
systems 1 and 4 have the second largest.  This can be verified by noting in Fig. 8.6 that slip 
system 6 has the largest resolved shear stress when the tensile axis is in the vicinity of point P.  
For the larger latent hardening case (A), slip system 6 has the largest slip increment, dγ(α) over 
the entire range considered, from εTT = 0 to 0.8.  In contrast, the larger self hardening case (B) 
displays several transitions, and at εTT = 0 to 0.8, slip system 4 has the largest slip increment. 
For Case A, the components of T at εTT = 0.8 are approximately [0.51 0.80 0.31], and T 
continues to rotate toward [1 1 0].  However, the corresponding components for Case B are 
approximately [0.49 0.65 0.58].  The larger self hardening in Case B causes the slip system with 
the largest current dγ(α) to harden substantially, so that no one slip system dominates over the 
entire history of loading. 
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24. Consider a polycrystal with random orientation of crystals.  Produce a lower bound to yield in 

tension. 
 
SOLUTION: 

The simplest lower bound is to assume a trial stress distribution that is a homogeneous, simple 
tension state, and that does not violate yield at any point in the material.  In that case, In that 
case, Eq. 8.42 indicates that the largest tensile stress possible is 2τc, corresponding to some 
optimally oriented slip system that is with m · T = s · T = 1/ 2 .  Here, τc corresponds to the 
critical resolved shear stress to activate that slip system. 

 
 



CHAPTER 9 - PROBLEM SOLUTIONS 
 
A. PROFICIENCY PROBLEMS 
 
1. For the geometry shown in Fig. 9.1b, find the relationship between the friction coefficient and the 

ramp angle at which sliding begins. 
 
SOLUTION: 
 The equilibrium of forces is projected on the x and y axes of the figure below. 
  

w

fT

fN

y

x
θ       

 x direction: w sinθ - fT = 0
y direction: - w cosθ + fN = 0
Or: fT = w sinθ

fN = w cosθ
 

 From the Coulomb friction law we obtain:  

 
μ =

fF

fN
=

w sin θ
w cos θ

= tanθ (at the start of motion)
 

 
2. Use the rope formula to obtain the unknown forces in each of the following cases, assuming a 

friction coefficient of μ = 0.2. 
 

100N

F

100N

F

(a) (b)
1motion

motion

 
 

100N

(c)

1/2

motion

100N

1/2

1 (d)

motion

F

F

 
 

100N

-1 1

F

(e)

motion
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1/2

1

100N

F

(f)

motion  
 
 

SOLUTION: 

Eq. 9.18 is used repeatedly:    F2 = F1 exp (μβ)  , where β is the accumulated "angle of wrap." 
 

a.  
  β = 90° =

π
2

, so that: Fa = 100 exp (0.2
π
2

) = 137 N
 

 

b:  
  β = 45° =

π
4

, so that: Fb = 100 exp (0.2
π
4

) = 117 N
 

 

c:  
  tan(

β
2

) =
1
2

, ∴ β = 2 tan -1(0.5) = 0.927, so that: Fc = 100 exp 0.2 (0.927) = 120 N
 

 

d:  
  β 1 (left) + β 2 (right) = β = tan -1 1 =

π
4

, so that Fd = 100 exp (0.2
π
4

) = 117 N
 

 

e:  
  β 1 =

π
4

, β 2 =
π
2

, β 3 = π, so that: Fe = 100 exp (0.2 π) = 187 N
 

 

f:  
   β 1 =

π
4

, β 2 + β 3 =
π
4

, ∴ β =
π
2

, so that: Ff = 100 exp (0.2
π
2

) = 137 N
 

 
 

3. Use the geometries presented in Problem 2 and the following information to find the true strains in 
the region where F is applied: 

 
    Ao = original cross sectional area of sheet = lmm2

 
   σ = 200 ε0.2  (MPa) 
 
 Which geometry cannot be deformed as shown? 



Chapter 9 Fundamentals of Metal Forming - Solution Manual Page 3 
 
 
SOLUTION: 

First, calculate the maximum force which can be applied to the strip without breaking it, 
assuming a uniaxial tensile state of stress (see Chapter 1): 
 

 

  
F = σ A = 200 MPA = N

mm2 ε0.2 1mm2 exp(- ε)

σ A  
 
The maximum force occurs at ε  =  n  =  0.2: 
 

 

 Fmax = 200 MPA = N
mm2 0.20.2 1mm2 exp (- 0.2) = 119 N

 
 
The rope will not break only for cases b and d.  For these cases, the strains may be calculated (by 
trial-and-error or Newton iteration, for example) as follows: 
 

 
  Fb or d = 117 = 200 exp(-ε) ε0.2 ⇒ ε = 0.13  

 
 

4. a. A ring compression test is carried out using a standard forging press.  The original and final ring 
dimensions are shown below.  Find the value of m or μ from these data using Fig. 9.14. 

   Height (original) = 100mm  Height (final) = 60mm 
   Inside radius (original) = 200mm Inside radius (final) = 160mm 
    b. Given the purpose and use of the ring compression test, which limiting form of friction (Coulomb 

or sticking) is likely to be the more accurate? 
 
SOLUTION: 
a. The height and radius reductions are: 

 

 

Δh
h

 = 100 - 60
100

 = 40%

Δri
ri

 = 200 - 160
200

 = 20%
 

 
These values allow the use of Fig. 9.14 to determine the friction factors: 
 
 for a Coulomb friction law: μ ≅ 0.25 
 
 for a sticking friction or Tresca law: m ≅ 1. 
 

b. Direct compression will involve contact pressures near the flow strength of the material.  Then, 
according to our simple view of friction regimes, Fig. 9.3, the friction is likely to follow more 
closely a sticking friction or Tresca model.  To verify which friction law is more accurate, 
several tests should be carried out with different reduction ratios in height.  With these tests, one 
will be able to see if the experimental measurements on the evolution of the radii follow a curve 
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generated by assuming either of the models presented in Fig. 9.14. 
5. What are the friction factors determined for solid soap, graphite in heavy way oil, and way oil 

from Fig. 9.16?  What difficulty do you see in applying this test to differentiate lubricant 
properties for production applications? 

 
SOLUTION: 

In Fig. 9.16 we observe that: 
 - solid soap corresponds to m = 0.1 at the beginning of the process  
    and  m = 0.05 after; 
 - graphite in heavy way oil follows rather well the curve with m = 0.1; 
 - heavy way oil is closer in average to the m = 0.2 curve. 
 
This test is not selective enough for a classification of the industrial lubricants, particularly at the 
beginning of the process. 

 
6.a. For the double-backward extrusion test, the test is stopped at two punch strokes and the cups 

removed.  Given the following experimental results and using Fig. 9.18, determine the friction 
coefficients and friction factors for this case. 

   Punch stroke = 100mm,  h1 = 80mm,   h2 = 30mm 
   Punch stroke = 200mm,  h1 = 120mm,   h2 = 90mm 
   b. What can you say about the role of sliding distance in determining friction for this configuration, 

lubricant, and material combination? 
 
SOLUTION: 
a. For a punch stroke of 100 mm we have (using Fig. 9.18): 

 
h1
h2

 = 80
300

 = 2.67  so that m ≅ 0.15
 

and for a punch stroke of 200 mm: 

 
h1
h2

 = 120
90

 = 1.33  so that m ≅ 0.08
 

 
b. The sliding distance is approximately constant in this test as the radii of the punches decrease so 

that the contact with the part takes place on a small area and not on the extruded length. 
 

B. DEPTH PROBLEMS 
 
7. Derive an equation or equations that could be solved numerically to find ε1 or ε2 as a function of 

H for the test shown in the figure.  Assume Coulomb friction, Hollomon hardening ( ), 
and uniform tensile strain (and tensile stress) in each leg.  For simplicity, assume that the pins 
have negligible diameter, so that the geometry can be computed simply. 

 σ = k εn
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ε2

H

α

β

ε1 ε1
F1 F1

F2

a b a  
 

 
SOLUTION: 

Note that the wrap angle is 
  β = tan– 1 H

a .  Then, start with the rope fromula (Eq. 9.18): 

 

  
F2 = F1 exp μβ = F1 exp μ tan– 1 H

a
 

 

where: 

  F2 = σ2 A = k ε2 A 0 exp – ε2 , F1 = σ1 A = k ε1 A 0 exp – ε1

σ2 A σ1 A  
 

Then: 
  k ε2 A 0 exp – ε2 = k ε1 A 0 exp – ε1 exp μβ , or,

 
 

  

  
ε2 exp – ε2 = ε1 exp – ε1 exp μ tan– 1 H

a
  (Eq. 1) 

 
Because this provides only one equation relating H to ε1 and ε2, we must use the geometry 
before and after deformation to find another relationship.  Assuming that the strain is uniform at 
all times in each leg, we find the original specimen length (2a+b) in terms of current leg lengths 
and strains: 

 
  2a + b = a2 + H2 exp – ε1 + b exp – ε2

 (Eq. 2) 
 
Eqs. (1) and (2) may be solved simultaneously to find ε1(H) and ε2(H) for given values of m and 
n.  Or, they may be combined to find a single equation that can also be solved numerically with 
the same result.  First we solve for ε2: 

 

  
exp – ε2 =

2a + b
b –

a2 + H 2

b exp – ε1
 , or  

 

ε2 = – ln
2a + b

b
–

a2 + H 2

b
exp – ε1

 
 
So that finally we obtain a single equation which may be solved for ε1(H): 
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– ln
2a + b

b
–

a2 + H 2

b
exp – ε1

n

2a + b
b

–
a2 + H2

b
exp – ε1 = ε1

n e– ε1 e
μ tan– 1 H

a  

 
 
8. Consider now a real test like the one shown in Problem 7. 
 

a. Why would you expect to see a difference between ε1 and ε2 even for very narrow strips (to 
insure uniaxial tension) and with nearly perfect lubrication (by using rollers, Teflon, and 
oil, for example)?  How would this effect depend or bend radius and sheet thickness? 

 
b. Given results from the test described in Part a., how would you find the true friction 

coefficient from a similar test with fixed pins, normal lubrication, and the same material? 
 
SOLUTION: 
a. The bending (and unbending) resistance of the sheet is responsible for an increase of the force 

exerted on the right and left hand sides of the sheet as it passes over the pins, and consequently 
.  For a small radius of bending the local strain in the sheet is higher than for a large radius 

and so is the bending energy for a work hardening material.  An increase of the sheet thickness 
will also increase the bending strain;  therefore it will produce qualitatively the same result as a 
decrease of the radius of bending. 

ε1 > ε2

 
b. The true friction contribution can be better approximated if the effect of bending can be 

eliminated.  For that purpose it is possible in the analysis of the test to subtract the bending force 
measured by a frictionless test (or very low friction), with rotating pins to further reduce possible 
drag. 
 
 

9. Use the rope formula and the geometry shown below to determine apparent friction coefficient 
from F1 and F2 for the modified OSU Friction Test (see Figure 9.11b and dimensions below). 

 
50mm

H

100mm  
 
SOLUTION: 

We introduce notation similar to that used for Problem 7, as  shown in the figure below, and 
make the same assumptions about small-radii pins. 
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H

a
b

a

α

β

ε1 ε1

F'

F2

F1/2

F2

F1/2

F'

F1/2

F'

F2

F' / sin β
β

 
 
The equilibrium of vertical forces and the rope formula provide two equations relating F1, F2, 
and F':   

 

  
F ′ sin β =

F1

2  ,  
  F ′ = F2 exp (μβ)

 

where, as in Problem 7, 
  β = tan– 1 H

a .  F' is then eliminated from the equations, which are 
solved for μ to obtain the desired expression: 

 

  

μ =
1
β ln

1
2 sin β

F1

F2
=

ln
H2 + a2

2 H
F1
F2

tan -1 H
a

 
 

10. a. Explain qualitatively why and how the friction factor or friction coefficient affects the shape 
change in  the ring compression test. 

b. Could you design a plane-strain compression test similar to the ring compression test by 
simply putting a long square rod between flat platens? 

 
SOLUTION: 
a. For a very low friction factor, the solution of the ring upsetting problem corresponds to a 

homogeneous strain, so that the ratio between the inner and the outer radii will remain constant.  
On the other hand, when the friction stress cannot be neglected, its effect will be more important 
on the large radius zone because of the fact that it is exerted on a larger surface and the velocity 
is higher.  The braking effect of friction is therefore more important on the outer radius than on 
the inner one.  That is why the inner radius increases relatively slower than the outer one, and in 
fact decreases for large friction stress. 
 

b. If the rod is sufficiently long, a zero-displacement boundary condition will be enforced by 
friction in the long direction.  Then, we could watch the growth of the central or contact width as 
a function of H, or the ratio of the central width to contact width.  For higher friction, the contact 
width will increase less relative to the central width (i.e. "barreling" will be promoted). 
 

 



CHAPTER 10 - PROBLEM SOLUTIONS 
 
A. PROFICIENCY PROBLEMS 
 
1. Calculate the ideal work to strain a unit volume of material under uniaxial tension from 

   ε = 0 to ε = ε  for each of the following hardening laws: 

a. σ  =  K (ε + εo)n   (Ludwik law) 

b. σ  =  σo + K (ε + εo)n  (Swift law) 

c. σ  =  σo (1- A e-βε)   (Voce law) 

d. σ  =  K     (ideal plastic) 

e. σ  =  σo + Kε   (linear hardening) 
 
SOLUTION: 

a. 

  
w
v = dw

o

ε
= σdε = K ε + εo

n

o

ε
dε

o

ε
= K

n + 1 ε + εo
n+1

 
 

b. 

  w
v = σodε

o

ε
+ K ε + εo

o

ε
dε = σo ε + K

n + 1 ε + εo
n+1

 
 

c. 

  w
v = σodε – σoA

o

ε
e–βε

o

ε
= σo ε + σoA

β ε–βε – 1
 

 

d. 

  w
v = K dε

o

ε
= Kε

 
 

e. 

  w
v = σodε

o

ε
+ K K ε dε

o

ε
= σ ε + K

2 ε2

 
 
 

2. Calculate the drawing force using the ideal work method for a wire drawing operation from 2 mm 
to 1 mm diameter of a Voce material where σo = 500 MPa, A = 0.5, β = 0.2 and where the 
efficiency factor is assumed to be 0.5. 

 
SOLUTION: 

 

  
σd = wi

n , wi = σo
o

ε
1 – A–βε dε, ε = 2 ln 2

1 = 1.39
 

 

 

  
σd = 1

0.5 500 1.39 +
500 0.5

0.2 ε–0.2 1.39 – 1 = 783 MPa
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  fd = 783 MPa π 1

2 mm
2

= 615 N (Note that 1 MPa = 1N / mm2, or 1 MPa ⋅ mm2 = 1 N
 

 
3. Calculate the extrusion force for the same conditions as Problem 2. 
 
SOLUTION: 

 
  Pext = σd = 783 MPa , ∴ F = 783 MPa π 1 mm 2 = 2460 N  

 
4. Calculate the plane-strain drawing stress to reduce sheet thickness from 2 mm to 1 mm for the 

material defined in Problem 2.  How does this compare to the wire drawing stress computed in 
Problem 2? 

 
SOLUTION: 

 

  ε =
2
3

ln 2 = 0.80
 

 

 
  σd =

1
0.5

500 0.80 +
500 0.5

0.2
ε–0.2 0.80 – 1 = 430 MPa

 
 

5. Repeat Problem 4 for plane-strain extension (instead of drawing) and compare the result with 
Problem 4 on an equal-original area basis. 

 
SOLUTION: 

For plane-strain extension (like uniaxial tension), there is no redundant deformation or frictional 
work, so    σd = wi = 215 MPa. 
 

6. Calculate the total ideal work done for the operation shown below, given the hardening law 
shown.  Assume the material obeys von Mises yield. 

 

10mm

20mm

10mm

5mm

7.5mm

l

σ = 500 1 – 0.6 exp (–3ε) MPa

 
 
SOLUTION: 

Volume constancy:  10 x 10 x 20 = 5 x 7.5 x l,  ∴ l  = 53.3 

 
  ε1 = ln 53.3

20 = 0.98 ε2 = ln 7.5
10 = –0.29 ε3 = ln 5

10 = –0.69
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ε = 2

3 0.98 2 + –0.29 2 + –0.69 2 +
1
2

= 1.0
 

 
  

w = V 500 1– 0.6 exp (–3ε)
ε = 0

ε = 1
=

= 2000mm3 500 1.0 +
500 0.6

3 e–3 1.0 – 1 MPa = 810,000 N–mm, or 810 N–m

 

 
 
7. A steel deforms at high temperature at a constant  effective stress of 100 MPa.  For a given 

forming operation, the strain path may be approximated by two proportional paths, the first from 
(ε1 = 0, ε2 = 0) to (ε1 = 0.5, ε2 = 0.25) and the second path from (ε1 = 0.5, ε2 = 0.25) to (ε1 = 0.6, 
ε2 = 0.5). 
a. What is the ideal work per volume of material? 
b. What is the tensile strain equivalent to this forming deformation? 
c. If you assumed that a single proportional path was followed from the start to finish, how 

would the answers to a) and b) change? 
 
SOLUTION: 

    σ = 100 MPa
 
Path I:    Δ ε1 = 0.5, Δ ε2 = 0.25, Δ ε3 = –0.75
 

  

  
Δ ε I = 2

3 0.5 2 + 0.25 2 + –0.75 2
1
2

= 0.76
 

 
Path II:    Δ ε1 = 0.1, Δ ε2 = 0.25, Δ ε3 = –0.35
 

  

  
Δ ε II = 2

3 0.1 2 + 0.25 2 + –0.35 2 = 0.36
 

 

a. 
 wi

v = 100 0.76 + 0.36 = 112 MPa  
 

b. 
  ε tensile = 1.12 = effective strain

 
 

c. for a proportional path: 

 
Δ ε = 2

3 0.6 2 + 0.5 2 + –1.1 2
1
2

= 1.10
 

 
 wi

v = 110 MPa little different because there was no strain reversed, so nearly proportional.  

 
8. Repeat Problem 7 for a different forming operation for which the initial, intermediate, and final 

geometric strains are as follows: 
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 Initial:  (ε1 = 0, ε2 = 0) 
 Intermediate: (ε1 = 0.5, ε2 = 0.25) 
 Final:  (ε1 = 0, ε2 = 0) 

 
SOLUTION: 

Path I: 

  
Δ εI = 2

3 0.5 2 + 0.25 2 + –0.75 2
1
2

= 0.76
 

 

Path II: 

  
Δ εII = 2

3 –0.5 2 + –0.25 2 + 0.75 2
1
2

= 0.76
 

 

a.  
 wi

v = 100 0.76 + 0.76 = 152 MPa  
 

b.     ε tensile = 1.52
 

c.  For a proportional path: 
 

Δ ε = 2
3 0 2 + 0 2 + 0 2

1
2 = 0

 
 
 (No ideal work done because there was no deformation, assuming a proportional path.) 
 

9. a) Use  L'Hospital's  Rule to find the plane-strain drawing stress for a frictionless case 
starting from Eq. 10.29.  Note that as μ → 0, β → 0.  (L'H ospital's  Rule states that the 

limit of a composite function 
lim 
x→a   f(x)

g(x)  in cases where 
lim   f(x) → 0,     lim     g(x) → o
x→a                     x→a  or 

lim   f(x) → ∞,    lim     g(x) → ∞
x→a                     x→o  may be found by 

the ratio of the derivatives: 
 

 

  lim
x→ a

f(x)
g(x)

=
lim
x→ a

f ′(x)

g ′(x)
=

f ′(a)
g′(a)

 
 if these limits exist. 
 

b) Compare the frictionless result obtained in part a) with the drawing stress obtained from 
the ideal work method. 

 
SOLUTION: 

a.  

  
σd =

H 1 + B
B 1 – to

ti

B

     
 
    As μ → 0, B → 0, so the term (1 + B) becomes 1 as B →  0), i.e. 
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lim
μ→o

σd = H
lim

B→o

1 –
to
ti

B

B
 

 

so: 

  
f = H 1 –

t o
t i

B
which goes to 0 as B → 0

 
 
     g = B which goes to 0 as B → 0
 

  

  
f ′(0) = – H ln

to
ti

to
ti

B
= H ln

t i
t o

, and g ′ = 1 Note:
d
dx

ax = ax ln a
 

 

  ∴

  lim
μ→o

σd = H ln
to
ti  

 
b. The results are identical. 

 
10. Following the procedure of Exercise 10.3, derive an expression of the wire-drawing stress for the 

Coulomb friction case.  Show all of your steps clearly. 
 
SOLUTION: 

Everything is the same except the friction law, so 
τf is replaced by  μP in Eq. 10.3-3:

 
  0 = r d σ1 + 2 σ1 + μP cot α – P dr

 
 
The same substitution occurs in Eq. 10.3-6: 

 

  
P = μP tan α – σ r , or P =

σ r

μ tan α – 1  
 
We then can remove P from the equilibrium equation: 

 
  0 = r d σ1 + 2 σ1 + κ σ r dr where κ ≡ μ cot α – 1

μ tan α – 1  
 
And we use Eq. 10.3-10 as before to remove σ r: 

 
  0 = r d σ1 + 2 σ1 + κ σ 1 – κ σ dr = r d σ1 + 2 1 + κ σ1 – κ σ dr, or

 
 

 

  dr
r

=
– dσ1

2 1 + κ σ1 – κ σ  . 
 
Integration completes the solution for a material which does not strain-harden: 
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dr
r

r i

ro

=
d σ1

2 1 + κ σ1 – κ σ
0

σd

 
 

 

  
ln

ro
ri

= –1
2 1 +κ

ln
1 + κ σd – κ σ

κ σ , or σ =
κ σ

1 + κ 1 –
ro
ri

– 2(1 + κ)

 
 

11. Following derivations in the text and in Problems 9 and 10, complete the following table: 
 

Calculation Type Wire Draw  
σd 

Round  
Extrusion  

Pext 

Sheet Draw  
σd 

Sheet Extrusion 
Pext 

Slab (general α, μ)     

Slab (any μ, small α)     

Slab (μ = o)     

Ideal Work     

 
SOLUTION: 
 

 Wire Draw, sd Round Extrusion,Pext Sheet Draw, sd Sheet Extrusion,Pext 

  
  κ σ

1 + κ
1 –

ro

r i

–2(1+κ)

 

 
 κ σ

1 + κ
1 –

ro

r i

–2(1+κ)

 

 
 H κ

1 + κ
1 –

to

ti

–(κ+1)

 

 

 
  H κ

1 + κ
1 –

to

ti

–(κ+1) 
Slab 

  
  B+1

B
σ 1 –

ro

r i

2B

 

 
 B+1

B
σ 1 –

ro

r i

2B

 

 
 H 1+B

B
1 –

to

ti

B

 

 
 H 1+B

B
1 –

to

ti

B

 
Slab 

(small α) 

  
  

2 σ ln
ro

r i
 

 
 

2 σ ln
ro

r i
 

 
 

HB ln
to

ti
 

 
 

HB ln
to

ti
 

Slab 
(μ  = 0) 

 
  

  
2 σ ln

ro

r i
 

 

 
 

2 σ ln
ro

r i
 

 
 

HB ln
to

ti
 

 
 

HB ln
to

ti
 

 
Ideal Work 

 

 Where:   B = μ cot α   

 
κ =

μ cot α + 1
μ tan α – 1   

 H = 2
3

σ
 

 
12. For each forming operation in Problem 11, show how much the external stress or pressure 

changes by using the small angle approximation. 
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  α = 20°,

a. Use "typical values":  rin, tin = 30mm, rout, tout,t = 20mm, α = 20o, μ =  0.25, 
b. Use "extreme values":  rin, tin = 40mm, rout, tout,t = 20mm, α = 45o, μ  = 0.5. 

 
SOLUTION: 

cot α = 0.69  

 
κ =

μ cot α + 1
μ tan α – 1

=
1.69

–0.91
= –1.86

 μ β μ= 0.25, =a. Typical values:  
 

Small α:  

  
σd (wire) =

0.69 + 1
0.69

σ 1 –
2
3

2 0.69

= 1.050 σ
 

 

Large α:  

  
σd (wire) =

–1.86
1 – 1.86

σ 1 –
2
3

–2 1–1.86

= 1.086 σ
 

 

   Wire draw difference =  3.3%  
 

Small α:  

  
σd (sheet) =

0.69 + 1
0.69

H 1 –
2
3

0.69

= 0.598 H
 

 

Large α:  

  
σ (sheet) = –1.86

d 1 – 1.86 H 1 – 2
3

– 1–1.86
= 0.637 H

 
    

   Sheet draw difference =  6.1%  
 

b. Extreme values:    α = 45°, μ = 0.5, β = μ cot α = 0.5
 

κ =
μ cot α + 1
μ tan α – 1

=
1.5
–0.5

= –3
 

 

Small α:  

  
σ (wire) =

0.5 + 1
d 0.5 σ 1 – 1

2
2 0.5

= 1.50 σ
 

 

Large α:  

  
σ (wire) = –3

d 1 – 3 σ 1 – 1
2

–2 1–3
= 1.41 σ

     
 

   Wire draw difference =  6.3%  
 

Small α:  

  
σ (sheet) =

0.5 + 1
d 0.69 H 1 – 1

2
0.5

= 0.879 H
 

 

Large α:  

  
σ (sheet) = –3

d 1 – 3 H 1 – 1
2

– 1–3
= 1.125 H
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22%
 

   Sheet draw difference =   
 

13. Perform a slab calculation for plane-strain compression of a Hollomon material 
(σ = 600 MPa ε )0.25  subject to Coulomb friction (μ = 0.3).  Assuming an initial geometry of ho = 
100mm and bo = 50mm, plot the friction hill at several values of h/ho (0.75, 0.5, 0.25) and find 
Pmax and Paverage as a function of h/ho. 

 
SOLUTION: 

 
  P = 2σ

3
exp 2μ

h
b
2 – x , μ = 0.3, ho = 100mm, bo = 50mm

 
 
 h, b, σ are found as follows: 

 h
ho 

0.75 0.5 0.25 

h 75 50 25 

 b =
h o b o

h  67 100 200 

  ε = ln h
h h o

 -0.29 -0.69 -1.39 

  ε = 2 εh3  0.33 0.80 1.61 

  σ = 600 ε–0.25

 
455 
MPa 

567 
MPa 

676 
MPa 
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Pr

es
su

re
 (M

Pa
)

Distance from Center (mm)

h=25mm

h=50 mm

h=75mm

Note:  These solutions assume Coloumb friction
throughout, which may exceed the interfacial
shear strength of the material at the interface

and thus not be accurate. 

 
 
14. Consider the forging operation shown below.  If the die material can withstand a contact pressure 

of 1500 MPa and the workpiece exhibits a constant effective stress of 500 MPa, what is the 
minimum height to which the billet can be forged.  Assume two cases:  a) μ = 0.25, b) sticking 
friction. 

 

h0  = 30 mm

b0 =30mm

 
 
SOLUTION: 

a. Coulomb friction, 
  μ = 0.25: Pmax = 1500 MPa = 2 σ

3
exp μb

h  
 

 Constant volume:  
 

ho bo = h b, b =
h o b o

h = 900mm2

h  
 

 

 
1500 MPa =

2 500 MPa
3

exp
0.3 b o ho

h2
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∴ hmin = 900mm2

3
1500 MPa
500 MPa

– 2

1
2 = 16.8mm

 
 

b. Sticking friction, 
  Pmax = 1500 MPa = 2 σ

3
1 + b

2h  
 

 

  
∴ hmin = 900mm2

3
1500 MPa
500 MPa

– 2

1
2 = 16.8mm

 
 
 

15. Consider the drawing of a sheet which reduces both of its dimensions in the cross sections. 
Set up and derive the differential equation which governs the drawing operation.  Show all of 

your work and leave the resulting equation in the form of the following variables: 
 P2,  P3,  dA2,  dA3,  α,  β,  μ,  t,  and  σ1 

 
 Considering the symmetry of the operation and assuming a von Mises material, find the 

ratio of the stresses σ1/σ2/σ3. 
 

60 mm

β

30 mm

dA3

side view

30 mm
α

15 mm

dA2

top view P2 acts on dA2

P3 acts on dA3

START MIDDLE ENDend view

60 mm

15 mm

2t

t30 mm
30 mm

 
SOLUTION: 

Force balance in the longitudinal direction: 

 
  0 = d σ 1 2 t2 + 2 P2 μ cos α + sin α d A 2 + 2 P3 μ cos β + sin β d A 3  

 
The strain ratios may be found from the geometry: 

 
  εh = ln t

30 εw = ln 2 t
60 = ln t

30 ε l = –2 ln t
30 , so

 
 
    εh / εw / ε l = –1 / –1 / 2, (same as uniaxial tension)
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Therefore, the stress state must be the one for uniaxial tension, or one which differs from that by 
a hydrostatic pressure (which does not affect plastic deformation of a von Mises material): 

 
  ∴ σ1 / σ2 / σ3 = σ ± P / ± P / ± P

 
 

B. DEPTH PROBLEMS 
 
16. Find the efficiency of a wire drawing operation, as estimated by a slab calculation, assuming the 

following parameters: 
 σ = 1000 MPa,  α = 10o, rin = 50mm, rout = 40mm, μ = 0.25.  
 
SOLUTION: 

 Wire draw slab solution: 

 
σd =

B + 1
B

σ 1 –
ro

r i

2B

 
     where   B = μ cot α (small α) = 0.25 cot 10° = 1.42 
 

 

  
σd = 242

1.42 1000 MPa 1 – 4
5

2.84
= 800 MPa

 
 

 Ideal work calculation: 

  
σd ideal =

Wi

Vol
= σ d ε

o

ε

= 1000 MPa 2 ln
5
4

= 446 MPa
 

 

 Efficiency = 

  Wi

Wa
=

σd ideal

σd slab
=

446 MPa
800 MPa

= 56%
 

 

17. For the conditions presented in Problem 16, what is the maximum 
rin
rout  that can be performed? 

 
SOLUTION: 

Maximum draw stress = 1000 MPa 

 

 
1000 MPa =

2.42
1.42

1000 MPa 1 –
ro

r i

2.84

 
 

 

 ro

r i min

= 1 –
1.42
2.42

1
2.84

= 0.73, or
ro

r i max

= 1.37
 

18. a. Repeat Exercise 10.2 for the most general assumption that the redundant work is a fixed 
fraction of the friction work: 

 
α = wr

wf
 ,   0 ≤ α ≤ 1.

 
b. Show that your general expression reduces to the standard expression (Eq. 10.13) when α = 0. 
c. Show that your expression reduces to the improved expression (Eq. 10.2-10) when α = 1. 

d. Compute 
di
do

*

 for the cases in Table 10.2 using your general expression with α  (i.e. all 
non-ideal work is redundant work.)  What are the differences compared with standard 
expression for these cases? 

 → ∞
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e. Use your result and your knowledge of scaling of wf and wr with respect to size to predict 

whether 
di
do

*

 would go up or down as the size of the drawing operation increased.  (Hint:  how 
does α depend on size?) 
 

SOLUTION: 

a.  

  
σd =

Wa
total

Vol
=

Wi

η =
1
η

k
n + 1

εn+1

 
 

 
  σa = k εa

n, where εa is such that Wi + Wr = Wdef =
κ

n + 1
εa

n+1

 
 

 

  
Wa =

Wi

η = Wi + Wf + Wr = Wi +
1
α + 1 Wr

 ,   or 
 

 

  
Wr =

1 – η
η

α
1 + α

Wi, Wdef = 1 +
1 – η

η
α

1 + α
Wi ≡ βWi

 
 

 

  
εa =

n + 1
k

βWi

1
n+1

, = where Wi =
k

n + 1
ε i

n+1

 
 

 

  
σa = κ

n + 1
k

βWi

n
n+1

= k β
n

n+1 ε i
n

 
 

LDR equation:   σa = σd , 
  k βn (n+1)n (n+1) εn =

1
η

k
n + 1

εn+1, ε i = η n + 1 βn (n+1)n (n+1)

 
 

 

  
ro

r i

*

= exp
η
2

n + 1 β
n

n+1 = exp
η
2

n + 1 1 +
1 – η

η
α

1 + α

n
n+1

 

b. 

  
for α = 0, β = 1, LDR = exp

η
2 n + 1

 (same as Eq. 10.13b) 
 

c. 

  

for α = 1, β =
η + 1

2η
, LDR = exp

η
2

n + 1
η + 1

2η

n
n+1

  (same as Eq. 10.2-10) 
 

d. 

  
for α = ∞, β =

1
η, LDR = exp

η + 1
2  (same as Eq. 10.13b with  or Eq. 10.2-10)   η = 1
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Efficiency, 
  material 

 
 

η 

 
 
n 

 d i
do std.

*
 

(Eq. 10.13) 

 d i
do improved

*
 

  α = ∞ 

 
Difference 

(%) 

Ideal, 
  brass 1.00 0.50 2.12 2.12 0% 

Ideal, 
  steel 1.00 0.25 1.87 1.87 0% 

Medium, 
  steel 0.70 0.25 1.55 1.87 21% 

Low, 
  steel 0.50 0.25 1.37 1.87 36% 

Low, 
  aluminum 0.50 0.15 1.33 1.78 34% 

V. Low, 
  zinc 0.25 0.00 1.15 1.65 43% 

 
 

e. Imagine an operation with ri = 1 and draw length l = 1, and imagine scaling this operation by a 
factor C, i.e. ri = C, l = C.  The deformation work will be proportional to the volume deformed, 
i.e. Wdef = (scale) = C3 Wdef.  The friction work will depend on the swept surface, i.e. Wf = 
(scale) = C2 Wf.  Therefore,  

 

  
for α =

Wr

Wf
→∞ as C → ∞ large operations and α → 0 as C → small operations .

 
 
Therefore, larger drawing operations can achieve somewhat larger draw ratios because friction 
plays a smaller role. 
 
 

19. a)  Derive equations similar to Eqs. 10.57 for the case of sticking friction. 
b) Assuming plane-strain conditions, eliminate P from your equations. 
c) By making appropriate geometric substitutions, write your equations in terms of t  and dt 

alone, and α and dα alone. 
 
SOLUTION: 

a. For sticking friction, the friction stress is 
 τ f = σ

3  whereas with Coulomb friction  τf = μP .  
With this substitution, Eqs. 10.57a and b may be immediately rewritten: 

 

  0 = d σ 1 t + 2σ
3

– 2P tan α d x1 before N (Neutral Point)
 

 

 

  0 = d σ 1 t + – 2σ
3

– 2P tan α d x1 after N (Neutral Point)
 

 
b. For plane-strain conditions (see Eq. 10.32), and small α: 
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  P = σ1 +
2
3

σ, so
 

  
0 = d σ t t + 2 ± σ

3
σ1 – σ1 tan α – 2 σ

3
tan α d x1

 , 
where the plus sign is taken before the neutral point and the minus is taken after it. 
 

c. Using the geometry shown, and defining a new variable t ′  as shown, the following geometric 
relationships may be obtained readily: 

 
  t ′ ≡ t – to

2 = R – R cos α
   

  dt ′ = dt
2 = R sin α dα

 
 

 
  x1 = – 2 R t ′ – t ′2 = – R sin α  

  
dx1 = –

R – t ′ dt ′

2 R t ′ – t ′ 2
= – R cos α dα

 
 

 
  t = 2 R – R cos α + to     dt = 2R sin α dα

 
tan α = 2 R t ′ – t ′ 2

R – t ′  
 
Then, in order to write the governing equation in terms of α and dα alone, we make the 
appropriate substitutions in the result of Part c: 

 

  
0 = d σ t t + 2 ± σ

3
– σ 1 tan α – 2 σ

3
tan α dx1

d σ1 2 R – R cos α + to – R cos α dα
 

 
which, when rearranged, obtains: 
  

 

  
0 = σ1 R sin α dα + 2 R – R cos α + to dσ1 – 2R ± σ

3
cos α – σ1 sin α – 2 σ

3
sin α dα

 
 

R

R

t'

R-t'

-x1

��
��
��
��t/2

α

�
�
�
�
��
��to/2

���ti/2

 
In order the write the same expression in terms of t and dt alone, we make a different set of 
substitutions: 
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0 = d σ t t + 2 ± σ

3
– σ1 tan α – 2 σ

3
tan α dx1

tan α = 2 R t ′ – t ′2

R – t ′ dx1 = –
R – t ′ dt ′

2 R t ′ – t ′ 2

 
 
which, when rearranged, obtains: 

 

  
0 = d σ 1 t + 2 +− σ

3
R – t ′

2 R t ′ – t ′ 2
+ σ 1 + 2 σ

3
dt ′

 
 

where the minus sign applies before the neutral point and the plus sign afterward, and 
 t' = t – to

2  
and dt' = dt/2. 
 

20. Real rolling operations exhibit several characteristics which are not easily seen in simple slab 
analysis.  What do you think is the origin of the effects? 

 

a) Plane sections do 
not remain planar

b)
Internal cracking

 
 

c) Widening Side crackingd)

e) before

after

Crowning

 
SOLUTION: 
a. Friction at the rolls draws the sheet through the rolling operation, but since it operates only at the 

surface, the central material tends to be restrained by the material behind it. 
b. The shear strains established by the gradient of friction force can cause shear banding, and strain 

localization through the thickness.  In fact, the tensile stress components along the rolling 
direction can also be large enough to produce cracking. 

c. Widening occurs when the roll contact zone is comparable in the rolling direction relative to the 
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width of the contract region, so that the operation begins to resemble an upsetting operation. 
d. Side cracking can occur because shear strains are set up as the plane strain state in the center 

approaches uniaxial compression at the edge.  The tensile elongation caused by adjacent material 
can also introduce tensile stress cracking. 

e. Crowning occurs by roll bending, i.e. the pressure across the roll causes beam-type bending of 
the rolls. 
 

21. Consider a sheet-drawing operation (plane strain) that uses streamlined dies, as shown. 
 

20mm30mm

 
 

a) Use a simple 5-step numerical procedure to find σ1 at t = 40mm, 36mm, 32mm, 28 mm, 
and 24 mm and 20mm. 

b) What is the limiting 
tin
tout  ratio that can be attained with these dies based on your numerical 

procedure?  How does this compare with the result for straight-sided dies? 
 
SOLUTION: 

a.  
  d σ1 = B σ1 – H 1 + B

dt
t  (Eq. 10.25) 

 

 
  Δ σ1 = B σ1 – H 1 + B

Δt
t  where H = 100 ksi and B = 0.25 cot [2 (t- 18)] 

 
Step # t(mm) B  Δt (mm)    Δ σ1 KSi    σ1 ksi  

0 40 - - - - - - 0  
(bdy. cond.) 

1 36 0.34 -4 14.9 14.9 
2 32 0.47 -4 17.5 32.4 
3 28 0.69 -4 20.1 53.4 
4 24 1.18 -4 25.9 79.3 
5 20 3.58 -4 34.9 114.2 

 
 so, σd = 114.2 ksi. 
b. Interpolating between steps 4 and 5 to find the t where σd = 100 KS:  yields 

 
  t* = 24 – 100 – 79.3

114.2 – 79.3 ⋅ 4mm = 21.6mm, or
 

 ti

to

*

=
40

21.6
= 1.85
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22. Using a slab analysis similar to the one for the plane-strain compression case, derive an 

expression for pressure as a function of radial position for the compression of a cylinder.  
Consider cases with a) Coulomb friction and b) sticking friction. 

 
SOLUTION: 

 

R

r

dθ/2

dθ/2

σθ h dr

σθ h dr

(σr+σr) h (r+dr) dθ

τf r dr dθ

σr h dr dθ

 
 
Force balance in the radial direction: 

 
  σ r + d σr h r + dr dθ – σr h r d θ – 2 σθ h d r d θ

2 – 2 τf r d r d θ = 0
 

 

 
  r h d σ r + σ r h – σθ h – 2 2 τ f dr = 0

 
 
For axisymmetric flow:    εr = εθ, so σ r = σ θ

 
For isotropic plasticity:  h d σr  =  2 τf d r 
 
For von Mises flow rule:   σr = σz + σ = σ – P  
 

a. Coulomb Case:    τf = μP  
 

 
  – h d P = 2 μ P d r ⇒ dP

P = 2μ
h d r

 
 

 

  
– dP

P
P

σ

= 2μ
h d r

r

R

⇒ ln P
σ

= 2μ
h R – r , so

 
 

 
  

P = σ exp 2μ
h R – r

 (Coulomb friction) 
 

b. Sticking Friction Case: 
  τ f = σ

3  
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  – h d P = 2

3
σ d r ⇒ dP = – 2

3 h
σ d r

 

  
dP

P

σ

= 2
3

h σ d r
r

R

 
 

 
  

P = σ +
2σ
3h

R – r
 (Sticking friction) 

 
23. How would the sheet drawing stresses depend on normal plastic anisotropy (r) based on Hill's 

theory? 
 
SOLUTION: 

To find the effect of normal anisotropy, we need to substitute Hill's normal quadratic yield 
function (Eq. 7.60) in place of von Mises yield, and re-solve for σd.  [Note, however that we 
conventionally choose σ3 normal to the sheet plane instead of x2 as was done previously for the 
sheet-draw problem.] 
 
For plane-strain (ε2 = 0) using Eq. 7.61b: 

 

  
d ε2 = 0 = σ2 – σ3 – r σ1 – σ2

d ε
1 + r σ

, so
 

  σ2 =
r

1 + r
σ1 +

1
1 + r

σ3
 

 
Substituting into Eq. 7.60 (Hill's yield function): 

 

  
σ =

2r + 1
1 + r

σ1 – σ3  (Hill) 
 
Which corresponds to the von Mises result (Eq. 10.22) for r = 1. 

 

  
σ =

3
2

σ1 – σ3   (von Mises) 
 
Therefore, the replacement for Eq. 10.23 becomes  

 

  σ3 = σ1 – HHill, where HHill =
1 + r
2r + 1

σ
 

 
The final result corresponds to Eq. 10.29: 

 

  
σd =

HHill 1 + B
B

1 +
to

ti

B

  , where 

  HHill =
1 + r
2r + 1

σ
 

 Therefore as r increases, σd increases. 
 


