CHAPTER 1- PROBLEM SOLUTIONS
A. PROFICIENCY PROBLEMS

1. Theplot below of load vs. extension was obtained using a specimen (shown in the following figure)
of an alloy remarkably ssimilar to the aluminum-killed steel found in automotive fenders, hoods,
etc. The crosshead speed, v, was 3.3x104 inch/second. The extension was measured using a 2"
extensometer as shown (G). Eight points on the plastic part of the curve have been digitized for
you. Use these pointsto help answer the following questions.
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a. Determine the following quantities. Do not neglect to include proper unitsin your answer.

Yield stress Young's Modulus
Ultimate tensile strength Total elongation
Uniform elongation Post-uniform elongation

Engineering strain rate

b. Construct a table with the following headings, left-to-right: Extension, load, engineering
strain, engineering stress, true strain, true stress. Fill in for the eight points on graph.
What is the percentage difference between true and engineering strains for the first point?
(i.e, %= x 100)

What is the percentage difference between true and engineering strains for the last point?

c. Plot the engineering and true stress-strain curves on a single graph using the same units.
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d. Calculate the work-hardening rate graphically and provide the In-In plot along with the
value of n. How does n compare with the uniform elongation in Part a? Why?
e. A second tensile test was carried out on an identical specimen of this material, this time

using a crosshead speed of 3.3x10-2 inch/second. The load at an extension of 0.30 inch
was 763.4 |b. What isthe strain-rate sensitivity index, m, for this material?

SOLUTION: 7
__4581bs  _ .—_ 27,000ps _ 6 i
Oy = ——on—~— =30,500 psi E= =——=r5=7 = 30x 10° ps
a Yy~ 080" x 05 PSE= 50018720 P
745 lbs :
Outrs= ———— = 49,700 psi — 0.80" _ 0
UTs™ 030" x .5" P € = 20 - 0.40 or 40%
_ 05" _
&= 5g = 025 or 25% e =€—€,=040-0.25=0.15 or 15%
. 33 X 10—4 ncn/s _ 2
e - 3.3n - 10 /S
b.
0,
Extension L oad Eng. Strain | Eng. Stress True True Stress é;lgI;E/trrrS;
Strain strain
0.0018 405 0.001 27000 0.001 27024 0.04%
0.02 458 0.010 30533 0.010 30839 0.50%
0.1 630 0.050 42000 0.049 44100 2.48%
0.2 699 0.100 46600 0.095 51260 4.92%
0.3 729 0.150 48600 0.140 55890 7.33%
0.4 7415 0.200 49433 0.182 59320 9.70%
05 745 0.250 49667 0.223 62083 12.04%
0.8 440 0.400 29333 0.336 41067 18.88%
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The n value (slope of the In-In plot) isasfollows:
All points: n=0.13, Wthfirst and last removed: n=0.225

The first point must be removed because the elastic strain is a significant part of the total strain and the
last point is meaningless because necking means that the formulato find €;, and o cannot be used.

225 differs from 0.25 because nis true strain so €225 - 1 = 0.25 = uniform elongation.
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_Inpolpy_ In B _In 1.047 - 046 _ 010

“Invv; T 33x10% ~ In 100 ~ 4.605
e 33x107%/s

Chapter 1

2. Sarting from the basic idea that tensile necking begins at the maximum load point, find the true
strain and engineering strain where necking begins for the following material laws. Derive a

general expression for the form and find the actual strains.

a. 0=k(e+¢g)" o =500 (e + 0.05)02 (Swift)?
b, 0 =00+K (e +gp)" 6 =100 + 500 (e + 0.05)%% (| ygwik)
c. 0=0,(1-AcB®) 6 =500[1 - 0.6 exp (-3¢)] (Voce)?
d. 6=0q 6 =500 (Ideal)
e. 0 =0o+Kke 6=250+350¢ (Linear)
f. o =ksin(Bg) 6 =500 sin (2re) (Trig)
SOLUTION:
o O=k(E+e)"

g—g=nk(£+£0)“=k(e+eo)”=c

(. €0=005 n=025

b c=0,+k(e+e)"

& k(e +ed ™ =0, e+ eg"= 0

Go+ ke +eg) [e+ 5] =0

Thisistranscendental, so it cannot be solved algebraically.

Let's solve it numerically by Newton's Method for the special case n = 0.25, ¢, = 0.05, 6, = 100, k =

500.

1 H. W. Swift: Plastic Instability Under Plane Stress, J. Mech. Phys. Salids, 1952, Vol. 1, p.1.

2 E. Voce: The Relationship Between Stress and Strain For Homogeneous Deformation, J. Inst. Met: 1948, Vol. 74, p. 537-562, 760.

E. Voce: The Engineer: 1953, Vol. 195, p.23.
E. Voce: Metalurga: 1953, Vol. 51, p. 219.
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Fe)= o, +k(e+e)"" [e+es1 =0

F(e) = k(n—2)(e + go)n_z [8 + go_n'l +k(e + 80) n-1

Start from atrial of e, = 0.20 (from Part b)

Fundamentals of Metal Forming - Solution Manual

Step (i) eu(i) Fleu(i)] F'[eu(i)] gy(i+1)
0 0.20 100 1,414 0.129
1 0.129 -29 3,078 0.138
2 0.138 -8.5 2,762 0.142
So, g, © 0.142
6 = o (1-Ae™9)
C. 0
d _
d—: =BAce *=o(1-Ae™)) =0
BX =1-X where X = AeBe
1 1 1 1
x—m or Inx—lnm, |nA—BE—|nm’ —BS—InE—InA
1 1 1
Eu = —B InA —=In m = E |nA(1+B)
e.= = In[0.6(4)] = 0.29
for A=0.6B=3: 3 [ ] '
do _ O=0,=0
d 0 =0, de ° (Never stable for congtant %o, £
do _ _ ko,
o c=o,+ke a—k—c(ﬁke—c e=—
2
o, 2 390250 _ o
for 6, = 250, k = 350, 350
f. o =k sin(Be)
do-chos =k sin e=—1tan_1B
de (Bg)_ (B?) B =tan Be B

Page 5
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1 a0,
o Bo2n k=500 © 3 20022

3.  What effect does a multiplicative strength coefficient (for example k in the Hollomon Law, k in
Problem 2.a., or o, in Problem 2.c.) have on the uniform elongation?

SOLUTION:
No effect. Becauseit isonly the ratio of strength in one part of the tensile test (i.e. in the neck) to
another (outside the neck), multiplication of ¢ has no effect on stability.

4.  For each of the explicit hardening laws presented in Problem 2, calculate the true stress at € =
0.05, 0.10, 0.15, 0.20, 0.25 and plot the results on a (In o-In ¢) figure. Use the figure to calculate
a best-fit n value for each material and compar e this with the uniform strain calculated in Problem
2. Why are they different, in view of Eqg. 1.16?

5. For each of the explicit hardening laws presented in Problem 2, plot the engineering stress-strain
curves and determine the maximum load point graphically. How do the results from this
procedure compar e with those obtained in Problems 2 and 4?

SOLUTIONS:
See table and plots. Compare g, and n from In-In plots

Equation gy (Problem 2) g, (Problem 4) €y (Problem 5)
(from max load)
a 0.20 0.17 0.20
b 0.14 0.13 0.14
C 0.29 0.24 0.29
d 0.00 0.00 0.00
e 0.29 0.14 0.29
f 0.22 0.75 0.22
dinc ,_
Theresults are differ%nt from Problems 2 and 4 because dIne€ B iIsnot aconstant. Only this quantity
c

— =0
at the point at which de isimportant, not an average of this quantity over alarge range of strains.

The results from Problems 2 and 5 are identical, whether Considere's Criterion is used mathematically
(Problem 2) or whether the hardening equation is plotted in engineering units and the maximum load is
found.

520 (¢ +0.05)>% _ 520
500 (e +0.05)** 500

62
—= (attwo rates) =
G
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Problem 1-4
Stress Stress Stress Stress Stress Stress
Strain Part a Part b Part ¢ Part d Part e Part f
0.05 281 381 242 500 268 155
0.1 311 411 278 500 285 294
0.15 334 434 309 500 303 405
0.2 354 454 335 500 320 476
0.25 370 470 358 500 338 500
In stress In stress In stress In stress In stress In stress
In strain Part a Part b Part ¢ Part d Part e Part f
-2.996 5.639 5.943 5.488 6.215 5.589 5.040
-2.303 5.740 6.019 5.627 6.215 5.652 5.683
-1.897 5.812 6.074 5.732 6.215 5.712 6.003
-1.609 5.868 6.117 5.815 6.215 5.768 6.164
-1.386 5.914 6.153 5.881 6.215 5.822 6.215
slope (n) 0.17 0.13 0.24 0.00 0.14 0.75

(Figure for Problem 1-4 follows.)

6.4

In (true stress)

5« I I I

-3 -2.5 -2 -15 -1
In (truestrain)
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engineering strain
Figure for Problem 1-4 (upper), for Problem 1-5 (lower).
Problem 1-5
True Eng. Eng. Stress Eng. Stress  Eng. Stress  Eng. Stress  Eng. Stress  Eng. Stress
Strain Strain Part a Part b Part c Part d Part e Part f
0.01 0.01 245.0 344.0 206.8 495.0 251.0 311
0.02 0.02 252.1 350.1 213.2 490.1 2519 61.4
0.03 0.03 258.1 355.1 219.1 485.2 2528 90.9
0.04 0.04 263.1 359.2 224.8 480.4 253.6 1195
0.05 0.05 267.5 362.6 230.0 475.6 254.5 147.0
0.06 0.06 271.2 365.4 2349 470.9 255.2 173.3
0.07 0.07 2744 367.6 2395 466.2 2559 198.5
0.08 0.08 277.1 369.5 2437 461.6 256.6 2224
0.09 0.09 279.5 3709 247.7 457.0 257.3 244.9
0.1 0.11 281.6 3720 251.3 452.4 2579 265.9
0.11 0.12 2833 372.9 254.7 447.9 2584 2855
0.12 0.13 284.8 3734 257.8 4435 259.0 303.6
0.13 0.14 286.0 3738 260.7 439.0 259.5 320.1
0.14 0.15 287.0 3739 263.3 434.7 259.9 334.9
0.15 0.16 287.8 3739 265.7 4304 260.4 348.2
0.16 0.17 2884 373.6 267.9 426.1 260.8 359.7
0.17 0.19 288.9 3733 269.8 421.8 261.1 369.7
0.18 0.20 289.2 3727 271.6 417.6 261.4 3779
0.19 021 289.4 372.1 2732 4135 261.7 384.4
0.2 0.22 289.5 3713 274.6 409.4 262.0 389.3

Chapter 1
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0.21 0.23 289.4 3705 275.8 405.3 262.2 392.6
0.22 0.25 289.2 369.5 276.8 401.3 262.4 39%4.2
0.23 0.26 289.0 368.4 2777 397.3 262.6 39%4.1
0.24 0.27 288.6 367.3 2784 393.3 262.7 3925
0.25 0.28 288.2 366.1 279.0 389.4 262.8 389.4
0.26 0.30 287.7 364.8 279.5 385.5 262.9 384.8
0.27 0.31 287.1 363.4 279.8 381.7 263.0 378.7
0.28 0.32 286.4 362.0 280.0 377.9 263.0 371.2
0.29 0.34 285.7 360.5 280.1 374.1 263.0 362.4
0.3 0.35 284.9 359.0 280.1 370.4 263.0 352.3
0.31 0.36 284.1 357.4 279.9 366.7 262.9 341.0
0.32 0.38 283.2 355.8 279.7 363.1 262.9 3285
0.33 0.39 282.2 354.1 279.3 359.5 262.8 315.0
0.34 0.40 281.2 352.4 278.9 355.9 262.6 300.5
0.35 0.42 280.2 350.7 2784 352.3 262.5 285.1
0.36 0.43 279.1 3489 277.8 348.8 262.3 268.8
Uniform strain (eng.) 0.22 0.15 0.34 0.00 0.33 0.25
Uniform Strain (true) 0.20 0.14 0.29 0.00 0.29 0.22

6. Tensle tests at two crosshead speeds (Imm/sec and 10mnvsec) can be fit to the following
hardening laws:
at V1 =1mm/sec, ¢ =500 (¢ + 0.05)0.25
at V, = 10mm/sec, ¢ = 520 (g + 0.05)0-25
What is the strain-rate sensitivity index for these two materials? Doesit vary with strain? What is
the uniform strain of each, according to the Considere Criterion?

SOLUTION:
_In(oJo;) _ In(520/500)
“n (i) In(on)

The strain-rate sensitivity is independent of strain because the ratio of stresses at the two strain rates is
independent of strain.

Substituting into the result for Problem 2a gives the uniform true strain in each case:
e, (v,) =¢,(v,) = n—g, =.25-0.05 = 0.20

7.  Repeat Problem 6 with two other stress-strain curves:
at Vq,=1mm/sec, ¢ =550¢02>
at Vo = 10mm/sec, ¢ = 500 £0-20

Plot the stress-strain curves and find the strain-rate sensitivity index at strains of 0.05, 0.15, and
0.25. Inview of these results, does Eq. 1.17 apply to this material ?

SOLUTION:
O, _ 550> : IN1.1°% 0,095+ 0.05]
— = =11¢%" _Inlle™ 0. 05Ine _
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In this case, the strain-rate sensitivity varies with strain.

Eqg. 1.17 applies equally well to Problem 6 or Problem 7 at a given strain rate. The difficulty is that the
equation was derived assuming that tensile stress depends only on tensile strain. However, the effect of
strain-rate sensitivity on the maximum load point is small if m<<n, asis the usual case. However, the
post-uniform elongation depends strongly on even small values of m.

8. Consider the engineering stress-strain curves for three materials labeled A, B, and C below.
Qualitatively, put the materials in order in terms of largest-to-smallest strain hardening (n-value)
and strain-rate sensitivity (m-value).

Gen

Y
o
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SOLUTION: Ol
Strain hardening (based on strain to maximum V,=102m/s
load) order: B, A, C.
Strain-rate sensitivity (based on post-uniform
strain) order: A, C, B. B ¢ G315 MPa
Ductility or formability (based on total strain to 5.2300 MPa
failure) order: A, B, C. V1= €
9. It is very difficult to match tensile specimens

precisely. For sheet materials, the thickness, width, 2
and strength may vary to cause a combined

uncertainty of about ¥1% in stress. Considering this | V - ¢
uncertainty of K's in Problem 6, calculate the range
of mvalues which one might obtain if one conducted the tests at both rates several times.
SOLUTION:
From Problem 6, we recall that
In 22
m=—% =0,017 _
In10 ,  but now we consider the range: 520 * 1% x 520 = 515 to 525
and 500 £ 1% x 500 = 495 to 505
=
Mgy = In—iog’ =0.009
1 525 = 0.017+ 0.009
495

S0, the combined uncertainty of misin the range:

So, a * 19 uncertai nty in stress corresponds to a * 5006 uncertai nty inm!

10. Considering the specimen-to-specimen variation mentioned in Problem 9, it would be very
desirable to test strain-rate sensitivity using a single specimen. Typically, "jump-rate tests' are
conducted by abruptly changing the crosshead velocity during the test. Find the strain-rate
sensitivity for the idealized result shown:

SOLUTION:

11. In fact, the procedure outlined in Problem 10, while being convenient and attractive, has its own
difficulties. In order to obtain sufficient resolution of stress, it is necessary to expand the range
and to move the zero point. Some equipment does not have this capability. More importantly, the
response shown in Problem 10 is not usual. For the two more realistic jump-rate tests reproduced
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below, find m values using the various points marked.

Oe A
v, =102m/s

v, extrapolated

A=300 MPa
B=315 MPa
v, =103m/s C=330 MPa
2 D=345 MPa
/\/ = €

Oe A
Vv, extrapolated
A
B v, =103m/s
C
v, =102m/s A=315MPa
De B=310 MPa
C=300 MPa

2 D=290 MPa

_J\/ » €
SOLUTION:
For the "up jump" in rate:
In3 In3X In 3%
_ 300 _ _ 300 _ _ 300 _
Mg =15 = 0.0211 Me=1—5 = 0.0411 Mp =15 =0.061
For the "down jump" in rate:
In30 In 30 In22
mg = —2 = 0.007 me = —2 = 0.021 m, = —r =0.036
Inm Inm InTO

It should be apparent that neither the jJump or continuous method eliminates the uncertainties.
B. DEPTH PROBLEMS

12. If a tensile test specimen were not exactly uniform in cross section, for example if there were
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initial tapers as shown below, how would you expect the measured true stress-strain curves to
appear relative to one generated from a uniform specimen? Sketch the stress-strain curves you

would expect.

SOLUTION:

(c) Severe notch

The presence of a notch tends to concentrate the strain in the reduced gage section such that work

hardening occurs there rapidly.

In a more severe notch, the stress state begins to have a lateral

component (tending toward plane strain) which leads to more hardening. Therefore, one might expect
the behavior to appear as shown.

Engineering Stress

A

Mild Notch

Severe Notch Uniform

Engineering Strain

13. What isthe relevance of the 0.2% offset in determining the engineering yield stress?

SOLUTION:

It is ssimply a convenient number; small enough so that little strain hardening takes place but large
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enough to resolve using most tensile testing equipment.

14. Some low-cost steels exhibit tensile stress-strain curves as shown below. What would you expect
to happen with regard to necking?

Ge A

SOLUTION:

During the firgt, flat stage one should expect localization to begin. In fact, this happens in a narrow
band called a Luder's band, but as the strain there increases the material in the bank increases and the
flow stress exceeds that of the surrounding material. The bank thus moves outward until the entire
specimen is strained beyond the flat region. After that, straining takes place normally.

15. It has been proposed that some materials follow a tensile constitutive equation which has additive
effects of strain hardening and strain-rate hardening rather than multiplicative ones:

[multiplicative: 6 = F(e) G(&)]

[additive ™ o = F(e) + G(&)]

o (Vo)
In the first case one investigates G(€) at constant £ by examining © (V1) , as we have done so far.

In the second case, one would watch © (V2) - 6 (V1) Assume that an additive law of the following
type were followed by a material:

G =500 €025 + 25 (_L)O'Oso
€9

where €o is the base strain-rate where the strain hardening law is determined (i.e. a tensile test
conducted at a strain rate of €0 exhibits o= 500£0.25).

a. Given this law, determine the usual multiplicative m value at various strains from two
tensile tests, one conducted at €0 and one at 10€o.

b. Compare tensile results extracted from the additive law provided and the multiplicative
one determined in Part a. [Use the m value obtained from the center of the strain range, at
e=0.125]
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SOLUTION:
)00
o =500¢%% + 25 (—)
80

4 €8 0=500e"%+25

£=10e, o =500¢€%% + 25 (10)°%=500€%% + 50

at
€=0.05 m =0.040
| 500025 + 50 €=0.15 m =0.031
_ A 500£0-2° + 25 £€=0.25 m =0.028

The m value decreases with strain because the stress difference between the two rates is reduced rel ative
to the overall flow stress.

16. Use Eq. 1.1-19 (or, equivalently, Egs. 1.1-20 and 1.1-22) to find the plastic instability for the
strain hardening [f(£)] and strain-rate hardening [g(&)] forms specified. In each case m=0.02 and

€o=1/seC.

. \m

— t(e) afe @) =&

a. 0 =1(€) 9(€), f(¢) from Problem 2a, €o
© =&

. €)=|—=

b. 0 =f(€) 9(), f(¢) from Problem 2c, J €o
©=[£]

. €)=|-—=

c. 0 =1(€) 9(€), f(¢) from Problem 2d, J €0
©=[£]

. €)=|—=

d. © =f(€) 9(€), f(&) from Problem 2e, J €0
) . \m

— (e) afe 9(€) = (i)

e. 0 =1(€) 9(€), f(¢) from Problem 2f, €0

f. 0 =f(e) + 9(€), f() and Y(€) from Problem 15. (Leave Part f in equation form.)

SOLUTION:

. \m
c=k(s+eo)“(_i)
€0
_ dlnc —_he o dlnc -
' _(alns)é_g"'go o _(8In€)£ m
n

:4 = n - =
€ (1—m)(s+eo) = | &y m €0 =0.205

a
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6 =0 (1- AgBe) (i)m

b. €0
_(dInc\ _ BAe exp(-Be) _[dlno\ _
n = = , m=[——=| =m
' (alns)é 1- A exp(-Be) ! (alne A
_ 1, [AB+Hm)]_
€y 5 ln[—l-m 0.300
. \m
0200(,&)
C. €0
dlnc dlnc
.= :0, = —] =
i (ams)é m (ams;)e m
(Never stable)
. \m
(5:(60+ke)(,i)
d. €0
_[dIno\ _ ke _[dlnc\ _
nl _(ame)é_co"'ks ' ml (_alng)g m
- ke —_1 _%0_-0306
T m)(corke) VT Tm Tk
. \m
o =ksin(Be) i)
e €0
_(dlnc\ _ Be _([dInc | _
n = = , m=[——| =m
' (amg)é tan(Be) ! (ame)g
= ——Be ___ =L tam? (i)zo.zzs
ET Tmten@e)  |TB O |1m
G:k£“+B,im
f. €9
.\m
Bm-£-
= dlnc _ nken Cm= aln§ _ H{EO)
dlne Jg ken+B_£) aIng e ksn+B;)m
80 80

Substitution leads to a transcendental equation:

nerl - gn=B (1-m)(,£)m

€0
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which may be solved iteratively if so desired. Note that for an additive law such as
this one, the plastic instability strain depends on strain rate as well as material
constants.



CHAPTER 2 - PROBLEM SOLUTIONS

A. PROFICIENCY PROBLEMS
1. Performtheindicated vector operations using the vector components provided:

ac(1,1,1) be(1,23) co(-1,1,-1)

ab axb a-(bxc)
ac axc (axb)-(axc)
b-c bxc a-(b+c)
a+b bxa a-btac
at+c cxa ax(b+c)
b+c cxb (axb)+(axc)

SOLUTION:
Note & b < ab =ab, +ab,+ap,
axb=¢ggabjx,= (a2b3—agb2) X, + (a3bl—a1b?) X, + (albz—azbl) X3

a-b=(1,1,1) (1,23 =1-1+1-2+1-3=6
a-c=(1,1,1) (1,1, -1)=-1+1-1=-1
b-c=(1,223)(-1,1,-1)=-1+2-3=-2
a+b=(1,1,1) +(1,23) < (2,3, 4)
a+c=(1,1,1)+(-1,1,-1) & (0,2,0)

b+c=(1,2 3)+ (=11, -1) < (0,3, 2)

A A
1X2X3

x>

11
23

A
X, —

11
13

A
X, +

11
12

A A A

axb = X3=Xl—2X2+)/E3H(1,—2,1)

P

11
23
Inasimilar way,
axce (1,-2,1)
bxce (-2,0,2)
bxa« (-5,-2, 3)
cxae (2,0,-2)

cx bes (5,2,-3)
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a-bxc=+4
(axb) (axc)=0
a-b+c)=5
a-b+a-c=5
ax(b+c) e (-1,-23)
(axb) +(axc)« (-1,-2,3)
2. Performthe indicated vector operations.

a. Write the components of the given vectors (ab,c) n terms of the base vectors

(;( ! ;(\2;(\ 3) provided:

X, < (0.866, 0.500, 0.000)
K, < (-0.500, 0.866, 0.000) |,
K3 <> (0.000, 0.000, 1.000)

where the components of these base vectors are expressed in the original coordinate
system as follows:
a1, 1,1 b (L, 2 3 ce (-1, 1,-1)
or
azs(\l+$(\2+$(\3 b:/)?l+2/)?2+3/)?3 c= '$(\l+$(\2‘?3

b. Perform the following operations using the components of a, b, ¢ expressed in the new

(primed) basis:
ab a (bxc) ax(b+c)
axb  (axb)- (axc)  (axb)+(axc)
at+b

c. Construct the rotation matrix [R] to transform components from the original coordinate
system to the primed coordinate system. Is[R] orthogonal? Find the inverse of [R] in
order to transform components expressed in the primed coordinate system back to the
original, unprimed coordinate system.

d. Transform the components of the results found in Part b. to the unprimed coordinate system
and compare the results with the equivalent operations carried out in Part a. (using
components expressed in the original coordinate system).

SOLUTION:
&, <> (0.866, 0.500, 0.000) /=0.866%,+058,

R
R, <> (~0.500, 0.866, 0.000) R, = —05%,+0.866%,
&3 > (0.000, 0.000, 1.000) Ry =R

a

N
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so that, according to Eq. 2.23:

0.866 0.500 0.000
[R] = |-0.500 0.866 0.000 |, and
0.000 0.000 1.000

a 0.866 0.500 0.000 ||1 1.366
a, | =|-0.500 0.866 0.000 || 1| = |0.366
a, 0.000 0.000 1.000 || 1 .1.000
b, 0.866 0.500 0.000 |1 1.866
b, | = |-0.500 0.866 0.000 ||2| =|1.232
by 0.000 0.000 1.000 |3 -3.000

c,| =|-0.500 0.866 0.000 (| 1| =] 1.366
Cy 0.000 0.000 1.000 ||-1 -1.000

C1 0.866 0.500 0.000‘ l—l 0.366

a < (1.366, 0.366, 1.000)
b <> (1.866, 1.232, 3.000)

¢ <> (-0.366, 1.366, —1.000)

b. a-b'=6 (Note: the prime notation is used here to remind that the required operations

were carried out using the components expressed in the primed coordinate system.)

a’ xb’ < (-0.134,-2.232, 1.000)
a’ +b’ < (3.232, 1.598, 4.000)
a - (b"xc)=-4.000

(& xb’) - (& xc’)=0.000
(axb)+(axc) = —4.000

(@ x ) + (@ x &) <> (~1.866, -1.232, 3)



Page 4 Fundamentals of Metal Forming - Solution Manual Chapter 2

0.866 0.500 0.000
c [R] = [-0.500 0.866 0.000 |,  [x]=[R][X]
0.000 0.000 1.000
0.866 0.500 0.000 || 0.866 —0.500 0.000 | [1.00 0.000.00
[R][R] =|-0.500 0.866 0.000 || 0.500 0.866 0.000 | ={0.00 1.000.00|=[I]
0.000 0.000 1.000 || 0.000 0.000 1.000 | [0.000.001
Orthogonal
signed |
cofactor

-l fomesam) |
~ JA] | 0000 0,000 1.000 |

d. [a] = [R][d ,or [RI™[a] = [d

0 a-b=6 ; doesnotchangesinceitisscalar.

T

_i] < (1,-2,1) (same result)

axb =[ 0500 0.866 0.000 ||-2.232

0.866 —0.500 0.000 || -0.134
0.000 0.000 1.000 || 1.000

(if)
a+b = | 0500 0866 0.000 [?zé%%] [%] o (234 (smeresil
i) 0.000 0.000 1.000 || 4.000] |4

vy @ (bxg=a-(bxc)=—4

) a (bx9=a (bxg =0

vi) @xb)-(@xc) =(axb)-(axc) ¢ (-1,-2,3)
wiiy @x(b+ =ax(b+c) & (1,273

(viiiy @xD)+(@xq) = (axh)+(@xc) < (-1,-2,3)

Should have the same results for every case.

3.  Findthe rotation matrices for the following operations:

a. Rotation of axes (i.e. component transformation) 45° about X3 in a right-handed sense
(counter-clockwise when looking anti-parallel along X3).

b. Rotation of a physical vector 45° about X3 in a right-handed sense (i.e. the vector moves
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counter -clockwise when looking anti-parallel along 333).

c. Rotation of axes (i.e. component transfor mation) 30° about X2 in a right-handed sense (i.e.
counter -clockwise when viewed anti-parallel to X2).

d. Rotation of a physical vector 30° about X2 in a right-handed sense (i.e. the vector moves
counter-clockwise when looking anti-parallel along X2).

SOLUTION:
a
cos45° cos45° cos90° % '/—22 0
[R] =|cos135° cos45° cos90° | = —g g 0
cos90° cos90° cos0° 0 0 1
27 TR TR
2 2 2 2 2 2
_| W2 42 _ _
Rl=|5 & o [Rl=| 0 1 o0 [Rl=| 0 1 o0
1 V3 1 V3
o 0 1 3 02 2 0%
b C. L / d /
4.  Perform the matrix manipulations shown.
a. Find the determinants and inver ses of the following matrices:
123 789 111
[A]=|4586| [B]=[123] [c]=|-123
789 456 31-1

b. Multiply [AI[ATY, [BI[BIY, and [CI[CI? to verify that the inverse has been correctly

obtained.
SOLUTION:
123 789 111
[A]=|456| [B]=|123| |[C]=[-123
789 456 31-1

|A| =1(5-9-6-8)-4(2-9-3-8)+7(2:6-3-5) = 0
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signed wfactor]"
[A] g matrix
|A| " since|A| =0, [A]™ cannot be obtained

|B|=]|A|=0,  [B]" — doesnot exist

1.25 -0.5 -0.25
= 2 1 1
[C]=1(2-3)-1(1-9)+1(-1-6) =4, 1.75 -05 -0.75
b. [A][A]™, [B][B] " notapplicable
111 125 —05 —025 100
[C][c]"=|12 3 =[o10
31-1 175 —05—075 001

“ Yes, inverse has been correctly obtained.

5.  Thefollowing sets of basis vectors are presented in a standard Cartesian coordinate system
(X1, X2, X3),

e (0.707, 0.707, o.ooo)

Set (1) x(z)e(osoo 0.500, 0707)
X3 &> (0500, -0.500, 0.707)

X2 (o 750, 0.433, 0.500)
Set (2) X(ZZ)H(-O.SOO, 0.866, o.ooo)

X5 ¢ (-0.433, -0.250, 0.866

~—

XD (o 866, 0.500, 0.354

Set (3) x(f)e (o 500, 0.866, 0.354)

~@
x5 <> (0.000, 0.000, 0.866

a. Using vector operations, determine which of the basis sets are orthogonal.

b. Determine the transformation matrices to transform components presented in the original
coordinate system (X1, X2, X3) to those in each of the other basis systems.
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c. Which of the transformation matrices in Part b. are orthogonal? Does this agree with Part
a?

d. Find the transformation matrix to transform components provided in coordinate system (1)
to components expressed in coordinate system (2). Is the transformation matrix

orthogonal ?
SOLUTION:
a To be orthogonal, the inner product of two vectors should be zero.
1) ~N1
se() 30 =(0.707,0.707,0.000) - (-0.5, 0.5, 0.707) = 0.0
A N
%% = (0500, -0.500, 0.707) - (-0.500, 0.500, 0.707) =0.0
*D. 38 = (0.707,0.707, 0.000) - (0,500, -0.500,0.707) = 0.0

.. orthogonal

st@ 2303230395900 - orhogora

set(d  x2x2=0.991

XX =0.307

A A
x(ls) : x(33) =0.307 .. ot orthogonal

o X; © (1,0,0), X< (0,1,0), x5« (0,0,1)

XD 5 (0.707,0.707,0.0) = 0.707 (1, 0,0) + 0.707 (0,1, 0) + 0.0 (0, 0, 1)
X} ¢ (-0.5,05,0.707) = -0.5(1,0,0)+ 05 (0, 1,0) + 0.707(0, 0, 1)

D & (0.5,-05,0.707) = 0.5(L, 0,0) + -0.5(0, 1, 0) +0.707 (0, 0, 1)
Set(1)

Inasimilar way as shown in Exercise 2.5, we obtain

0.707 0.707 0.000
[R%] = |-0.500 0,500 0.707
St (1) | 0.500 0500 0.707

0.750 0.433 0.500
[R®] = | -0.500 0.866 0.000
S | -0.433-0.250 0.866 |

0.500 0.866 0.354

[ 0.866 0.500 0.354
] -
(3 | 0,000 0,000 0.866
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_ |o707 05 05 |[0.7070.707 00 | [100
[R¥][R¥]" =|0707 05 -05 || 05 05 0707|=|010
0.0 0.7070707|| 05 —050.707| 001

C. Set (1)

.~.orthogonal

Set (2) [R®] [R®]" =1 . orthogonal

_ | 0.866 0.500 0.354 | 0.866 0.500 0.000
[R®] [R®]" =| 0.500 0.866 0.354[0.500 0.866 0.000| =
0.000 0.000 0.866 | | 0.354 0.354 0.866

1130.990.31 100
0.991.13031| =|0 10|=[I] <. not orthogonal
0.310.310.75 001

Set (3)

i.e. When the transformation is a pure rotation, the transformation is orthogonal .
All of these results agree with Part a.

o ORI =R

e B[R R e

R‘l’] [Ru)] - [R(n] T

Since [ Is orthogonal

[R(l)ea)] = [R(z)] [R(l)]T

0.750 0.433 0.500 || 0.707 —0.500 0.500
=|-0.500 0.866 0.000 (| 0.707 0.500 —0.500
—0.433-0.250 0.866 || 0.000 0.707 0.707

0.836 0.195 0.512
=| 0.259 0.683 —0.683
—0.483 0.704 0.521

Check of orthogonality:
0.836 0.195 0.512 ] [ 0.836 0.259 —0.483] [100]

[R][R®]"=| 0.259 0.683 -0.683|| 0.195 0.683 0.704 |{010
—0.483 0.704 0521 || 0512 —0.683 0.521 ||001

=[1]
.. orthogonal

For those familiar with matrix manipulation, another proof may be written briefly as follows:
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Rl ()" = (R (o)’

= [RE[RU[RYJ[R?]" = [R¥] [R]" =[]
[1]

6. Solve the sets of equations presented below by finding the inverse of the coefficient matrix. (Note
that Part b will require extension of the inversion formula to matrices of size greater than 3x3.):

X1+2X2,+3X3=10
X, 45X, - Xg= 12
X1+ 3X2+ X3= 14

a.
X1+2>(2+3X3+ 4X4:10
X1+5X2 - X3+14X4=12
X1+3X2+ X3+ X4=14
b X1+4X2‘ 2X3' 2X4=16
SOLUTION:

o [KID=[F - [x]=[K]"[F]

123 10
K]=| 1 5-1], H=|12
[K] 13 1] [A [14]
]
K] ;54
|K|=5+3-2+9-2-15=-2, -17.4 3

Classical adjoint: transpose of the matrix of cofactors.

1| 8 7 -17|[10] |37
s[X] =522 4||12|=|-6
14l |5

2 -1 3
[ _4.632

_ | 5.789

[X] ~ | 2.000

b. In the same way, ._0'737
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7. Perform the following operations related to eigenvector - eigenvalue problems.

a. Find the eigenvalues and the associated eigenvectors for the following matrices:

123 1-1 2
[12] 245 -1 2-3
356 2-3 3

b. Find the transformation matrices which change components expressed in the original
coordinate system to ones expressed using the eigenvectors as base vectors. Choose the

direction associated with the maximum eigenvalue to be the new X1’ the second one X2',
and the third one X3'.

c. Treating the columns of the matrices in part a. as vectors, find the equivalent components
expressed in the eigenvector bases from Part b.. [i.e. use the transformation matrices
found in Part c. to find the new components of the tensors in Part a., expressed in the
principal coordinate system.]

SOLUTION:
1-A 2

=(1-N’—-6=1-2L+A2—6=222L-5=0
=0 |5 5] 0

Eigenvalues: A,=1+/6, A,=1-/6; Eigenvectors. p®, p®@

(I) For A= 1+/€ = 3.449

ol |
w48

Let XP=1, then —/6+2xP =0 X2 =5

[p9] & L (1, —@) = (0.632, 0.775)
Normalizing these V3

(”) For A= 1—/6 = -1.449
V6 2 ][x?
3 /6 <2>

Normalizing, we get

2 — 2 — _/6
] and if Xl =1, then X2 =5

p®@ ¢ (0.632, —0.775)
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Check of orthogonality: p®-p@ =-020=0

original
matrix is not symmetric.)

ng the same procedure,
A, = 11.345, p, <> (0.328,0.591, 0.737)
[% 2 g] ), = -0516, p, < (0.737,0.328,—0.591)
(i) Forl356 As = 0171, p, & (0591, 0.737,-0.328)
112 A, =6.419, p, < (0.374,-0.577,0.725)
1923 A, =-0387, p, < (0.816,0.577,0.038)

[T]m:' 0632 0.775
0.632 —0.775

[T]?=|-0591 0.737 -0.328
0.737 0.328 -0.591

0.328 0.591 0.737]

0.374 —0.577 0.725
[T] ®=10.816 0577 0.038
—0.041 0.577 0.687

Suppose X, Y, z are orthogona eigenvectors of A where eigenvalues are Ay Ay and A
respectively, let

Xl yl Zl Xl yl Zl
[L]=]x%, V. 2, x| x| yoly,| ze|z

X3 y3 23 where 3 y3 23

Then from 2.35a, (Al =2[7]
NABECI P

Here [L1=[T1", and D1 =[TT [AT[T]"

We will obtain [D]; the diagonal matrix whose diagonal components are eigenval ues.
For example,

Page 11

(Not orthogonal because the

31
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0.328 0591 0737 |[123|| 0.328 0.737 -0.591| (11345 0 O
[D] =| 0.737 0.328 -0.591||245(| 0591 0.328 0737 |=| 0 -0516 O
~0.591 0.737 -0.328|| 356|| 0.737 -0.591-0.328 0 0 0171

8. Find the new components of the tensors provided below if the coordinate system change
corresponds to a rotation of 30° about X3:

0.866 0.500 0.000
[R] =|-0.500 0.866 0.000
0.000 0.000 1.000

B3 - . ol
rd = , S =
17715 5 2771789

SOLUTION:

[ =RIMR" [T =RMR [T =RITR]

, 10866 0500 0.000 ||123]| 0.866 —0.500 0.000 3.482 2.299 5.098
[Tl] =|-0.500 0.866 0.000 |(245]|[ 0.500 0.866 0.000 |=[2.2991.518 2.830
0.000 0.000 1.000 |[356])( 0.000 0.000 1.000 5.098 2.830 6.000

, 4598 2.232 5.598
T,] =[R][T,] [R]" =| 4.232 1.402 3.696
[ 2] [ ][ 2][ ] 10.062 3.428 9.000

9. Incalculating contact conditions at an interface, it is often necessary to find the unit vector which
represents the projection of a given vector (usually the displacement of a material point) onto a
plane tangent to the interface. If the normal to the tangent plane is denoted i and the arbitrary

vector is a, find f, the unit tangent vector corresponding to the material displacement. [Express
theresult interms of a, i, and simple vector operations]

SOLUTION:
One possibil ity IS based on the use of vector addition and the dot product:

~ a-—-fla- n n AR ,
( (sincet isaunit vector)
a—[a-n|n

Alternatively, one may use the cross product to accompllsh the same thing by first defining a
unit vector g , which is orthogonal to ﬁ 4 and t

S A ﬁx(axﬁ)
__axfii ¢_ —
a_|a><ﬁ| t=fix4 |axfi

B. DEPTH PROBLEMS
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10. Performthe following operations related to component transformations.

a. Find the transformation for components from basis set (2) to basis set (3), in Problem 5,
above.

b. Find the inverse transformation, that is, one that expresses components in basis set (2) if
they are given in basis set (3).

c. Using the approach shown in Exercise 2.5, verify that transformation matrices found in
Parts a. and b. do, indeed, perform the indicated transfor mations.

d. Show the matrix form of the tensor transformation for components given in basis set (2) to
those in basis set (3).

SOLUTION:
A

A
@) (©)
a X = X

SRCSICNCRCENES
<[R9 (87 = (7] (R (%]

. [o8e6 0500 0.354] 0.750 —0.500-0.433
- [R@®] =[R®] [R®]" = | 0500 0.866 0.354|| 0.433 0.866 —0.250
0.000 0.000 0.866| 0.500 0.000 0.866

1.043 0.000 —0.193
0.927 0.500 —0.126
0.433 0.000 0.750

€)
Since the inverse of [R ] is not used in this transformation, its non-orthogonality is not
anissue. However, in part b this requires inverting (rather than transposing) a matrix.

b. Recal fromPata [RZ=[RY] [R(Zle

@0 —1:( @) [R® T)’lz @ [pa] ! — _0-§66 0:000 _0.?23
e = AT) AT - 42 388 5

Where we have used the relationships: [R(Z)]_l - [R(Z)]T and ([A][B])_l - [B]_l[A]_l

C. Let's verify the transformations by considering three vectors, namely those of the original
~ (o) o) o)
basis set X1 (let's label them X+ ¥ X here to simplify the notation). We form the matrix

[A] (corresponding to the tensor A composed of the three vectors) in the usual way, by
putting the components of each basis vector into a column. Since we are considering the

components of the basis set in the basis set, [A] isthe identity matrix:



Page 14

Fundamentals of Metal Forming - Solution Manual Chapter 2

=[1]

2

(o) 0) 0)

X0yl |

A o [A(o)] — X(ZO) (Zo) 70 =1 0o
©) /(0 (0

X3 Vs Zg 0

o O
= O O

: . _ L@ and K@ .
We then find the coordinates of these three vectors expressed in the basis sets:

0.750 0.433 0.500
—0.500 0.866 0.000
—0.433-0.250 0.866

Ao [a7] = [Re][1]
(in basis set 2)

[ 0.866 0.500 0.354
0,500 0.866 0.354
0.000 0.000 0.866

Ao [a%] = [R1

] (in basis set 3)

-
Now, our transformation matrix [R ] must transform the components of any vector
. o® . o0
expressedin Xi~ to components expressed in X i :

1.043 0.000 —0.193|f 0.750 0.433 0.500
0.927 0.500 —0.126||—0.500 0.866 0.000
| 0433 0.000 0.750 |[-0.433-0.250 0.866

[ A (3)] = [R(z)e(:»] [ A (2)]

[ 0.866 0.500 0.354
= | 0500 0.866 0.354| = [A®]
0.000 0.000 0.866

3 3)
Comparison of [A ] obtained here with [A ] above shows that the transformation matrix

@~ O @~
[R ] performs its intended function. [R ] , the inverse of [R ]
in the same manner.

may be verified

Shownina

11. Find the rotation matrix for the double rotation of coordinate axes: rotate 90° about S<\1, and then
90° about X3.

SOLUTION:
[R]=|0 0 1
" lo0
(010
R]=[-10 0
(R |00
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X
0o10|[100][00 32
[Rl=[R][R]=|-10 of|0 0 1||-10 8
00 1([0-10]|[0-1C¢
N
001 ®
[R],,=|-10 0
0-10 r
12. A cylindrical coordinate system is one which < <
rotates according to the coordinates of the point \/ Y
in question. Typically, r, 6, z represent the @& - §<1
coordinates of a point, with the base vectors ;(\ %
~ N 3=
given as +9:Z for example. The figure at the
right shows such a coordinate system and a
superimposed Cartesian coordinate system
which coincides when 6=0.
PO 6 )
a. Find the transformation matrix to change components expressed in %1.%2.%3 15 ones

N DA

expressed in "+ 9 2,

b. Find the cylindrical components of the following vectors expressed in the X1, X2, X3

system:
a «+10.000, 0.000, 0.000
b < 0.866, 0.500, 0.000
c <« 1.000, 1.000, 0.000
d < 1.000, 1.000, 1.000
e « 0.000, 1.000, 0.000
f < -1.000, 1.000, 1.000

c. Find the magnitudes of the vectors given in Part b., first using the Cartesian coordinate
system components, then using the cylindrical coordinate system. How is the magnitude of
a vector computed in cylindrical coordinates?

d. Is[R] orthogonal for thistransformation? Physically, why or why not?

SOLUTION:
r cos® sne O X,
0|=[-sinB cos® O X,
Z 0 0 1 X3
a from geometry

b, a <> (10.000, 0.000, 0.000)
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[d=[R[4

= cosO sin6 10cos6
&= sme cose —1OS|ne
&

Inasimilar way,

0.866 cos0 +0.5sn O cosO +sno
[b] =|-0.866sin6+05c0s0| [ =|-sin6+ cosO
0 0
.cose+sin9 sno —C0sO +sin6
[d] =|-sin® + cos® [ =| cos® [f] =| sin®+ cos®
1 0 1
C. Cartesian Coordinate Cylindrical Coordinate

|a) = ¥/ 10>+ 02 +0% = 10 |a| =/ 10%cos? + 102 sin = 10

Likewise, should have the same results.

cos® sno O cos® —-sin6 O
[R][R]"=|sin6cos6 0 ||snd cos®6 0 |[=[I]
o o0 1 o o0 1

d.
The basis sets of each system are mutually orthogonal.

13. Perform the indicated operations related to equation solving.

a. Solve the equations given in Problem 6 by using Gaussian reduction instead of by finding
theinverse. Which to you prefer for large matrices?

b. Given the solutions obtained in Part a., find the inverse of the coefficient matrix.

c. For larger sets of equations, why isit easier to solve by a reduction method?

SOLUTION:
123]|[10| (12310 |123]|10 ,_g
1511112/ 0 34/)2|>/0 34|12 . .
L lte v [o1-2]|4 0%||%| x.=237

Similarly, we should get the same results for the second set. The Gassian reduction method
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ismuch simpler for large matrices because it operates row-by-row and it is not necessary to
keep track of complex expressions.

b. Solutions given in Problem 6.
C. For large sets of equations, it is much more complicated to compute the inverse of a matrix,

whereas the reduction method does not involve inverse computation. Less computation is
required in a reduction method.



CHAPTER 3- PROBLEM SOLUTIONS
A. PROFICIENCY PROBLEMS

1. Calculate the 3-D stress tensor components for the rectangular material shown in the figure, first
in the coordinate system X1, X2, and X3 and then in the coordinate systemX1', X2', X3'.

1 mm ”
“2- DZZ 200N
-~ ~ ~ —--
1h- X3' %ﬁxll 4 - Xl
mm / ~7
x3

The angle between X1 @A X1 5300, and the X3 X3 axes are parallel.

SOLUTION:
Before doing the problem formally using the known tensor transformations, let's approach it
from a physical and geometrical standpoint. Because of the equilibrium, we know that the force

transmitted throught the cross-sectional area (1mm?2) normal to X1is 200N, and the stress vector

N
operating on that same plane is S, < (200,0,0) mm?_ The other two planes, norma to

X2 and 533, contain the force vector and thus have no associated stress vectors:
S, (0,0,0)
S, (0,0,0)

0
Therefore, the stress tensor in the *i coordinate system may be written:

200 0 O
|0 0 O
O 0 O

R

plane normal to Ry which passes through the rod. The entire 200N of force must be transmitted
through this area, which is now larger because of the incline:

’ 1mm2 — 2
1 = 05308 - 1.155mm

The situation in the ] coordinate system may be approached similarly by first considering the

The corresponding stress vector thus has a magnitude of

5.1 = e 0930 = Tpgme = 1732 N/

To find the components of this vector along the X1'and X2’ vectors, we ssimply resolve this
value:

S, ¢ (173.2c0s30, 173.2sin30, 0) = (150, 86.6, 0)%

A ’
To find the stress vector operating on the plane normal to X2 , we follow the same procedure:

©_ lmm2 _ 2 ,
Az = gnaoe - 2MMS |s,| = 100N/mm?
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and the associated stress vector components are
S, <> (100 cos 30, 100 sin 30, 0) = (86.6 N/mm?, 50 N/mm?, 0)

And the entire stress tensor in X1' is

S, S, Sy
150 | 86.6| O
[c] = | 866 50 | 0
0o|0]oO

It is much easier and less error-prone to use the known tensor transformation properties to solve
the problem, asfollows:

Let o bethe stress tensor in the material and t the stress vector, then we have in general:

G.n:t:%
E 200 0 O
t,=6-%, =45, sotha [t]={ 0 0 0 [MPa
For N :/)?1,weget: 0 00

Similarly, t2 = 6-R,, ts = 6-Rs andwe can conclude that the stress tensor is
0

o
o O O

2 0
[o] =| O 0 |MPa
0 0

Va S

In order to transform these components to those corresponding to the *1 coordinate system, we
first find the rotation matrix:

.A.

Ql' %3 —; 0 |[xq
K=RK = [%|=]220]|%
A\ PaN
X3 0 01 X3

and then apply the transformat_i onrule fo[ a}second-rank_ed_tensor:

B lollaooo o[£ 1o
o]=[RIEIR" = |35 0flo 0 o|[5Z0
0o0o1f{0o 0 of/loo1
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[MPd]

2. Given the stress tensor which appears below, find the stress vector acting on planes normal to the

. A AN d N .
unit vectors, M, and P also given.

ﬁﬁv%(lil’l)
123
GH[% % éﬂ me 1,,L-G(laZ’l)
s L
p Hv-z-(lil’O)
SOLUTION:
[ =[o] []
i a1 Tel | .
123|| 5| |5 [3464
[t]®=224 ,—/1-3:785:4.619
34 3 ,-/13 71% 5.774
12 3 '-/13 783 3.266
[t]®:224 %6=%=4.082
34 3 713 71% 5.715
i a1 Tal | .
1235 |55| |21
t©:224 L1=|2|=]2828
Z| |72
34 3||o ! 4.950
7

3. Find the principal stresses, the principal d|rect|ons and the rotation matrlx for transforming
coordinates to the principal coordinate system (Xl Corresponds to Gpax, 3 corresponds to oin)

for the stress tensors given.

3-10 3
al-1 30/, b.|O
0 01 0

00 10 -
3-1|, c|-5
-11 5

Note: No numerical procedureisrequired to find the roots of the cubic equations.
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Chapter 3
SOLUTION:
3-10 3A-1 0
c=l-13 0 1312 0 (=0
001 0 0 1
a

, SO0 the eigen equationiis:
B0 @GN @10 - = -0 [EN*-1]=0
So: A=l A=2, k=4 = 0,=4,0,=2 0,=1

-1-1 0(|n,
For o, =4, -1-1 0|(n,
n,

0
0
0 03 0

, where(n,,n,,n,) are thecomponents of x,’

n,=0, N, +n,=0, N;+n3=1 (unitvector)

nl—i,—lz, n,=%%, n,=0 0 X,/ & (£ Fr,—%z 0)
1-1 0||m, 0
For 6, =2 -1 1 0||m,|=[0]|, where (m,m,,m,) arethe components of X,
0 0-1||m, 0
0, m;-m,=0, m{+m5=1 (unitvector)

m, =% ,—%2 mzzi,—%z, m,=0,0or X, < (J_rl—lz, 1712, 0)
2-1 0||p, 0
For o, =1, —é (2) 8 p,| = 8 , where (p,,p,,p, are thecomponents of x,’
Y

2p,-p,=0, p; +2p,=0 = p,;=p,=0  p5=+1 (unitvector)

. p;=0, p,=0,p;=%1, or X, < (0.0 1)

In order to find the rotation matrix, we first choose a right-hand set from among the various
e
choices of X1 %2, %3

(11 0
. 1 /2 2
X1 & (/2, /2 O) [R]: —1- —1- 0
R, & (/2 /2 0) /2 )2
0O 0 1
X3 < (0, 0, 1) , then the required rotation matrix is
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300 3A 0 O
[6] =| 0 3-1|, sotheeigenequationis| 0 3-A -1 | =0
0-11 0O -11-A

B-N[E-0)-)-7=0

o  M=3 Mg :E—Lr/§ =341, 059 = o,=3414, 6,=3.000, 6,= 0586

>

, where(n,,n,,n,) arethe components of x,’

oNoNe)

2
-1 241

041 O Ny
For c, =341, 0 -0.41 —1 =
n3

n,=0 -041n,—n, =0, ni+n+n;=1
5 Xq < (0, £0.92, 70.38)

0

1
0] , where (m,, m,,m,) arethe components of x.,

For o, =3,

2
3

00
0-1
-1-2

oo o
333

0

=0, m;=0, m;=+%1

< (1, 0, 0)

o

2414 O
For 6, =0.586, O 2414 -1 H ‘: lo , where (p,,p,,p,) are the components of x,
-1 0414

o

p, =0, 2414p,—p, = 0, pi+pi+pi=1
. %, < (0, +0.38, +0.92)

In order for find the rotation matrix we first choose a right-handed set of eigenvectors:

R, < (0, 0.92, -0.39) 0 092 038
R, & (1,0, 0) [Rl=| 1 0o o0
o 0 -0.38-0.92
Xs © (0, 2038, -092)  peny the rotation matrix is

10-5 5
[6] =|-5 0 5| = 0,=15 06,=10, 6,=-5

5 510
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R, © (0.707, 0, 0.707), for 6,=15

R, o (0.577, 0,577, -0.577), for o,=10 M- ;(7’; 577 -750777
Re (0.408, 0.816, —.408), for 6,=-5 408 816 —408
_ |00 106 0 106 150 0
[RI[][R]" = | 00, 0| [R][c] = | 577 577577 [R|[][R]" = | 010 0
0 0 o, —2.04-4.08 2.04 0 0-5
Check:
4.  Find the invariantsfor the stress tensors shown below:
144 022 -0.76 175 0.35 -0.75 1.94 038 -0.54
a| 022 225 -038|, b.| 035 250 -0.35|, c.| 038 275 —022
-0.76 -0.38 2.31 -0.75 -0.35 1.75 -054 -0.22 1.31
SOLUTION:
144 0.22 -0.76
[c] =| 0.22 2.25 -0.38
~0.76 -0.38 2.31
a

J=0,,+C,,+ 0, = 144+225+231=6

— 2 2 2
‘]2 - (611 Oy + Oy 633+ O3 c511) + Oy + Oy + Oy

- |49 €29+ 229 (23) + (23) (.49] + €039+ (079" + 022 =1

1.44 0.22 -0.76
J,=1022 225 038 =6
-0.76 -0.38 2.31

1.75 0.35 -0.75
[c] =| 0.35 250 -0.35
-0.75-0.35 1.75

J,=6
J,=-11
J,=6
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1.94 0.38 -0.54
[c] =| 0.38 2.75 -0.22
-054-0.22 1.31

J=6
J=-11

5. Find and solve the characteristic equations for the stress tensors shown in Problem 4. Use the
method followed in Exercise 3.3. (A numerical procedureisrequired.)

SOLUTION:
3,=-11
q  %=6

0=A%-60%+11L — 6= (A

A o(h) () M
0 1 0 [leexactly. Luckyguas!]

To obtain the quadratic equation, perform synthetic long division as shown below.

A2 -5\ +6
(A -1A"-61"+ 110 -6
A -6\
—5\%+ 11\
—b5A2+ BA
6L —6

6.6 , thus the original expression is (A-1) (A*—51+6)

The remaining roots are found by the quadratic formula:

+ —
7L:+5_J25 24 =23

2

So, the three roots (principal stresses) are:
6, =3.0,=2 0,=1

and the characteristic equation can be written in product form:

A-3)-2)-1)=0

b, =6 J,=-11, J,=6
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0=A%-60%+11L - 6= 0(A)

This characteristic equation isidentical to 5.a., thus the two stress tensors are identical except for
arotation. The principal values must therefore be the same.

J,=6, J,=-11, J,=6

[Same as5.a. and 5.b.]

6. Find the principal directions for the stress tensors shown in Problem 4 and find the rotation
matrix which transforms components given in the original coordinate system to onesin a principal

coordinate system. (Assume that the minimum principal stress acts on a plane with normal Xy’
and the maximum principal stress acts on a plane with normal X3'.)

SOLUTION:
N
6.=1 R1 > +(0866, 0, 05)
6,22 = R, 91(4).24, 0.866, 0.433)
0s=3 %3 ¢ +(-043, -05, 0.75)
a

Taking the three plus signs forms a right-handed system for which the rotation matrix is
0866 0 05

[R] =|-0.240.866 0.433|.
-0.43 -05 0.75

5 =1 X, = (0707, 0, -0.707)
Gi=2 = X, = +(~055, 0.704, 050)
C3=3 X5 = (050, 0.704, ~0.50)

For the "+" signs (one choice of right-handed system):

0707 0 -0.707
[R] = | -0.50 0.704 050
050 0.704 -0.50

N\
5, =1 il = #(05, 0, 0.867)
,=2 = X, = *(-0.75, 05, 043
0, =3 X5 = J_r(—o.433, 0.867, 0.24)
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For the "+" signs (one choice of right-handed system):

05 0
[R] =| -0.75 05

0.867
0.43

-0.43 -0.867 0.24
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Find the spherical and deviatoric components of the stress tensors given in Problem 4. Find the
principal stresses and directions of the deviatoric tensors following the method outlined in Section
3.6. How do these compare with the values for the stress tensor obtained in Problems 5 and 6.

7.
SOLUTION:
stress
144 0.22-0.76
022 2.25-0.38
-0.76 -0.38 2.31
a

spherical

200
020|+
002

d ~
Spherical Invariants. %2 = 10

NI=

cos (150°) = -1.0

G, = 2(%) 00s(30°) = 1.0
os - f)
o, = 2(%)% cos (-909) = 0.0

deviatoric

-0.56 0.22-0.76
0.22 0.25-0.38
-0.76 0.38 0.31

oy -%cos—l (0) =30°
o, = 120° + 30° = 150°

oz = 30°-120° = —90°

6,=10+20=3
6,=-10+20=1

Therefore: 93 =0+20=2

The principal directions are found using the principal values with the same result as Problems

5.a and 6.a

stress

175 0.35-0.75
0.35 2.50-0.35
-0.75-0.35 1.75

spherical
200

deviatoric
-0.56 0.22-0.76

020|+| 022 0.25-0.38

002

-0.76 -0.38 0.31

The results are the same as Problems 5.b. and 6.b.

stress

194 0.38-054
0.38 2.75-0.22
-054-0.22 131

spherical
200

deviatoric
-0.56 0.22-0.76

020|+| 022 0.25-0.38

002

-0.76 -0.38 0.31
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The results are the same as Problems 5.c. and 6.c.

8.  Find the spherical, deviatoric, principal deviatoric components, and principal directions of stress
for the following cases:

. . 0., =o0,0therc.. =0
Uniaxial tension: 1 ij

Simple shear: 0, =04,=0, othercsiJ-:O

. . G, =0,,=0,0thercg.=0
Balanced biaxial tension: 1 722 J

Biaxial shear- G13= 03 = Op, Oy = Og, =0, Otherc; =0

Tension and shear: G117 Op 013705 = Og Other 6;; =0

SOLUTION:
stress  spherical deviatoric
[ 1 Jo~.] [20 ]
600 |300| [5 00
_ c c
000]|= 05 o+ O -3 0
o o
o ) (Gllzo,othercij=0) 000 00§ 0 O_é
a Uniaxia tension b 4t 4t .
2c o
Gld=§ szzcgd:_é
m o (1, 0, 0)
"o (0, 1, 0) (current axes are principal)
po (00 1)
stress  spherical deviatoric
0c0 000 0c0
c00|=|000|+|c00
_ (612=0,0thercij=0) ooo| |ooo| [000
b. Simple shear ,

AN -
n< (0,0 1)

A

1 _1
6, =6,=06, 6,=0 p < (' » T O)

/rﬁe)(l L O)
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stress spherlcal deviatoric

(00| —o 0 3 00
_ c
0co|=[0%of+l0 I 0
2c 2c
_ _ - 000 0 0= 0 0 =
c. Balanced biaxial tension 011 =02, =0, otherc; =0 3 3
m o (1, 0, 0)
"o (0, 1, 0) (current axes are principal)
d_ _d_0O 4_ 20 N
61 =0, =3 O3 =—3 p (00 1)

d. Biaxial shear (013 =03 =0 O, =0, =G, oOtherc, =0

stress spherical  deviatoric

0 6,0, 000( | 0 6,0, o, = Mo’ +0,°

6,0 0| =|000[+|c, 0 0O G,=0

c, 00 000 6, 00 6. = J6.2+6.2
3 B A

/N
m < —1_
/2’

/2(082 +0A) /2(052+ GA)]

* Ty Te a]

>
H

pe|-3,

2’ /Z(GB +GA3 JZ(GB +GA3]

e. Tensionand shear: O11 = O, 013 = 031 = Cs, Other 6 = 0
stress spherical deviatoric
c, 0 o, 300 20 o,
ooo|l={0%o|+|0-% 0
6,00 [00%] |6, 0-2

2 2
a Gt+JGt +40,

Q
I
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~ 6, n 0,—0; _ 2. 2
m & |, 0, =5~ whereD = |(6,~0,)" +0,
e
n (0, 1,0
1

D D

b +(GS, 0, L,GZ), whereD = [(ct—02)2+ 632]2
(If oo, <0, theminussign is adopted for the components of /|5.)

B. DEPTH PROBLEMS
The reciprocal theorem of Cauchy states that the stress vectors acting on two intersecting planes

have the following property:

s;- i = sp Mg
where s is the stress vector acting on a plane with normal Ni. Show that this principle follows
from the symmetry of the stress tensor, or from the equilibrium condition directly.

SOLUTION:
It is possible to prove the relationship by considering Cauchy's tetrahedron (Exercise 3.1), or by
multiplying all of the required components and comparing the results.

The shortest method is by writing the various termsin indicial notation.

7N N N

Let M =M N2=m, and $,=5ands, =t ¢ o oler notation, then

I
Q
>

s=on < S

t=om < t=o;m,

N NN e

S-m=gonm of, S-m=g§m;=gc,nm,

N NN 7N

but, since ©ii = @it we can rewrite i MM =0 Him; SO S-m=t-n.

10. Octahedral planes are ones which have normals forming equal angles with the three principal

axes. Find an expression for Sh , the normal components of the stress vector on the octahedral
plane in terms of a) principal stresses and b) arbitrary stress components.

SOLUTION:
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;(\2 A
n
X1
X3
c, 00 7%3
[6]=] 0 o, 0|, and[n] = /ig
1
0 0 (O /—3
a. Inprincipal axes, as show in the figure above,
6,0 0|4
— -1 1 1 1 1 — 1
S =nSn =|=-=-—=1||0 0|lx| = +0 ., + = %J, (Eq.2.38
n [/3 /3 '/3I 0> ,13 3(0,+0,+0y) p 3% (Eq.2.38)
0 0(53 73
Therefore:

where J; isthefirst stress invariant.

Since we know that this quantity is invariant to the choice of coordinate system orientation, the
expression in an arbitrary cartesian systemis

— — 1 _1
Sy =P = 3% =3(0,, 10, +0y)

11. Show that the tangential component of the stress vector on the octahedral planes (i.e. the shear

5l
3%
component) is equal to
SOLUTION:

As shown in Problem 10., the normal component on an octahedral planeis

SN:%(G1+52+53)

. where J2' isthe second invariant of the deviatoric stress tensor.

The tangential component may be found from the relationship
S2+S;°=S-S=(o-n)-(6-n),or

S?=(c-n)-(6-n)-S° = %(612"'022"'032)_%(01+62+63)2

gsr2 = 2012"'2022"'2632_26102_26163_26263 =6,



Page 14 Fundamentals of Metal Forming - Solution Manual Chapter 3

0,7 " (% ‘]2)2

12. Problems involving cylindrical symmetry often use cylindrical coordinates r, 6, z where

1

2 1 X
X%"'X% 0=tan —

Y. (Conversdly, X1=rcos6,x;=rsin®, X3=2) For example,
consider pure torsion of an elastic, long bar with axis parallel to Z, where oy, is a constant on the
outside of the bar. Find the stress tensor in two alternate Cartesian coordinate systems:

r=

a. One which has X1 normal to the cylinder axis and is tangent to the cylinder surface, X2
normal to the cylinder surface, and X3 the cylinder axis.

b. One which isfixed in space (i.e. independent of &), with X3 Il Z, X1 lying in the 6=0, z=0

~ s
direction, and X2 lying in the 6=2, z=0 direction.

~

X2 °
a- 0

0

» Reference AXxis

Since the axes are identical, the stress components are identical, i.e.

100({000|(1100
[¢] = [R][o][R] [010”000”0101 -
001|100 0f|001
2 Q
2
o
L cos® —sin® 0
o | " R=| sin® cos® O

0 0 1

(Inthiscase, T @d® (otate asthe point of interest rotates, but hte cartesian system is fixed.)

cosH —sino O O O00||cosb sne6 O
[6']:[R] [(5][R]T =|sn® cosO 00oc —sme cose 0
0 0 1 0cO 1
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cosO® —sn6 O 0 0 0
=|sn® cos6 O 0 0 o
0 0 1 [|o(-sin6) ocosé 0

0 0 -—-osnHd
[6’] = 0 0 ocosH
—0SnO ccoso 0

(fixed Cartesian system)

13. Show that if two roots of the characteristic equation are identical (i.e. degenerate), then any
direction normal to the other principal direction (i.e. the one corresponding to the non-identical
root) is a principal direction. Show that if all three roots are identical, all directions are

principal.

SOLUTION:
a. Assume that the characteristic equation is of the form:

O\.—Go) (k—cl)z =0 1

where C1is adegenerate root. The stress componentsin the principal axes are
c, 00
00,0
0 0o,

where ©o s the principal stress in the X3 (3rd principal) direction. A general rotation of
coordinate system about the X3 axis may be written as follows:
cos® sng O c, 0 OHcosesme 0

[6] =|-sn6cos® 0 ||0o, sn® cos6 0
0 0 1 0 Oc 1

(51(00529 +sin29) 61(—sinecose+sinecose) 0
=| o, (sinecose—sinecose) o, (sin2(9+cos2 9) 0 =

0 0 o,
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b.

14.

6,00 R
c6=|00,0 (for any directionnormal to x3)
0 0 o,

If all three roots are degenerate, there are many ways to show that any direction is equivalent.

The derivation in Part a. can be done for ©1~ o, or one can note that al three roots being
equivalent is the same as the spherical component (i.e. hydrostatic pressure or tension).

It is often convenient to replace one set of forces with another, statically-equivalent set. For
example, consider a triangular element of material (assume unit depth normal to the triangle)
which is assumed to be a small enough piece of a body to feel only a homogeneous stress, oj;
(i,j=1,2, assuming that o;3=0, where X3 is normal to the triangle). Use a simple, physically-
motivated procedure to replace gjj by three forces, fy, f,, f3 acting at the three corners of the
triangle. Consider the force transmitted by each face.

SOLUTION:

15.

Consider atriangle with normals defined to each side with a magnitude equal to the length of the
side. (For unit depth of the sides in three dimensions, these are area vectors corresponding to the
sides.)

C
b
c T~
C B
1 |Al = 4]
where: |B| :|b|
A || =|c|

A, B, C are deduced from a, b, and c by arotation of -90°, thereforesince a+b+c=0, A+B

+ C = 0. Theforces acting on the planes A, B, and C are fa=0 A fg=0B, f=6C
andfa tfetfc=c(A+B+CQ) =0 because A+B+C=0

To assign these forces to the vertices, let's use the unweighted average (although other choices
might make more physical sense) of the forces on the connected sides:

fi=3(fa+ 1) = 30(A+Q
f,=3(f,+1) = 30(A+B)
f=3(f+f) =20 (B+0

Physically, why can the entire material loading at a point be reduced to three orthogonal force
intensities passing through the point? Why do the shear components disappear along these
directions?

SOLUTION:
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16.

For simplicity, let's consider a two-dimensional situation first. Similar to Figure 3.1, imagine
making an arbitrary mathematical cut as shown in part (a) of the figure below. We can find the
force acting on one of the cut faces required to maintain equilibrium, part (b). (The opposite
force is required on the other cut face by equilibrium.) Then, glue the first cut back togehther
and using the direction of the force as a guide, make another cut, this one perpendicular to the
force observed on the first cut. Find the new force required for equilibrium and, if necessary,
make another cut perpendicular to the new force. Continue until the current cut and current
force are perpendicular, part (c). If we now relax the forces on the cut plane (and any external
forces required to maintain equilibrium as the cut face is unloaded), can we be assured that the
material is completely unloaded? No, because the direction parallel to the cut face (grey arrow
in part (c)) is unaffected by the cut and therefore we have no information about it. Therefore,
make a cut perpendicular to the final first cut and the force required by equilibrium will by
necessity be perpendicular to the first force, part (d). This simple thought exercise demonstrates
why there are only two independent force intensities passing through a point in a two-
dimensional body, and why they must be perpendicular.

To extend the exercise to three dimensions, follow precisely the same procedure. Once the first
plane and normal force are found, there remain two perpendicular planes which must have only
normal forces acting on them.

@ (b) © (d)

Although opposite to the usual derivation, it would be possible to derive the symmetry of the
stress tensor by first noting that this result requires the existence the three perpendicular
principal directions and that any rotation of axes from this principal set must produce a
symmetric and real set of tensor components.

The two sets of components presented below correspond to the identical stresstensor, as measured
in two coordinate systems, X1* X2' X3 and X1 X2, X3' Find the rotation matrix to transform

components from the Xi systemto the i system, and vice versa. (Hint: First find the rotations to
the common, principal coordinate systems.)

1.000 1.730 1.000 0.500 1.414 0500
[6] =|1730 0.750 0433| [o]=|1414 1000 1414
1.000 0.433 0.250 0.500 1414 0500

SOLUTION:

[]=[RI[o] [R]"
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Define rotation matrices (R4 @9 [Re] qych that

[0 ineical = [RY [0] [Rq"
[Gprincipal] =[R)][o] [RZ]T

Then, we can find [R] in terms of [R] ad [R]

[Gprincipal] =[R] ] [Rl]T =[R,][0.] [RZ]T
[R]'[R][o] [R]'[R] = [R]'[R}] [0,][R]'[R] = [6.]
Therefore: IR = [Re] [R]. [RI"=[R]"[R]

we find [R1 @0 [R) a5 usual:

10 173 10 6,=3 N ¢ (0.707,0612 036)
[6] =| 173 0.75 0433| = 6,=0 = m « (0.0, 0.50,-0.866)
100433025 ] 6,=-1 3 (0707, 061, 0.36)

0707 061 0.36
[R]=| 00 050 -0866

-0.707 061 0.36
&)1

050 1.414 0.50 6, =3 N« (0:50,0.707, 0.50)
[6] =|1414 10 1414| = 0,=0 = m « (0.707, 0, -0.707)

0.50 1.414 0.50 6;=-1 5 & (-050,0.707, —0.50)

050 0.707 0.50 071 0.36 -0.61

[R] =| 0707 00 -0.707 [RI[R]'[R] =| 0 086 051

—0.50 0.707 -0.50 0.71 -0.36 0.61
Therefore:

17. Imagine that we define a new measure of stress, [§, as a matrix of components relating force
components to area components, but that the force components are defined in two ways. 1. in
terms of a different coordinate system than the area components, or 2. the are transformed
according to a fixed linear operation to represent a new vector in the same coordinate system. a)
Is[9[ symmetric? b) According to these two definitions, does [§ represent the components of

tensor?

SOLUTION:
In either of cases 1 or 2, we note that the new force components (let us call these components g;)

may be obtained from the standard force components f; as follows (note that by "standard" we
mean the components of a force as normally defined in the same coordinate system used to
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express vector area components):

[d = [L][f] , Where [ £] isalinear operator (rotation or other transformation matrix)

a. Thedéefinition of [S] follows from the expression of [g]:

[o =90 = [ =04 = []=[]Td]a
[]
~ [o] =[] s, or [4 =[L][c]

Since[£] isageneral, non-symmetric matrix, [s] isin general not symmetric.

b. In order to examine how the new stress measure [S] transforms, let's imagine that we want to

express [S] in a new coordinate system: [X] = [R] [X] . In the new coordinate system, our
definitions will be expressed as follows:

[9] = [s][a] wnere[2] = [RIl4]
The central question, the one that differentiates Case | from Case I1, is. What is the meaning of

(o] ?

Case 1 - According to the definition of Case 1, [g] is found in the new coordinate system by
applying the fixed linear operator, [ £], to the components of [f] in the new coordinate system:

(o7 = [4l*] = (Y[R,

once this expression for [g] is found, we can find how [S] and [S] arerelated:

o] = IRl = (S]] = [s][R]l
1] = [RTISIRIA, buenoethar (1) = [1] g

g
4 = R TSI
[S] , and therefore
[s] = [UIRIT SR, o [s] = [LIRIL[S]RI

Clearly this last expression is not the proper transformation for tensor components, so [
defined asin Case 1 does not represent tensor components.

Case 2 - According to the definition of Case 2, [g] is found in the new coordinate system by
simply transforming the compents of g as any other vector in the original coordinate system, i.e.

o] =[RIlg] |
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once we have this expression for [g] , we proceed as before to find the relationship between [S]
and [S] :

(o] =[Rlla] = [s][a] = [S][RIl4

(o] = (RIS]RLI4
(5]

[s] = [RIs]Rl.or [s] =[RS

Thislast expression is precisely the transformation for tensor components, so [S] defined in Case
2 does represent tensor components. Put more simply, S defined according to Case 2 is a proper
tensor. In fact, representation of stress in this manner is convenient in some cases, where the
force or area vectors are rotated to correspond to deformed or undeformed states in a material.

, and therefore



CHAPTER 4 - PROBLEM SOLUTIONS

A. PROFICIENCY PROBLEMS
12
F 9[34]

a. Find E; and €ij, the components of the large and small strain tensors, respectively.

1. Given:

b. Using E and & directly, find the new length of the vectors OA and AB shown below. Note
that the original vectors are of unit length.

A

B

0 1

c. Why are the deformed lengths of O'A" and O'B' different when calculated using the two
different measures of deformation?

SOLUTION:
a. We have from the definitions:

Cl=[ETT[E :[1 3][1 2 :[1014
[C=[FI'[F] 2 41L3 4 1420
30 that the strain tensor E is;

E=1(q-1 = > 1]

while the small straintensorsi(s): -
_1 _ )
=2 (AT +IFD-10=] 2 2 ]

b. The change of length Al of the OA vector is such that:
2
AR =[O 2[E)[0AI= [1 0]2[ #° T ][1]=0

The final length is then: 1a =" OA2 + A% =10

For the OB vector the same approach gives:
alg =[BT 2(E][0B]= [0 1]2[ *° 7 ][ 9]=19

with the final length: 18 =V OB? + Alg =v20
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With the small strain tensor [€] the new lengths are:

12 =1+ [0A]"2[e] [0A] =1+ 10]2[205205“1] 1
and

12=1+[0B]"2[e][0B] =1 +[ 01]2[205235“0] 7

c. The results are quite different when we use the two strain measures. in fact the use of the [g]

tensor is not valid here as the strain components are not much less than 1, as required for
accuracy.

2. Given the figure below for an assumed homogeneous deformation, write down the deformation

gradient, F:
%
A (6.6, 4.6)
AI
O B'
(6,3 (8.1, 3)

0,2 |A

0] B &
(0,0) 2.0) gl

SOLUTION:

The unknown deformation gradient is denoted by: [F] [c dl. Wemust verify:

gl =L

2¢c 0

and

[a b][o]: 6.6-6 :[Zb]:[OG

c dil2 46-3 2d 1.6

[ ]:[1.05 0.3

we conclude that: 0 08

01 0.2 0.5]
3. Given:

F,with[F]=[o.3 04 06
07 08 09

Find: J,E,ande.

SOLUTION:
From the equality: [J] =[F] - [I] we get:
-0.9 02 05

[J]=[ 03 -06 06
07 08 -01



Chapter 4 Fundamentals of Metal Forming - Solution Manual Page 3

The strain tensor [E] iswriten:

01 03 071701 02 05 10 0 O
[E]=%([F]T[F]-[I])=%([o.2 0.4 0.8”0.3 0.4 0.6]-[ 0 10 O ])
05 06 09

0.7 08 09 0 0 10
1+3* 3+7%7-100 2+3*4+7*8 5+3%6+7*9

=_1 sym 2% 2+4*4+8*8-100  2*5+4*6+8*9

200 sym sym 5* 5+6* 6+9* 9-100

035 -0.08 0.53

[-0.205 035 043 ]
043 053 021

The small strain tensor is:

L[[09 02 05 09 03 07 .09 025 06
[8]=§ 03 -06 06 |*| 02 -06 08 ||=| 025 -06 0.7

0.7 08 -01 05 06 -01 06 07 -01

4.  Asshown below, a point in a continuum (O) moves to a new point (O') as shown.
Al
X2
A P’ B'
O (4.2
1.5¢A
B
o) 1% - X
a. Find the new points A" and B', assuming homogeneous deformation for the following two
cases:
Foll 2 , J& 21 J|
3 4 4 3
b. For each deformation, find E the large strain tensor.
SOLUTION:

By definition of the deformation gradient (when there is an homogeneous deformation), we
obtain for the first case:

OA — OA’ with: [OA']=[F][OA]=H i][ 1(.)5 ]:[g]

OB — OB’ with: [OB’]:[F][OB]:[ 2 [ 1(55 ]:[ 411:2 ]

and 34
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onl-{oc]oxl=£]-(¢ {1
ol-foc o[ 1] 3] &

[F=[+0=] 3 1]

For the second case we have first: [ 4 4

so that:

The transformation verifies:

OA - OA” with: [orA']:[F][OA]:[f’1 : 2 B L5 |
OB — OB with: [O(B’]:[F][OB]:[i 411 1(-)5 ._[ 465 ]
for7~[00] + o] =[2] +[18] ]
[0B] =[00] +[0B] :[g] N [g:g _ [885]

S0 that

b. For thefl rst case we have

A GIGRUESY P4 AN i Ry

and for the second case
=300 107)=3 (34 2+ [24][34) - 233]

5. Imagine that a line segment OP is embedded in a material which is deformed to a new state. The
line segment becomes O'P' after deformation, as shown below.

~ .P’

¥ /

Ol

X
o 1

a. Find the vector components of O'P .
Fo 1 2J|
3 4

b. Findthelength of O'P if:
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C =

13
3 2

c. Find the components of OP if:

=[O 2J|
33
SOLUTION:
a. If the deformation is homogeneous we can write:

OP — OP such that: [OF’]:[F][OF’F[é 421][ i]z[fg]

b. According to Eqg. 4.19:
op?=[of[cl[oA=[ 2 1][ 1 3][2]=[2 1][ 3]=18

the final lengthisthen: O'P' =VI8 =4.24

c. From[J] we deduce:
OP — OP’ such that: [OP’]:([J]+[I])[OP]=[é i][ i]:[l‘g]

6. A homogeneous deformation isimposed in the plane of the sheet. Two lines painted on the surface
move as shown below, with coordinates measured as shown:
X X

A A (3.1, 3.3)
(18, 2.1)

2, 1.5) (3.2)
(4.1, 1.9

(1, 1)

X %
Before p After

a. Find F, the deformation gradient.
b. SartingwithF, find C, E, and €.
c. Findthe principal strains and axes of E.

SOLUTION:
a. The method is similar to that used for Problem 2. We express that the deformation gradient
applied to the two vectors (as rows) gives their transformed coordinates:
[a b][ 1 08 :[ 1.1 01
c dil o5 11 -01 1.3
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The best method is to invert the matrix on the left hand side;
1 08T1_1[11 -08

L 05 11 J1-05 1

so that the unknown deformation gradient is:
a b]:[ 11 01 ]L[ 11 -0.8 :_[
Lcd -01 131071-05 1 0.71-0.76 1.38

1.16 -0.78] :[ 166 -1.11
~1-1.09 1.97

b. The usua tensors are computed:

[C] = 1 [ 1.16 -0.76] L[ 1.16 -0.78]: 1 [ 1.9232 -1.9536] - [ 3.92-3.99
0.7 1L-0.76 1.38] 0.49 -

07 |l-0.78 1.38 -1.9536 2.5128 -3.99 513

[E=1[ 3921 -399 :[ 1.46 ]
2l -399 5131 2 207

] = l(l 1661 -1.11 ]+ 166-1 -1.09 )=[0.66 -1.10
2\l -1.00 1971 111 1971 )7 [-110 0.97

(But again in this case the small strain tensor has no precise meaning, as its components are not
small with respect to 1).

c. Theprincipal strains are solutions of the eigenvalue problem:

1.46-\ -
j =0,or (1.46-1) (207-A)-4=0
-2 2.07-

which is also:
A%-353-0.98=0 with solutions E; =-0.26 and E, =3.79
The principal axesV1 and V2 are such that their components verify:

1.46 + 0.26) V11 -2V =0 v :[0.76]
( ) i -2va =0 = il =| o o

-0.65]

1.46-3.79) V1o - 2Vop = 0 :[
( ) Vi2 - 2V = [va] 0.76

7.  Attimet, the position of a material particleinitially at (Xq, Xp, X3) is
X1 =X1+aXs
X2 =Xo+aX;
X3 = X3
Obtain the unit elongation (i. e. change in length per unit initial length) of an element initially in

the direction of X1 + X2

SOLUTION:
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> 1ad0
_ X _
F—?i, [F]—!a 1 0]

The deformation gradient is here: 001
1+& 2a O
[Cl=| 2a 1+& 0
and the Cauchy strain tensor isimmediately deduced: 0O O 1
oh
V2
1
ds =
Iz
L : . 0
Theinitia unit vector is: R
The length of the final corresponding vector verifies: -
1
1+ 2a 0 |[|V2
2 — T (L1 o 1 — 2 42
a2 =[as]"[Cl[as] =[L-L- 0]as| 2a 12 0 || |ds=(@+a?ds
0O 0 1 0

so that ds= (1 + @) dS and the unit elongationis. E=a.

oX

8.  Take fixed right handed axes X1, X», X3. Wkrite down the deformation gradient matrix, axj , for the
deformation of a body from x to X for

right handed rotation of 45° about X1.

td

b. Left handed rotation of 45° about X2.

c. Sretch by a stretchratio of 2 in the X3 direction.

1 o
d. Sretch by a stretch ratio of 2 in the X2 direction.

e. Right handed rotation of 90° about K.

Find the total deformation matrix for these motions carried out sequentially. Using this result,
check the final volume ratio.

SOLUTION:
The deformation gradients are computed at each step:
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C N

1 0 0 = 0 -5

[F]=| o 715 715 C[FJ=l o 1 o

o L L L o L

_ 2 /2 | /2 2 |
(100 100 0-10
[Fd=|o10], [F=| 0 20|, [F]=|100
002 00 1 001

The combined transformation has a deformation gradient:

0 -2 2
4 4
— - 1 1
F=[FAFIRIIRIIFI= | & -1 -1
Z 1 1

2.5 1.06 1.06

[C] =|106138112

1.061.121.38

The Cauchy strain tensor is then evaluated:

We seeimmediately that: [d=1j.e the deformation takes place with no volume change.

9. Fromthefollowing mapping, find C, U, and R:
[ X1 2 00] X1
X2|=| 0 3 4| X2

[ X3 0 4 -31l X3

Check whether thisis a permissible deformation in a continuous body.

SOLUTION:
The Cauchy strain tensor isfirst calculated by:

2001[200 400
[ClI=l034||l034|=[0250
04-3/Loa-3]l Loozs

The polar decomposition iswritten: [F] = [R] [U]; with [U]2 =[C] we deduce:

%oo 1 0 0

200 200
[Ul=| 0 5 0| ad [RI=[F][UI'=| 0 3 4 o%o =l 0 % %
005 04 -3 . .
(0051 L 9 5 5.

But we seethat IR =- 1 so that [R] is not arotation, but rather an inversion.

Chapter 4
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10. Check the compatibility of the following strain components:

2 2432
X1+X2 X1+2X2 0 X1 X17+X2 X2X3
[€ | x1+2x2 X1+Xo 0 € | X124X02 X2 0
0 0 X
3 X2X3 0 0 i
SOLUTION:

X1HXo X1#2X, 0
[e] = [x1t2%; X+x, O
0 0 X3
From the strain tensor:

the components of which arefirst order polynomials, we see that: (see also Problem 15)
Zei | L _ ., L

— ~ 2— =0
e XF X0
so that the field is compatible.
X12 X]_2+X22 XoX3
[e] = X124X22 X2 0
The second strain tensor is; XoX3 0 0
2282 + 228”' -2 228”' -0

= t= -
weobservethat: 2§ X X1 0%z

72 72 72
Zv822 + Zv833 —0=2 VZ €23
VAL C X2 0X3
72 =2 =2
ZV€33 + ngll —0=2 VZ €13
VACRLC ZX1 0X3

So that thistensor field is also compatible.

B. DEPTH PROBLEMS

11. Consider the extension of an arbitrary small line element AB. Sart by examining how (A'B')? is
related to (AB)2 using the small extensional strain along that direction, e,. Show that for small
strains and displacements, rotations do not cause extension, i.e. if extensions are zero, strains are
zero.

SOLUTION:
We put: AB = adl, whereaisaunit vector, and write Eq. 4.18 in the form:
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12.

AB?=(ad)TCad=d2aT(l +J)T( +J)a=AB2aT(l +JT+J +J7J)a

Using the small strain approximation we obtain:
AB?=AB2aT(l +JT+J)a=AB2aT(l +2¢)a

As the components of the strain tensor are small with respect to unity we can also write:
AB =AB(1+2aT ea)?=AB(L+aT €a)

If we have only an extension e, in the x1 direction, the previous equation becomes:

1
AB'=AB(1+¢,) (whereweused [d =! 0 ])
0

If there is zero extension in any direction we have:
AB'=AB=AB(1+aTl ga)

for any a, that is also:
al ea=0

If aisaprincipal direction, the above equality shows that the corresponding principal strain must
be zero, so that we come to the conclusion that the strain tensor must be null.

In sheet forming, one often measures strains from a grid on the sheet surface. Then, one can plot
these strains as a function of the original length along an originally straight line:

A Original Line
Strain

PUNCH

Original Position

As shown in the second figure (for a simple forming operation), this originally straight line is
curved and stretched.

If the edges of the sheet do not move (stretch boundary conditions), develop a rule that the
measured strain distribution must follow. Consider that the original sheet length I, becomes | at
some later time.

SOLUTION:

We consider the strain € or e; (true or engineering definition) corresponding to the elongation in
the initial direction of the line. A small vector dlp on the initial line will be transformed into a
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small vector di so that its new length verifies; dl = exp(e) dlo = (1 + €1) dlo, Therefore the final
length of the line will be:

lo lo
[ :f exp(g) dig = (1+e)dlp
0 0

13. Consider a 1" square of material deformed in the following ways:

2
1
dX2 (}‘F\
SR , o % 30°
: 0 a) 3 0 )
dx !
2 | —
: dxg
[}
I 3
0 Xm 1 dX2 &.’»
6}.’1/ 45°
0 3
9 © d)

Find F for each case.

Find Cand E.

Find the principal values and directions of E.

Find the material principal directions after deformation.

Which of these cases (a-d) are mechanically the same under isotropic conditions? Under
general anisotropy?

SOLUTION:

A=l52] @=lgal ®@[ 5 s

a. Wehave:
The principal strains are obviously: E1=3/2, E2 =4 the principal axes and the material axes
after deformation are the ox; and ox, axes.

b. The new vectors are projected on the ox; and ox, axes so that we have:
[F] = [3&”3/2 -1 ] [C]= [3*/?/2 3/2 [3&”3/2 -1 ] - [ 90 [E] :[ 4 ]
32 43 1° 32 43 ’ 0 32

The remaining is the same as case a.

A29). @[22, @ ¢

0 4 3/2]
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The remaining is the same as case a.

e R G b ey e e P R G I

The remaining is the same as case a.

For isotropic materials the four cases a-d are equivalent by definition, as a rotation has no effect
on the material properties. Under general anisotropy case a is equivalent to the undeformed
configuration (if the deformation does not introduce any change in the anisotropic coefficients),
while cases b, ¢, d correspond to rotations of 30°; 180° and 45° respectively, and the material
properties will be rotated by the same rotation.

_[1 o]
14. Given that [0 2 | find F when

a. theprincipal material axesdo not rotate, and

b. the principal material axes rotate by 30° counterclockwise. Express your answers in the
original coordinate system.

SOLUTION:
a. We usethe polar decomposition: F = RU, if thereisno rotation, then R = I, F = U is symmetric
and C = FF so that here F is easily computed:

A1 )

3 .1
2 2
[R]=
1 3
b. Therotation matrix is; 2 2

The [U] stretch tensor is the same and the deformation gradient is:

F=RUE 2 2 [Oﬁ] -
2 2 2 2

15. Derive a set of compatibility equations corresponding to Eq. 4.52 for the three-dimensional case.

SOLUTION:
A non diagonal (small) strain component is calculated according to:
€ —l(&+§ﬁ) for i°j
VU2 zx

S0 that we obtain:
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Zzeij _ 23Ui + ZSUJ'

2 = ——
XD 7 F DRI

which is also, with the definition of the diagonal terms (without summation oni and j):
o, La _ P | L
XD R K




CHAPTER 5- PROBLEM SOLUTIONS

A. PROFICIENCY PROBLEMS
1. Adapt the demonstration of the Green theorem of Eq. 5.1 to:
- a curve C, and show that:

f P di= 1(B) g(B) - f(A) () f Ao al

where A and B are the extremities of the curve. Examine the case when the curve is closed

(A=B).

- a surface S defined in the plane (with coordinates x| and x3), so that:
/g f f /f
f==dS=] fgn;dl- |} =—gdS
fS i Z8 1 s ZXi

i =1 or2, 0Sis the curve limiting the surface S (with no hole), and n is the unit normal vector

to OS.

SOLUTION
We suppose that the curve 1is represented by parametric equations of the form:

xi =xi(l) for0=1I< L, where 1 is the arc lenght measured from the origine A of the curve. fand g
can be considered as functions of the arc lenght 1 on the curve and will be denoted as:

F(D) = f(x1(D), x2(D), x3(1)) and G(1) = g(x1 (1), x2(1), x3(1))

so that the left hand side of the 1-D equivalent of the Green equation becomes:
dg dG(I)
=1 F(
[[&a- [ rni0

Using a general property of integrals of functions of one variable, we can write:

L dF(l)
0

dG(l)

L
L g] [G(D F(D] dl=F(L) G(L) - F(0) G(0)= G(1) dl + / ry &0

If this equation is combined with the previous one, we get:

f F(l) =2 dG(l) dl =F(L) G(L) - F(0) G(0) - f 9D Gay ar
0

which is the desired equality when we come back to the initial notations.

The proof for the 2-D Green formula is very similar to the proof for the 3-D case. The surface S is
represented in the figure below.
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2.

A ,

X2

' 78

XA XB X1

The boundary of S is divided into an upper part 0CQy, and a lower part 0€; the equations of which

are respectively:
X2 = huy(x1) ; x2 = hi(x)

XB
v hU(Xl) v
f r 28 4s- f £28 4x, | dx,
o 42 h)  2X2
XA

Using these notations, we can write:
The above equation is transformed in a similar way as Eq. 5.3 so that:

hy hy
Zg 7t
f-v—dX2=ngU-ngL- -v—ng2
th V59) b 2x2

This equation is now integrated with respect to x;:

XB

N hy
Zg f B Zf
—=dS= (fU gu- fL gL) dX1 - -v—ng2 Xm
fS X3 XA hr x5
XA

In a way similar to Eqgs. 5.3a and 5.3b, the component ny, of the normal to 0Qy is such that
dx; = ny2 dl and an analogous equation for the lower part of the boundary. Then we get:

XB XB XB
f (fu gu - fL go) dx; :f fu gunu2 dl—f fLgrngo d1=f fg dl

XA XA XA aS
When this last result is put into the previous equation we obtain the 2-D form of the Green theorem:

/g f /f
f—=dS = fgl’lzdl-f-v—gds
fs Zx2 as s Zx2

Apply the 2-D form of the Green theorem (see problem 1) to the functions f = x; + x2 and g = xj -
x2 in the square domain [0,1]2, for i = 1 and for i = 2. Compute directly the integrals and verify
th