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In 2006, Angus Wilkinson introduced a cross-correlation-based electron backscatter diffraction (EBSD)

texture analysis system capable of measuring lattice rotations and elastic strains to high resolution.

A variation of the cross-correlation method is introduced using Bragg’s Law-based simulated EBSD

patterns as strain free reference patterns that facilitates the use of the cross-correlation method with

polycrystalline materials. The lattice state is found by comparing simulated patterns to collected

patterns at a number of regions on the pattern using the cross-correlation function and calculating the

deformation from the measured shifts of each region. A new pattern can be simulated at the deformed

state, and the process can be iterated a number of times to converge on the absolute lattice state.

By analyzing an iteratively rotated single crystal silicon sample and recovering the rotation, this method

is shown to have an angular resolution of �0.041 and an elastic strain resolution of �7e�4. As an

example of applications, elastic strain and curvature measurements are used to estimate the dislocation

density in a single grain of a compressed polycrystalline Mg-based AZ91 alloy.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Orientation imaging microscopy (OIM), an electron backscatter
diffraction (EBSD)-based texture analysis system, has been a key
tool in the study and characterization of polycrystalline materials.
OIM uses a Hough transform to identify bands in EBSD patterns,
and then uses a lookup table to identify these bands and
determine the crystal lattice orientation. Statistically significant
datasets on the crystal orientation of a material can be collected in
relatively short amounts of time. A number of limitations of OIM,
however, have motivated the continued search for a more robust
system of EBSD-based texture analysis. A new EBSD-based texture
analysis system that relies on simulated EBSD patterns and the
cross-correlation function is presented in this paper. This new
system addresses two of the main limitations of OIM; specifically
its angular resolution (�0.51 misorientation [1,2]) and its
insensitivity to elastic strain.

A cross-correlation-based orientation and strain measurement
system introduced by Troost et al. [3] and refined by Wilkinson
et al. [4,5] has been shown to achieve orientation resolution to
0.0061 and measures all nine components of the elastic deforma-
tion gradient tensor to 1�10�4. This new method, however, is
ll rights reserved.

).
confined to measuring elastic strain and lattice orientation
gradients except in the case when a strain-free reference EBSD
pattern is available. In practice, such patterns exist only in limited
situations. Instead, EBSD patterns can be simulated at known
reference states, thus eliminating the ambiguity associated with
an experimentally collected pattern. The absolute strain and
rotation of a measured pattern can then be calculated by
comparison to a pattern simulated for a known lattice state.
Because high-fidelity simulations are computationally costly,
simple Bragg’s Law-based patterns were investigated for use as
reference patterns. There are two fundamental questions upon
which the feasibility of using Bragg’s Law based simulations as
reference patterns hang. First, will the cross-correlation analysis
of a measured pattern with a simulated one return appropriate
shifts, and second, are kinematical simulations sufficiently
accurate to make meaningful measurements. This study shows
that by iteratively generating the simple patterns at each
calculated deformation state of a measured pattern and then
repeating the calculation with the new simulation, a high-
resolution result—approaching the levels of the standard cross-
correlation based method—is rapidly found by convergence. In
this way, the benefits of the cross-correlation method are kept
while the limitations associated with needing a strain-free
reference pattern are eliminated. As an example application,
the simulated pattern method has been applied to estimating the
dislocation density for a compressed magnesium alloy sample.

www.sciencedirect.com/science/journal/ultram
www.elsevier.com/locate/ultramic
dx.doi.org/10.1016/j.ultramic.2009.04.007
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Fig. 1. Schematic of how a strain and a rotation in the crystal lattice (greatly

exaggerated) can be related to a shift of an EBSD pattern on the phosphor screen.

The strained lattice is represented by the dashed line.
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2. Cross-correlation analysis of EBSD patterns

2.1. Experimental facilities

The electron backscatter data used for the single crystal silicon
portion of this study was collected on a Phillips XL30 S-FEG
microscope equipped with a phosphor screen detector and CCD
camera. Pattern collection was controlled by the TSL OIM DC 4.6
software, and the images were collected and stored at the
resolution of 1000�1000 pixels in the Tiff format. The data for
the magnesium alloy sample was collected on an FEI dual beamed
FIB/SEM system equipped with a Hikari high speed camera. The
patterns were collected and stored at the resolution of 465�465
pixels in the bitmap format. Analysis of the patterns was then
performed offline using a MATLAB code written by the authors.

2.2. Cross-correlation analysis algorithm

The approach developed by Troost and Wilkinson forms the
underpinnings of the simulated pattern method to be introduced,
so its fundamentals are briefly described.

Many regions of interest (ROIs) (normally 10–20) are spread
uniformly around a reference EBSD pattern (see Fig. 2 for
visualization). For a 1000�1000 pixel image, these regions are
usually selected to be of size 256�256 pixels. Ideally, the
orientation and lattice strain of the reference pattern are known.
In reality the lattice state can be known only to the precision of
traditional methods informed by knowledge of the material in
question. ROIs in corresponding positions are placed in a different
collected pattern of unknown character. The cross-correlation is
then used to determine how the corresponding ROIs in the two
patterns would need to be shifted in order to align similar features
with each other. The cross-correlations are essentially the
convolution of two functions and can be calculated efficiently in
the Fourier domain by the following equation. (If. . .g indicates the
Fourier transform, conj(y) the complex conjugate, and * indicates
element-wise multiplication of two matrices)

C ¼ I�1
fIff gnconjðIfggÞg (1)

The resulting image, C, shows intensity peaks related to shifts
that cause similar features to be aligned. The peak intensity in the
cross-correlation image, C, is located at a position described by the
vector ~q measured from the center of the image (i.e. if the peak
appears at the center then ~q would have components [0,0], if the
peak appears one pixel to the right of and one pixel down from the
center then q would have components [�1,1]). The vector ~q

describes how (on average over the ROI) features contained in the
selected ROI shift when compared to other patterns that also
contain the feature. Local interpolation schemes over a number of
ROIs allow the tracking of a feature shift down to 1/20th of a pixel.
Although this shift is the average of all features in the region, it
approximates the shift of the pattern direction, r̂, found at the
center of the ROI. The schematic given in Fig. 1 illustrates the
connection between crystal lattice deformation and a shift in
the EBSD pattern as measured on the phosphor screen.
The following geometrical relation is similar to that proposed by
Wilkinson et al. but has been modified to more precisely represent
the actual deformation geometry

~q

l
¼ ~w� ð~w � r̂

0
Þr̂
0
þ
~q � r̂

0

l
r̂
0

(2)

Here ~q is the shift in the EBSD patterns as measured on the
phosphor, r̂ is the unit vector pointing from the specimen origin to
the ROI center on the phosphor screen, and r̂

0
points to the shifted

position of the ROI in the deformed lattice pattern. l is a
geometrical factor and is given by l ¼ zn=r̂
pc
� r̂, where r̂

pc
is a

unit vector normal to the phosphor screen that passes through the
sample origin and z* is the perpendicular distance from the screen
to the sample origin. The displacement under deformation is
represented by the vector ~w, where ~w ¼ Ar̂. A is the displacement
gradient tensor, (A+I) ¼ F, and F is the local deformation gradient
tensor (its dependence upon location in the sample frame is
implicit).

Eq. (2) contains three independent equations, one for each
component of ~q (the third component of ~q is uniformly zero when
described in the coordinate frame of the phosphor screen, but is
non-zero in other coordinate frames). Knowing the configuration
of the microscope geometry and the appropriate coordinate frame
transformations, r̂ is easily calculated for any ROI. Using the
measured shifts ~q, r̂

0
can also be evaluated. This leaves

the displacement gradient tensor as the only unknown.
In addition to the three independent equations from the
components of the above relationship, three more equations can
be added from the appropriate form of the traction-free boundary
condition for the sample surface with unit normal r̂

pc
either in

terms of stress, s, or elastic stiffness, C, times strain, e

0 ¼ sij r̂
pc
j ¼ Cijkl�klr̂

pc
j (3)

For small deformations, the symmetric and asymmetric parts of
the displacement gradient tensor A represent, respectively, the
elastic strain and rotation according to the following equations:

� ¼ 1
2ðAþ AT

Þ and o ¼ 1
2ðA� AT

Þ (4)

The reader is reminded that the polar decomposition theorem
enables the deformation gradient tensor, F, to be expressed as the
product of a proper orthogonal tensor or rotation, R, and a positive
definite symmetric tensor, U: F ¼ RU. In the case of the small
elastic deformations and rotations of the crystal lattice, o can be
related to the rotation tensor by R ¼ I+o, and e is related by the
expression U ¼ I+e.

Care must be taken to express all terms in the above equations
in the same reference frame—usually the deformed (or sample)
frame or the reference (or crystal) frame. However, difficulties
with the boundary condition are that, first the elastic constants
must be known, second the appropriate deformation must be
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known to express the elastic stiffness tensor, C, in the deformed
frame. Conversely the appropriate deformation must be known to
express r̂

pc
in the crystal frame, but until the boundary condition

equations are evaluated, the deformation is not completely
known. This circular dependence may be resolved by an iterative
process where an initial assumption is made about deformation,
and then the calculated deformations are used to update
subsequent iterations. This approach is described in detail later.
The system composed of Eqs. (2) and (3) may be solved by
choosing only two ROIs. (Note that this is a decrease in the
number of requisite ROIs from Wilkinson’s method because the
system of equations includes the boundary conditions rather than
imposing them after evaluation of the deformation geometry
equation. However, this reduction is of no technical significance
because typically 10–20 ROIs are chosen to reduce the effects of
noise and improve resolution.)

A new error measure was defined to describe the fit of a
calculated deformation tensor to the shifts measured on the
phosphor screen. To evaluate the fit, the shifts that would have
been caused by a measured deformation tensor, F, are calculated,
and then the average length of the difference between the
calculated and measured shifts is found. For N ROIs in an EBSD
pattern the error measure is defined as follows where ir̂ is the
direction of the center of the ith ROI, i~q

m
and i~q

c
, are the measured

and calculated shifts of the ith ROI, P is the plane that contains the
phosphor screen and �e is the average error for all N ROIs

i~q
c
¼ i r̂ � ðFir̂Þ

\
P (5)

�e ¼
1

N

XN

i¼1

ji~q
c
�i~q

m
j (6)

The jyj notation in Eq. (6) denotes the scalar magnitude, and \
in Eq. (5) denotes the intersection of sets. The error measure �e
describes how well the calculated F fits the measured shifts.

2.3. Variables and limitations

Despite the enhancements of cross-correlation-based analysis
over the traditional Hough transform method, there are a few
inherent hurdles that instigated the search for algorithm im-
provements. The quality of EBSD images has always been a major
factor in OIM, and when trying to extract sub-pixel level
information from the patterns, pattern quality becomes even
more of an issue. Various filtering tools and techniques are
essential to obtain any meaningful results from the analysis, and
the filter adjustments are not easily automated. The two most
detrimental features that must be filtered are non-uniform
intensity of the EBSD pattern background, caused by the electron
probe creating a bright spot on the phosphor screen in the area of
highest incident electron density, and dark spots in the pattern
image resulting from defects on the phosphor screen [6]. There
exist several standard techniques for dealing with these issues,
including normalized cross-correlations [7], various filtering
techniques [8], and the use of features standard to most EBSD
systems such as TSL-OIM’s background subtract feature [9]. These
defects continue to play a role in pattern-to-pattern comparisons.
The main obstacle in the general application of cross-correlation-
based methods, however, is their reliance on a reference pattern.
3. Bragg’s Law pattern simulations

Dependence on a reference pattern allows for measurements
of elastic strain and orientation gradients, but makes it difficult to
measure absolute values of elastic strain and orientation. This
limitation can be solved by using simulated EBSD patterns that are
generated at known lattice states. While high fidelity simulations
are expected to compare best with collected images, computa-
tional costs make it favorable to utilize a simpler model. The
development of simple Bragg’s Law simulations is presented as
well as evidence of their utility as reference patterns.

There are simple geometric relations that connect a crystal
lattice state to its projected EBSD image, but in order to represent
them mathematically several reference frames must be estab-
lished. The first is the crystal frame, ê

c
i , with the local crystal

lattice parameters defining the basis vectors (this reference frame
is typically taken to be strain free—only the rotation component
of the deformation tensor is used to rotate the global reference
lattice vectors to the local lattice). The second is the standard
sample frame (ê

s
3 normal to the sample surface, ê

s
1 in the rolling

direction, and ê
s
2 in the transverse direction). The sample frame is

taken to be the external reference frame so that the rotation
component of the local deformation tensor is exactly the
orientation measured by traditional OIM. The third reference
frame of interest is attached to the phosphor screen used to collect
the EBSD images and is related to the pixilated image so that ê

v
1

points from left to right in the image (increasing columns),
ê

v
2 points from top to bottom in the image (increasing rows) and ê

v
3

completes the orthonormal right-handed frame. A vector de-
scribed in any of these three frames may also be rotated into
another using a second rank tensor that describes a pure rotation.
For example,

vs
i ¼ Rv!s

ij vv
j (7)

Now consider the Bragg’s Law relationship

ml ¼ 2dhkl sinðyÞ (8)

This law describes two cones of angle y that bound the
diffraction band from the hkl plane for a wavelength l. m is an
integer that denotes the order of the diffraction band. Only first
order (m ¼ 1) diffraction bands are considered here. The deforma-
tion tensor F determines how the diffraction cones are oriented
with respect to the phosphor frame and may also change the
inter-planar spacing dhkl. Because the equation of a cone is easiest
to describe in the frame in which it is a right rectangular cone
with the axis of symmetry in the z-axis, a fourth right-handed,
orthonormal reference frame may be defined for convenience.
Determination of a plane normal (in this case the (hkl) crystal-
lographic plane) after deformation is a standard mechanics
problem and can be found using the following equation [10]:

n̂
0
¼ aðn̂ÞT ðFÞ�1 (9)

where n̂
0

is the normal after deformation, n̂ is the plane normal
before deformation, and a is a scalar normalization. The cone
reference frame is then aligned such that ê

co
3 ¼ n̂

0
, 0 ¼ ê

co
2 � ê

co
3 , and

ê
co
1 ¼ ê

co
2 � ê

co
3 . In the cone reference frame, a point ~p ¼ p1ê

co
1 þ

p2ê
co
2 þ p3ê

co
3 lies on the cone if p2

1 þ p2
2 ¼ ðp3= tanðyÞÞ2, where the

angle is the same as in Eq. (8). The CCD camera is made up of
1000�1000 pixels and each pixel can be described as a point in
the cone reference frame. If a pixel falls on or between the two
cones corresponding to a chosen refracting plane (hkl), then that
pixel in the image of the simulated band, B, is taken to have an
intensity equal to the square of the structure intensity, Shkl, and
zero otherwise

Bð~p; F;Rv!c ;Rc!co; ðhklÞÞ ¼ . . .

S2
hkl ifð½Rc!coFRv!c~p�1Þ

2
þ ð½Rc!coFRv!c~p�2Þ

2
�

ð½Rc!coFRv!c~p�3Þ
tanðyÞ

� �2

0 otherwise

8<
:

(10)
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Summing the contributions of each band and its symmetry
variants generates the complete approximation of the EBSD
pattern image. If Si are the elements of the symmetry subgroup
and (hkl)(j) are the elements of the set that includes all of the
diffracting planes, then the composite simulation image can be
described as follows:

Iðp
*
; FÞ ¼

X
i

X
j

Bðp
*
; F; SðiÞðhklÞðjÞÞ

The final simulated pattern can be further filtered using high-
and low-pass filters to more accurately reflect the variations in the
measured EBSD pattern background.

Using the cross-correlation analysis in an iterative manner the
F that minimizes the difference between a measured pattern M

and a pattern simulation Ið~p; FÞ is found. Because the measured
pattern is a pixilated image, the simulation image must be
evaluated at the locations that correspond to those pixels.

Fig. 2 shows a collected pattern from the silicon sample and a
simulated pattern generated at the OIM calculated orientation.
The simulated pattern had the following input parameters:
(a)
 diamond structure lattice, a ¼ 5.43 Å

(b)
 701 sample tilt angle

(c)
 101 elevation angle of phosphor screen

(d)
 phosphor screen width Dx ¼ 1000 pixels and height Dy ¼ 1000

pixels

(e)
 pattern center (from lower left corner) PCx ¼ 0.5405Dx,

PCy ¼ 0.7139Dx
(f)
 sample to phosphor screen distance z* ¼ 0.7455Dx
(g)
 orientation in Euler angles (radians): j1 ¼1.74, F ¼ 3.06,
j2 ¼ 0.11
Furthermore, both patterns were filtered using a band pass
filter. The band placement between the simulated and measured
patterns aligns very well. The intensities and band widths,
however, are not as precise. There are two main reasons for this.
Fig. 2. Collected pattern and a simulated pattern at approxima
The difference in band widths is mainly due to the simulated
patterns being limited to first order (m ¼ 1 in Bragg’s law) bands.
The higher-order bands are wider and lie on the same line as the
first-order bands. An example of this is the two bands intersecting
at 451 angles near the center of the pattern. The presence of
higher-order bands makes these appear wider than the corre-
sponding simulated band. The difference in intensities is due to
the simulations being based on a kinematical instead of a
dynamical model. Dynamical models, such as those produced by
Winkelmann et al. [11], account for variations in intensity in a
measured pattern and in general include much more detail, but
can take hours for a single pattern simulation. Since the cross-
correlation method is dependent on measuring band shifts, small
intensity variations and differences in band width should not
affect the measurements. It is expected that continued experi-
mentation using simulated patterns will reveal more about the
issues involved with comparing kinematical simulations to
measured patterns. These effects include the disregarding of
dynamical diffraction and other factors such as optical distortions
in the SEM column.

The patterns shown in Fig. 2 were used to test the ability of the
cross-correlation function to measure shifts between measured
and simulated patterns. The simulated pattern was shifted a
known number of pixels and compared to the measured pattern
using the cross-correlation function to measure the applied shift.
This was repeated several times for increasing shifts of the
simulated pattern. Fig. 3 shows the shifts applied to the simulated
pattern and the corresponding measured shifts in both the
horizontal and vertical directions. The cross-correlations
correctly identified the shifts to within 0.05 pixels, and the
standard deviation of the measured shifts from the applied shifts
was 0.035 pixels. It can be seen that the spread in the measured
shifts was smaller in the horizontal direction than in the vertical
direction, but the exact reason for this is unknown. Deviations of a
collected pattern from a simulated pattern should then be
measurable to 1/20th of a pixel, which is the same level of
resolution claimed by the authors of the cross-correlation method.
tely the same orientation with outlines of ROIs drawn on.
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Fig. 3. Cross-correlations correctly identify shifts of a simulated image when compared to a real collected pattern. The average standard deviation of measurements was

0.035 pixels and all measured shifts in a sample of 121 different shifts lie within 0.05 pixels of the expected value.
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Although the simulated patterns are visually different from
collected patterns, we can conclude that they should still serve
well as references for the cross-correlation analysis.
4. Strain and rotation analysis with simulated patterns

It was found during the development process of the simulated
pattern method that a single comparison between a measured
and simulated EBSD pattern using the cross-correlation technique
did not give the desired angular and strain resolution. To improve
the resolution, an iterative technique was developed using
the Hough measured orientation as the starting point. The
simulated pattern analysis algorithm proceeds as follows:
(1)
 Measure a local lattice orientation to within a 0.51 using the
Hough transform method and save the EBSD pattern image.
(2)
 Generate a simulated pattern based on the crystal structure
(which must be known) and the Hough-transform estimate of
the true orientation.
(3)
 Use the cross-correlation analysis algorithm to compare shifts
from the simulated pattern to the saved EBSD pattern image.
(4)
 Calculate the deformation tensor by inputting the measured
shifts into Eqs. (2) and (3) and solving.
(5)
 Evaluate the fit of the deformation tensor with Eq. (6).
Fig. 4. As the lattice state of the simulated reference pattern is iteratively refined,

measures of the error and deformation converge to a solution and provide

estimates for the resolution of the solution. In this case the solution shown has a

sub-pixel resolution (top), which corresponds to a resolution of 0.03721 for

individual components of the rotation tensor and 0.000665 for components of the

strain tensor (bottom).
At the conclusion of these five steps, a new pattern can be
simulated at a deformation state that is closer to the actual state
of the examined material. If the refined simulation pattern is then
used for steps 3–4, the error measure significantly improves. By
repeating this process iteratively, a solution for the deformation
tensor is rapidly converged upon. Additionally, the variation of the
deformation tensor, calculated at each iteration, gives a concrete
method of estimating the resolution of the converged solution
(Fig. 4).

Due to the difficulty of establishing an absolute external
measure of the resolution for these new techniques, Wilkinson
devised a test for inferring the resolution limits. He applied a
known rotation manually to a sample in the microscope chamber
and then collected five patterns at each increment of rotation. The
rotation control of the stage does not have sufficient precision to
adequately probe the resolution of this method, so instead he took
the standard deviation of the five measurements at a constant
angle of rotation to be the resolution limit. This procedure was
repeated using a single crystal [0 0 1] silicon sample with the
modified Wilkinson analysis, and then with the simulated pattern
analysis (Fig. 5).

The Wilkinson cross-correlation method provided an average
standard deviation of 0.0031 for rotation components and
5.5�10�5 for strain components when using the standard
deviation of the measurement of five collected patterns at the
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Fig. 5. Using manual stage rotations the resolution of the modified Wilkinson method (top) can be compared to the simulated pattern method (bottom). Since the normal

to the stage is the ê3 axis, the R12 component of the rotation tensor should be the only non-zero component. The reader is reminded that U is the elastic strain gradient

tensor.

Fig. 6. Average elastic strain measurements resulting from a difference in input

pattern center and sample-to-screen distance. The patterns were simulated at zero

elastic strain.
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same orientation, which agrees with the measurements reported
by Wilkinson (0.0061 and 1�10�4). The simulated pattern
analysis method had slightly poorer resolution with an average
standard deviation of 0.021 and 3.6�10�4 for rotation and strain
components, respectively.

An important issue not addressed by the rotation test is the
simulated pattern method’s sensitivity to input simulation
parameters. These parameters include the pattern center, sample
to phosphor screen distance, sample tilt, accelerating voltage, and
the material lattice parameters. In order to study how error in
input lattice parameters could affect the accuracy of the simulated
pattern method, simulated patterns were compared using the
cross-correlation method. Two patterns were simulated at the
exactly same lattice state. The only difference between the two
were differences in the input x and y coordinates of the pattern
center and the sample to screen distance. Fig. 6 shows how these
small changes translate to error in elastic strain measurements.
In general, pattern center and sample to screen distance can be
found using OIM software to �0.005Dx.

While the error caused by variations in the pattern center are
generally below the resolution limit of the simulated pattern
method, error in the sample to screen distance can have a
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Fig. 7. Spatial distribution of the a13, a23, and a33 components of the dislocation density tensor as estimated by the simulated pattern method (top row) compared to the

estimation made using conventional OIM data (bottom row). Notice the sensitivity to fine-scale detail of the simulated pattern method shown by the gradient towards

higher dislocation density in the upper left corner. The OIM data shows some detail, but is mostly dominated by noise.
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significant effect on the accuracy of results. To address this issue, a
method is currently being developed to carry out high-resolution
sample to screen distance calibration using single crystals
mounted planar with the sample in the SEM chamber (Fig. 7).

Although the resolution of the simulated pattern reference
method at this stage of development does not achieve that of
Wilkinson’s method, the iterative simulation approach has
distinct advantages that make it worth pursuing. First, by
comparing a simulated pattern to a collected pattern, any pattern
defects are limited to one pattern and the impact of image quality
and need for user-controlled filtering is significantly decreased.
Second, using a pattern of known character allows calculation of
absolute strain and rotation without special requirements of the
sample, whereas in the Wilkinson method this would require a
strain-free portion of the sample to use as a reference. Addition-
ally, this means that the method of simulated references could
easily analyze a polycrystalline sample, whereas for the collected
pattern reference method, each new grain would require a new
strain-free reference pattern, which may be especially difficult in
small or highly deformed grains.
5. Results: dislocation density measurements in MG AZ91

Dislocation density measurements are an important factor in
the development of new metallic materials. Due to its light weight
and high recyclability, magnesium alloys are very attractive
prospects for applications in car parts. However, their use is
limited by low ductility and formability at low temperatures. This
low ductility is based on the low number of slip systems that are
active at room temperatures. One way to see this effect is through
studying the dislocation densities caused by slip in the crystal
lattice. A better understanding of the dislocation structure can
lead to a more fundamental understanding of the deformation
mechanisms of magnesium.

Strain and orientation measurements obtained using the
simulated pattern method were used to estimate the geometri-
cally necessary dislocation (GND) density in a polycrystalline
Mg-based AZ91 alloy. Continuum mechanics-based derivations of
GND densities have been founded on the original work of Nye [12]
and later with the addition of elastic strain by Kröner [13]. The
following formula emerged, linking lattice curvature (kij), which is
the curl of the orientation field, and elastic strain gradients (eij,l) to
the dislocation density tensor (aij):

aik ¼ kki � dkikpp þ eklj�e
ij;l (11)

The components of the dislocation density tensor weight the
dyadic formed by the direction of the dislocation line and the
Burgers vector characterizing that dislocation. The tensor can be
calculated using a point by point comparison of elastic strain and
orientation information obtained using EBSD-based techniques
[14,15]. The effect of any statistically stored dislocations between
steps that have opposite signs (Burgers vectors in opposite
directions) will cancel out, and thus will be immeasurable by
the proposed technique. In order to get the most accurate
estimate of the actual dislocation density, it is vital to use as
small a step size as possible when making orientation and strain
measurements. However, as smaller step size lengths are
approached, any errors from misorientation measurements are
significantly amplified in the curvature measurements, and
artificially high dislocation densities can be measured. OIM is
limited by a misorientation resolution of approximately 0.51,
which corresponds to a dislocation density measurement resolu-
tion of �3� 1015 m�2. The simulated pattern method’s improved
resolution has allowed dislocation densities of the order
of 1� 1013 m�2 to be measured in single crystal samples.

The simulated pattern method was applied to a polycrystalline
Mg AZ91 sample that had been compressed 5.5%. The normal to
the sample surface was parallel to the compression direction.
The sample was prepared and scanned at GM facilities in Detroit.
A 4� 4mm2 scan was taken near the center of a 20�20mm2 grain
at a 100 nm step size. The scan was taken using an accelerating
voltage of 20 kV and at a working distance of 12 mm. In order to
obtain the highest signal-to-noise ratio possible, the EBSD
patterns were saved at the full camera resolution which slowed
scanning time to�3 patterns/s. To further improve the accuracy of
the cross-correlations, a band pass filter was used on the overall
patterns (both measured and simulated). Also, to further improve
the ability of the cross-correlation function to detect bands, each
individual ROI was filtered using a low-pass filter. The cut-off
frequencies for the band pass filters (in cycles per pixel) were 0.65
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Table 1
Comparison of methods.

OIM Simulated pattern method

without elastic strain term

Simulated pattern method

with elastic strain term

Wilkinson method with

elastic strain term

a13 3.94e15 9.12e13 1.18e14 1.53e14

a23 2.94e15 1.25e14 1.60e14 1.16e14

a33 1.81e15 9.12e13 7.70e13 1.08e14

atotal 8.70e15 3.08e14 3.55e14 3.76e14

Dislocation density measurements in m�2 using OIM, the simulated pattern method, and Wilkinson’s method with and without including the elastic strain term.
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for the high pass and 32.3 for the low pass. The cut-off frequency
of the low-pass filter was 0.77 cycles per pixel. These values
were obtained by visual optimization to minimize the scatter in
the data. The authors intend to conduct a thorough study of the
filtering effects on the results, but such a study has not yet been
carried out at this time. The saved patterns were analyzed offline
using the simulated pattern method with the OIM measured
orientation as the starting point in the iterations. The offline
analysis time is dependent on the number of iterations used,
which is generally 3–5. For 465�465 pixel images, each iteration
requires �0.5 s, with two-thirds of the time used for pattern
simulation and the rest to perform the cross-correlation analysis.
The code used has not been optimized for speed, and it is expected
that the time requirements will be significantly reduced in the
future.

The dislocation density was first estimated using the OIM
measured orientation, then using the simulated pattern method with
and without including the elastic strain term, and finally using the
simulated pattern method measured orientation and elastic strain at
each point. Since dislocation density measurements need only the
gradients of the elastic strain and orientation, Wilkinson’s method
was also used as a comparison to further validate the simulated
pattern method. The dislocation density was defined as the average of
the absolute magnitude of all of the points in the scan (Table 1).

The data obtained using Wilkinson’s method was very close to that
obtained using the simulated pattern method. This serves as further
validation of the accuracy of the results. The OIM estimated
dislocation density on the other hand was over a full order of
magnitude higher than that estimated using the simulated pattern
method. In general, OIM is incapable of measuring dislocation
densities below �3� 1015 m�2, so the estimated density in this case
is around what would be expected if only noise was measured.
Although no significant structure is seen in the figure, there are two
important points to be taken from it. First, the dislocation density
measurements using the simulated pattern method are over a full
order of magnitude lower than those measured by traditional OIM.
This is directly related to the increase in angular resolution of the
simulated pattern method. Second, the dislocation density maps
created by traditional OIM have many very high points as can be seen
in the center of the scan, while other points show a very low
dislocation density. These sharp changes in dislocation density are
attributed to scatter in the orientation data collected by OIM and
suggest that while the overall dislocation density measured by OIM
may differ from the simulated pattern method by only an order of
magnitude, local variations caused by scatter can cause much higher
levels of error.

From the data, it is also seen that the elastic strain term can
have a significant effect on the estimated dislocation density.
Depending on how the elastic strain aligns with the dislocations,
the inclusion of the elastic strain tensor can cause a higher or
lower dislocation density to be estimated. In this case, the overall
estimated dislocation density increased 15% after the inclusion of
the elastic strain term.
6. Conclusion

Initial studies of simple Bragg’s Law simulation patterns as
references for cross-correlation analysis of EBSD data show
resolution limits above traditional OIM techniques and approach-
ing the limits of the high-resolution cross-correlation technique of
Wilkinson. Most importantly, the simulated pattern method
eliminates the need for a strain-free reference pattern, allowing
the characterization of polycrystalline materials and other
materials where a strain-free reference pattern may not be
available. Although the algorithms used for this study were
significantly slower than traditional analysis, they were easily
performed offline in an automated manner.

There are a currently a number of experimental analyses being
developed to showcase the capabilities of this simulated pattern
method. One application that is currently being explored is phase
differentiation in steel samples. The bainite and martensite phases in
steels have a tetragonality in their lattices caused by carbon content
that distinguish them from the cubic ferrite phase. Currently, there is
no agreement found in the literature on the tetragonality in the
crystal lattice of the bainite phase [16]. The magnitude of this
tetragonality is too small for traditional EBSD techniques to directly
detect but should, however, be detectable in the diagonal components
of the elastic strain tensor when found using the simulated pattern
method. The axis of tetragonality can also be found by simulating
EBSD patterns with tetragonalities along each of the three axis,
comparing them to measured patterns from bainite or martensite
phases, and finding which axis of tetragonality fits best with the
measured pattern. Pseudo-symmetries in phases that are slightly
altered from standard lattices should also be accessible. Another
example that has previously been investigated and has been revisited
in this paper is the use of the improved resolution limits to determine
dislocation densities [14]. While Wilkinson’s method is perhaps
superior for measuring dislocation densities in materials with small
deformations, large deformations can cause high orientation gradients
that can lead to significant errors when using Wilkinson’s approach.
As improvements are made to the algorithm and computational
approaches, using Bragg’s Law simulation patterns as references for
cross-correlation analysis will only become more useful and feasible.
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