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Single crystal constitutive equations based on dislocation density (SCCE-D) were developed
from Orowan’s strengthening equation and simple geometric relationships of the operating
slip systems. The flow resistance on a slip plane was computed using the Burger’s vector,
line direction, and density of the dislocations on all other slip planes, with no adjustable
parameters. That is, the latent/self-hardening matrix was determined by the crystallogra-
phy of the slip systems alone. The multiplication of dislocations on each slip system incor-
porated standard 3-parameter dislocation density evolution equations applied to each slip
system independently; this is the only phenomenological aspect of the SCCE-D model. In
contrast, the most widely used single crystal constitutive equations for texture analysis
(SCCE-T) feature 4 or more adjustable parameters that are usually back-fit from a polycrys-
tal flow curve. In order to compare the accuracy of the two approaches to reproduce single
crystal behavior, tensile tests of single crystals oriented for single slip were simulated using
crystal plasticity finite element modeling. Best-fit parameters (3 for SCCE-D, 4 for SCCE-T)
were determined using either multiple or single slip stress–strain curves for copper and
iron from the literature. Both approaches reproduced the data used for fitting accurately.
Tensile tests of copper and iron single crystals oriented to favor the remaining combina-
tions of slip systems were then simulated using each model (i.e. multiple slip cases for
equations fit to single slip, and vice versa). In spite of fewer fit parameters, the SCCE-D pre-
dicted the flow stresses with a standard deviation of 14 MPa, less than one half that for the
SCCE-T conventional equations: 31 MPa. Polycrystalline texture simulations were con-
ducted to compare predictions of the two models. The predicted polycrystal flow curves
differed considerably, but the differences in texture evolution were insensitive to the type
of constitutive equations. The SCCE-D method provides an improved representation of sin-
gle-crystal plastic response with fewer adjustable parameters, better accuracy, and better
predictivity than the constitutive equations most widely used for texture analysis (SCCE-T).

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Modern ‘‘texture analysis” routinely predicts the plastic anisotropy and texture evolution of polycrystals during large
deformation, particularly for FCC crystal structures. Such calculations make use of single-crystal constitutive equations based
on slip systems and statistical grain orientation information. The procedure does not consider specific neighboring grain
interactions or the presence of grain boundaries, as illustrated in Fig. 1. The linkage among grains in texture analyses is based
. All rights reserved.
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Fig. 1. Schematic view of typical texture analysis and crystal plasticity finite element analysis (CP-FEA). Texture analysis imposes highly-simplified inter-
grain rules while CP-FEA imposes compatibility and equilibrium in a finite element sense.
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on numerical convenience, assuming that all grains exhibit identical strains (Taylor, 1938), or stresses (Sachs, 1928), or com-
binations of stress and strain components (Canova et al., 1985). Such models enforce some aspects of inter-grain equilibrium
or compatibility, but not both (Parks and Ahzi, 1990). An alternative formulation treats a single grain as an inclusion within a
homogenized medium (Kröner, 1961; Molinari et al., 1987).

Crystal-plasticity finite element analysis (CP-FEA) (Peirce et al., 1982; Asaro, 1983; Dawson, 2000) enforces inter-grain
equilibrium and compatibility in a finite element sense (with many elements in a single grain), thus treating the interactions
among neighboring grains more realistically (Raabe et al., 2002), Fig. 1, but with large penalties in computation time. Recent
applications of CP-FEA have been extended to the deformation of single, bi- and polycrystals (Zaefferer et al., 2003; Ma et al.,
2006; Zaafarani et al., 2006; Raabe et al., 2007), incorporating size dependence through strain gradient terms (Abu Al-Rub
and Voyiadijus, 2005) and nanoindentation simulations (Wang et al., 2004; Liu et al., 2005, 2008). These methods are too
CPU-intensive for use with large grain assemblies (i.e. typical polycrystals) or for treating applied deformation boundary-va-
lue problems. Modifications to improve the efficiency of the calculations limit the accuracy by, for example, applying iso-
strain conditions within a grain (Kalidindi et al., 1992; Dawson et al., 2003) or having each finite element represent a single
grain (Nakamachi et al., 2001).

Polycrystal simulations, whether of the texture-type or CP-FEA type, use single crystal plasticity constitutive models
based on slip system activity. Typical formulations are either elastic-plastic rate-independent (Mandel, 1965; Hill, 1966;
Rice, 1971; Hill and Rice, 1972; Asaro and Rice, 1977; Asaro, 1983; Anand and Kothari, 1996; Marin and Dawson, 1998)
or viscoplastic (Peirce et al., 1982; Asaro and Needleman, 1985). This viscoplastic approach has recently been referred to
in the literature as ‘‘PAN” (e.g. Thakare et al., 2009; Patil et al., 2008; Alcalá et al., 2008), named for ‘‘Peirce, Asaro, Needle-
man” (Peirce et al., 1982; Asaro and Needleman, 1985). The PAN approach uses an arbitrary small strain rate sensitivity index
to avoid numerical non-uniqueness. The most commonly used PAN formulation relies on a power-law equation relating
shear stress to shear strain rate on each slip system (Asaro and Needleman, 1985) with the slip system resistance evolving
with total slip on each slip system according to latent and self-hardening (Mandel, 1965; Hill, 1966).

The adjustable parameters in the single-crystal constitutive equations used for texture analysis are almost universally
determined by back-fitting them to mechanical test results (i.e. uniaxial tension or compression) of macroscopic polycrystals
that are simulated using the same technique for which the constitutive equations are destined. Such a procedure guarantees
that the macroscopic tests used to fit the parameters are reproduced accurately by the simulations, but not that the single-
crystal constitutive equations represent true single-crystal behavior. Simulations of problems based on such an approach have
proven useful for a range of strain, strain rates, and temperatures (Mathur and Dawson, 1989; Bronkhorst et al., 1992; Beaud-
oin et al., 1994; Kumar and Dawson, 1998; Nemat-Nasser et al., 1998). However, there is evidence that single-crystal plas-
ticity models fitted in this way do not always represent single-crystal behavior properly (Becker and Panchanadeeswaran,
1995; Kumar and Yang, 1999; Arsenlis and Parks, 2002). If the presence and characterization of grain boundaries (and grain
shape, size, misorientation, etc.) influences the relationship between single-crystal and polycrystal deformation characteris-
tics, the standard back-fitting procedure evidently would not yield a correct description of single-crystal behavior. Instead,
the single-crystal constitutive equations embed undetermined aspects of the inter-grain interactions and thus, may not rep-
resent single crystal behavior but rather some amalgam of single and polycrystal aspects. One of the purposes of the current
work is to determine whether the predominant formulation of single-crystal constitutive equations used for a wide range of
successful texture calculations (‘‘SCCE-T”) captures single crystal behavior properly, particularly single slip vs. multiple slip.
The answer to that question bears on the question of whether inter-grain interactions are incorporated in an unknown way
into the SCCE-T’s fit to macroscopic observations.



M.G. Lee et al. / International Journal of Plasticity 26 (2010) 925–938 927
Note: ‘‘SCCE-T” refers in this paper to a set of choices within the broader PAN framework. It is SCCE-T that is used with wide
success in texture calculations appearing in the literature. SCCE-T is a subset of PAN, the latter of which has greater flexibility
with a commensurate number of additional adjustable parameters. As a particular example, the majority of successful texture
calculations use a fixed value, 1.4, describing the ratio of latent hardening to self-hardening that agrees with experience at the
macro/texture level. SCCE-T, in addition to having the validation of wide testing over more than 20 years, has only one addi-
tional parameter compared with the constitutive model proposed here. Thus, comparisons between the two are meaningful.
Summaries of the constitutive forms considered in this paper are presented later.

Alternate developments to represent single-crystal behavior based on dislocation densities have appeared. Models of this
type typically exhibit considerable complexity and large numbers of undetermined parameters. Models based on statistical
aspects of dislocation densities represented as internal state variables (Ortiz et al., 1999; Arsenlis and Parks, 2002) captured
the orientation-dependent flow behavior of FCC single crystals. Developments for FCC and BCC single crystals make use of
Orowan’s equation (Orowan, 1940) and have incorporated many physical complexities, including dislocation velocities, acti-
vation energies, and dislocation walls (Roters et al., 2000). In order to reproduce the compression of aluminum single crystals
at elevated temperature, 8 fit parameters and 2 activation energies were required to predict stress strain curves for a range of
strain rates and temperatures in one study (Ma et al., 2004).

In the current work, a dislocation-based single crystal constitutive equation (‘‘SCCE-D”) is newly formulated with 3 unde-
termined parameters corresponding to a standard equation representing the evolution of dislocation density. The form is
similar to standard corresponding texture-type equations, except that the dislocation density for each slip system and its
evolution is used explicitly rather than implicitly via slip system strength and its evolution with total slip (Ortiz and Popov,
1982; Brown et al., 1989; Kalidindi et al., 1992; Kuchnicki et al., 2006; Wang et al., 2007). Use of physical dislocation den-
sities allows application of Orowan’s strengthening model (Orowan, 1948) to determine the cross-hardening effects without
undetermined parameters (see also Bassani and Wu, 1991; Liu et al., 2008). Such cross-hardening effects depend on the
geometry of the crystal lattice type, not on undetermined parameters.

Tests of SCCE-D are made for single-crystal and polycrystal deformation and the results are compared with corresponding
ones using standard SCCE-T. We emphasize that we have selected the SCCE-T for comparison with the new model because it
dominates successful texture calculations presented in the literature. As such, it represents an informal ‘‘consensus” of what
has been found to work. None of the other variants within the PAN formalism approach the breadth of experience or accep-
tance in the community. The question to be answered is whether the SCCE-T formulation that finds broad success for poly-
crystal simulations represents single-crystal behavior properly, and if not, whether a less-adjustable/more predictive
formulation can improve on the single-crystal representation. A secondary question is how such an alternative formulation
would affect macroscopic texture calculations.

2. Crystal plasticity based on single crystal constitutive equations

The kinematics for either SCCE-T or SCCE-D are based on well-established developments (Lee, 1969; Rice, 1971; Hill and
Rice, 1972; Asaro and Rice, 1977; Peirce et al., 1982). The total deformation gradient is decomposed into elastic and plastic
parts (Lee, 1969):
F ¼ FeFp ð1Þ
where Fe corresponds to elastic distortion of lattice, and Fp defines the slip by the dislocation motion in the unrotated con-
figuration (Mandel, 1965).

The plastic velocity gradient in the unrotated (or intermediate) configuration is:
Lp ¼ _FpFp�1 ð2Þ
The evolution of the plastic deformation can be expressed as the sum of all crystallographic slip rates, _ca (Rice, 1971),
Lp ¼
Xn

a¼1

_casa
0 � na

0 ð3Þ
where sa
0 and na

0 are the vectors representing slip direction and slip plane normal of the slip system a, respectively and n is
total number of slip systems.

2.1. Common elements of SCCE-T and SCCE-D

For a rate-dependent crystal plasticity model, the plastic shear rate of each slip system a is typically expressed as a
power-law function of the resolved shear stress sa as (Hutchinson, 1976; Peirce et al., 1982):
_ca ¼ _c0
sa

ga

� �1
m

signðsaÞ ð4Þ
where _c0 is reference shear rate, ga is the slip resistance (or flow stress) of the slip system a and m is the rate sensitivity
exponent. The initial flow stress is generally assumed to be the same, i.e. g0, for all slip systems. Reference shearing rate
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and rate sensitivity, 0.001 s�1 and 0.012, respectively, are adopted from the literature (Bronkhorst et al., 1992; Kalidindi
et al., 1992).

To complete the constitutive equations, the second Piola-Kirchhoff stress is defined as follows, and is related elastically to
the strain:
S ¼ Ce : E ¼ detðFeÞFe�1rFe�T ð5Þ
where E ¼ 1
2 ðF

eTFe � IÞ is the Lagrangian strain tensor, r is the Cauchy stress, and Ce is the fourth order elastic constant
matrix.

The resolved shear stress of slip system a in Eq. (4) is approximately,
sa ¼ S : Pa
0 � S : ðsa

0 � na
0Þ or sa ¼ SijP

a
0ij � Sij : ðsa

0in
a
0jÞ ð6Þ
The slip resistance (equivalent to a critical resolved shear stress (CRSS) for a rate-independent elastic-plastic law) of slip
system a, ga evolves as the slip (or gliding) of dislocations on the slip system occurs. The governing rule of the evolution of
slip resistance (hardening) is a critical aspect of the constitutive framework and causes the SCCE-T and SCCE-D approaches to
diverge, as described in the following sections.

2.2. Single-Crystal Constitutive Equations developed for Texture models (SCCE-T)

Texture analyses predominantly utilize phenomenological models for the evolution of flow stress on a slip system a as
related to the slip increment on all slip systems b as follows (Asaro, 1983):
_ga ¼
X

b

hab _ca ð7Þ
where hab are hardening coefficients. Most texture analyses have adopted the following form for the hardening coefficient
matrix (Hutchinson, 1976; Asaro, 1979; Peirce et al., 1982):
hab ¼ hbðqlat þ ðqself � qlatÞdabÞ ð8Þ
where dab is the Kronecker delta and qself and qlat determine the self and latent hardening, respectively. The hardening ma-
trix contains two distinct values: diagonal terms (qself) for the self-hardening and off-diagonal terms (qlat) for the latent
hardening. Experimental observations (Kocks, 1970) suggested that the range 1 6 qlat/qself 6 1.4 applies for FCC single crys-
tals, and qlat/qself = 1.4 is typically used in texture analyses of FCC polycrystals e.g. (Peirce et al., 1982; Asaro and Needleman,
1985; Mathur and Dawson, 1989; Kalidindi et al., 1992).

The form of hb in Eq. (8) has been proposed to properly represent the stress–strain behavior of polycrystals. Here, the
widely used form proposed by Brown et al. (1989)) is adopted:
hb ¼ h0 1� gb

gs

� �a

ð9Þ
where h0 is the initial hardening rate, gs is the saturated flow stress and a is the hardening exponent. The initial hardness g0 is
typically fitted to reproduce the macroscopic yield stress. Eqs. (7)–(9) have been shown to predict the stress–strain response
and evolution of texture for simple deformation of FCC polycrystals (Mathur and Dawson, 1989; Kalidindi et al., 1992). When
the parameters are back-fitted to stress–strain responses of polycrystals, there are 4 arbitrary parameters to be fit from mac-
roscopic polycrystal stress–strain curves to complete Eqs. (7)–(9): h0, gs, g0 and a in Eqs. (4), (8), and (9). These undetermined
parameters, h0, gs, g0, and a are typically set from the stress–strain curve for a polycrystal tensile test.

2.3. Single-Crystal Constitutive Equations based on the Dislocation density model (SCCE-D)

In the SCCE-D derived here, the hardening is expressed in terms of the interaction of mobile dislocations with correspond-
ing forest dislocations that act as point obstacles, Fig. 2. These interactions are evaluated using Orowan’s strengthening mod-
el assuming that forest dislocations are hard pins with respect to intersecting mobile dislocation. That is, the intersection
points become immobile and the mobile dislocation must bypass by looping around the obstacle rather than cutting through
it. In fact, dislocation intersections are known to be hard pins in most metals at low homologous temperatures (Hirth and
Lothe, 1969).

In Orowan’s model (Orowan, 1948), if the applied stress is large enough, dislocations loop around an obstacle and will
overcome and bypass it, leaving dislocation loops behind. The critical stress (ga) necessary to bow out a dislocation on a slip
system a to a radius r is calculated by considering the equilibrium with the line tension of the dislocation, T:
ga � b ¼ T
r

ð10Þ
where b is the Burger’s vector. The dislocation is considered to have a line tension equal to its self-energy per unit length and
is approximated (Weertman and Weertman, 1992) as follows:
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Fig. 2. Interaction between a moving dislocation on an active slip system and corresponding forest dislocation array.
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T � 1
2
lb2 ð11Þ
where l is shear modulus. Combining Eqs. (10) and (11), we express the critical bypass stress as
ga ¼ lb
2r
¼ lb

l
ð12Þ
where the critical radius of curvature is set equal to half of the inter-pin spacing. Eq. (12) is the well-known relationship for
Orowan’s bypass mechanism. If the applied stress exceeds the bypass stress, dislocations bypass the obstacle, allowing long-
range plastic straining, and loops are formed around each obstacle. Now we assume that the obstacles are forest dislocations,
that is dislocations lying on other slip systems that pierce the slip plane of the a slip system. Since the obstacle spacing dis-
tance l, in Eq. (12) depends on the density of forest dislocations, Eq. (12) can be rewritten as:
ga ¼ lb
ffiffiffiffiffi
qf

p ð13Þ
where qf is the density of dislocations that penetrate the slip plane of slip system a. For the flow stress derived in Eq. (13)
assumes that all of the forest dislocation lines are assumed to be parallel to the a slip plane normal. For an arbitrary angle, h,
between the two directions, as shown in Fig. 2, the effective forest dislocation density �qf is as follows:
�qf ¼ qf cos h ¼ qf � ðna � nfÞ ð14Þ
where na and nf are the slip plane normal of the moving dislocation being considered and the line direction of the corre-
sponding forest dislocation, respectively. The effective forest dislocation density, �qf is maximized when h ¼ 0� and vanishes
if h ¼ 90�, i.e. if the mobile and forest dislocations are coplanar. Therefore, the flow stress can be represented as:
ga ¼ lb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qf � ðna � nfÞ

q
ð15Þ
Eq. (15) includes the assumption that all forest dislocations are parallel to each other. To generalize to an array of forest
dislocations, the interactions are summed over each type of dislocations/slip system (Franciosi and Zaoui, 1982). If there are
n different slip systems, the Eq. (15) becomes:
ga ¼ lb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

b¼1

habqb

vuut ð16Þ
where hab ¼ na � nb is given by the geometries of edge dislocations for each slip system, with no undetermined parameters.
To complete the SCCE-D development, a widely used dislocation density evolution equation based on slip systems is

adopted (Kocks, 1976).
_qa ¼ 1
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiPn
bqb

q
ka

� kbqa

0
@

1
A � j _caj ð17Þ
where ka and kb are material parameters for the generation and annihilation terms of dislocations, respectively. The final
SCCE-D defined by Eq. (16) and (17) has three parameters to be determined, each of them related to dislocation density
and its evolution: ka, kb and q0.

3. Results and discussion

In order to compare the accuracy and usefulness of SCCE-T and SCCE-D as described above, the adjustable parameters
were fit to reproduce the measured stress–strain response of single crystals oriented for either multiple or single slip. The



Table 1
Best-fit parameters and range of parameters for fitting SCCCE-T and SCCE-D.

Best fit parameters SCCE-T Std. error of fit (MPa) SCCE-D Std. error
of fit (MPa)

Fit direction g0 (MPa) gs (MPa) h0 (MPa) a q0 (mm�1) ka kb

Cu [0 0 1] 1 89 255 1 0.67 103 22 33.5a 0.64
[�1 2 3] 1 58 37 �0.75 2.10 10 51 3a 1.65

Fe [0 0 1] 18 81 141 0.25 0.41 2.5 � 105 59 4a 0.77
[�3 4 8] 18 58 17 �1.25 0.29 2.5 � 105 156 0.5a 1.89

Fit procedure parameters
Data range * 0–300 0–300 �3 to 3 * 1–200 0–50a

Increment 1 – 10 10 1 – 10 10a

Increment 2 – 1 1 0.25 – 1 0.5a

a Burgers vector (=0.257 nm).
* Obtained by simple trial and error.
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Fig. 3. Comparison of stress–strain curves from SCCE-T and SCCE-D constitutive models and measurements from the literature (Takeuchi, 1975) for copper
single crystals with tensile axes in the following orientations: (a) [0 0 1] (b) [�1 1 1] (c) [�1 1 2] (d) [�1 2 3]. The parameters for the SCCE-T and SCCE-D
constitutive models have been fitted to the [0 0 1] tensile test results, as shown in part (a).

Table 2
Anisotropic elasticity constants for single crystal copper (Simmons and Wang, 1971) and iron (Hirth and Lothe, 1969) (unit: GPa).

C11 C12 C44 Shear modulus (l)

Cu 170 124 75 48
Fe 242 150 112 80

930 M.G. Lee et al. / International Journal of Plasticity 26 (2010) 925–938
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resulting material models were then used with finite element modeling to predict the stress–strain response for tensile tests
oriented for the activation of other combinations of slip systems. The predicted responses were then compared with corre-
sponding experimental results from the literature.

3.1. CP-FEM implementation

The two single-crystal constitutive equations described in the previous section were implemented into the commercial
finite element program ABAQUS/Standard via the user material subroutine, UMAT (Hibbit, 2005). A single eight-noded con-
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Fig. 4. Comparison of stress–strain curves from SCCE-T and SCCE-D constitutive models and measurements from the literature (Keh, 1965) for iron single
crystals with tensile axes in the following orientations: (a) [0 0 1] (b) [0 1 1] (c) [�3 4 8]. The parameters for the SCCE-T and SCCE-D constitutive models
have been fitted to the [0 0 1] tensile test results, as shown in part (a).

Table 3
Standard deviations and error percentagea between predicted and measured stress–strain curves.

Fit direction Tensile axis direction SCCE-T SCCE-D

Cu [0 0 1] [1 1 1] 8 (6%) 23 (16%)
[�1 1 2] 54 (150%) 13 (35%)
[�1 2 3] 58 (451%) 10 (79%)

Fe [0 0 1] [0 1 1] 5 (8%) 7 (11%)
[�3 4 8] 31 (66%) 15 (31%)

Avg. (multiple slip fit) 31 (136%) 14 (34%)

Cu [�1 2 3] [0 0 1] 62 (82%) 38 (50%)
[1 1 1] 113 (78%) 79 (55%)
[�1 1 2] 19 (54%) 7 (20%)

Fe [�3 4 8] [0 0 1] 30 (42%) 23 (32%)
[0 1 1] 24 (36%) 20 (30%)

Avg. (single slip fit) 50 (58%) 33 (37%)

a Error percentage (%) = standard deviation/averaged flow stress � 100.
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tinuum element (C3D8) was utilized to simulate the tensile tests of single crystals. The tensile direction was aligned with one
of the element axes and the two faces of the cube element were initially perpendicular to the loading axis. During the defor-
mation, the two faces remain parallel to each other and perpendicular to the loading axis, simulating the deformation mode
imposed by a stiff tensile machine. Crystallographic slip was considered on the 12 equivalent {1 1 1}h1 1 0i slip systems for
FCC copper and 12 {1 1 0}h1 1 1i and 12 {1 1 2}h1 1 1i slip systems for BCC iron.

The tensile stress–strain responses for oriented single crystals have been measured. For FCC copper single crystals, 4 ten-
sile axis orientations are available (Takeuchi, 1975; Arsenlis and Parks, 2002): h1 2 3i, h1 1 2i, h1 0 0i, and h1 1 1i. The h1 2 3i
tensile axis is oriented for single slip while h1 1 2i, h1 1 1i and h1 0 0i tensile axes are oriented for multiple slip, with 2, 6 and
8 equally favored slip systems respectively. For BCC iron single crystals, 3 tensile axis orientations are available (Keh, 1965):
h3 4 8i, h1 1 0i, and h1 0 0i. The h3 4 8i tensile axis is oriented for single slip while the h1 1 0i and h1 0 0i tensile axes are ori-
entated for multiple slip, with 2 and 4 equally favored slip systems respectively.
3.2. Prediction of single crystal stress–strain response

SCCE-T and SCCE-D models were fit by comparing FE simulations of single-crystal tensile tests oriented along directions
with most equivalent slip systems, [0 0 1], with corresponding experimental stress–strain curves from the literature. The
best-fit parameters, Table 1, were determined using the procedure described below. The stress–strain responses for other
orientations of tensile axis were then predicted using the resulting constitutive equations. For SCCE-T, h0 affects the initial
hardening rate, gs determines the final saturated value of stress, g0 determines initial yield and a affects the shape of the
stress–strain curve (Kalidindi et al., 1992). For SCCE-D, q0 corresponds to g0 for SCCE-T, which determines the yield stress
while ka and kb affect the shape of the flow curve.

In order to determine the set of parameters with minimum standard error of fit, g0 for SCCE-T and q0 for SCCE-D were first
obtained from the observed yield stress by simple trial and error. Then, a 3D ‘‘box” containing an assumed range of all pos-
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Fig. 5. Comparison of stress–strain curves from SCCE-T and SCCE-D constitutive models and measurements from the literature (Takeuchi, 1975) for copper
single crystals with tensile axes in the following orientations: (a) [�1 2 3] (b) [�1 1 2] (c) [�1 1 1] (d) [0 0 1]. The parameters for the SCCE-T and SCCE-D
constitutive models have been fitted to the [�1 2 3] tensile test results, as shown in part (a).
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sible combinations of parameters was constructed, along with equally-spaced interior points. Using SCCE-T as an example,
6727 equally-spaced interior points (i.e. 31 � 31 � 7) representing 6727 choices of constitutive parameters was considered
with ranges and increments as defined in Table 1 (Increment 1). The following steps were then followed:

1. For each of the 6727 choices, a finite element analysis was performed and a standard deviation of stress from the simu-
lation and experiments was determined up to a strain of 0.1. The set of parameters representing the minimum standard
deviation was identified for further refinement.

2. The behavior of the standard deviation moving along any parametric axis was examined. For all the cases considered here,
the standard deviation increased monotonically in all such directions moving away from the minimum standard devia-
tion set identified in Step 1.
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Fig. 7. Initial mesh and pole figures for the initial random orientations used for the finite element simulations.
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Fig. 8. Simulated macroscopic engineering stress–strain curves for uniaxial tension for (a) polycrystal copper, and (b) polycrystal iron.
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3. Starting from the set of parameters identified in Step 1, a smaller set of increments (Increment 2 in Table 1) was used to
define 3969 (21 � 21 � 9) new sets of parameters throughout a range that includes the original cells adjacent to the loca-
tion of the minimum standard deviation. Step 1 was again carried out using these choices, and the minimum standard
deviation was thus refined. Again, the standard deviation was verified to increase monotonically from this set of values
moving away from it along any parametric axis.

In this way, a unique set of best-fit constitutive parameters was determined and confidence in its uniqueness established.
Anisotropic elasticity constants and shear modulus for copper and iron single crystals are used in all finite element sim-

ulations are shown in Table 2.
Predicted and measured stress–strain curves are compared in Figs. 3 and 4 for copper and iron single crystals, respec-

tively. Figs. 3(a) and 4(a) show the accuracy of SCCE-T and SCCE-D fitted curves as compared to the [0 0 1] experimental data
used to fit them. The two approaches fitted the multiple slip [0 0 1] tensile data with approximately the same accuracy (Ta-
ble 1). Figs. 3(b–d) and 4(b and c) compare the predictions of SCCE-T and SCCE-D models (based on [0 0 1] tensile data) with
experimental results for other tensile test directions. The fitting parameters for SCCE-T do not adequately represent the
stress–strain response of single crystals, especially for single slip. The likely source of error for SCCE-T is the self/latent hard-
ening ratio, qlat/qself = 1.4, which corresponds to significant self-hardening. In contrast, the measured hardening rate of the
stress–strain curve oriented for single slip is very low, implying negligible self-hardening.1

The SCCE-D model agrees better with measurements in spite of having less number of arbitrary parameters. The standard
deviations between the measured and predicted results are listed in Table 3. The average standard deviation of measure-
ments to the SCCE-D prediction is 14 MPa while that for the SCCE-T prediction is 31 MPa.
1 There is some hardening in single slip orientations even without self-hardening because of the rotation of the crystallographic direction relative to the
tensile axis toward a less favorable slip orientations (Anand and Kothari, 1996).
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To check whether the above conclusions are unique to fitting to multiple slip tensile experiments, we refitted the equa-
tions to single slip data, with the results shown in Table 3 and Figs. 5 and 6. The average standard deviation for the SCCE-T
model is 50 MPa while that for the SCCE-D model is 33 MPa. The difference in the fit parameters and the standard deviations
show that the new approach does not predict perfectly the differences between single slip and multiple slip, but SCCE-D is
significantly better, with fewer adjustable parameters, than the standard SCCE-T.

3.3. Comparison of stress–strain response and texture evolution in polycrystalline simulations

Uniaxial compression and tension tests of polycrystalline copper and iron were simulated using SCCE-T and SCCE-D mod-
els to examine their role on the predicted stress–strain response and texture evolution of polycrystals. Material properties
shown in Table 1 for the [0 0 1] fit were used, along with an FE mesh with a total of 1000 (10 � 10 � 10) 3-dimensional solid
elements, each representing a single grain. An isotropic texture was generated by assigning a random orientation to every
element in the form of Bunge’s Euler angles. The initial mesh and random crystal orientation as described by equal-area pole
figures are shown in Fig. 7.

Figs. 8 and 9 show the simulated stress–strain curves for the SCCE-T model and the SCCE-D model for copper and iron
polycrystals. The SCCE-T prediction for both copper and iron polycrystals shows higher flow stresses than SCCE-D predictions
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throughout the tested strain range. Recall that both constitutive models were fit to single crystals oriented for multiple slip.
As Figs. 3 and 4 illustrate, the SCCE-T model over-predicts the single crystal tensile flow stress for single slip and cases having
limited numbers of slip systems. This over-prediction is apparently important for large polycrystal arrays; that is, regions of
single or limited numbers of slip systems must still be present, thereby influencing the observed macro behavior, for mac-
roscopic applied strains up to 0.1.

Figs. 10 and 11 shows predicted texture evolution for uniaxial tension and compression, respectively. Each pole figure is
chosen to represent the major texture component in simple tension and compression for FCC and BCC, respectively. Simu-
lated textures for both models show that the texture evolution in polycrystalline material has little sensitivity to the single
crystal constitutive equations for both tension and compression.

3.4. Role of qlat/qself in SCCE-T

As noted above, a fixed value of qlat/qself = 1.4 within the SCCE-T approach has been used with success for texture cal-
culations in the literature and it is this implementation that has been assessed in the current work. In order to illuminate
the role of qlat/qself in SCCE-T, a few additional fits and simulations were performed for copper single crystals. First,
modified SCCE-T’s were fit using alternate values of qlat/qself = 1.0, 1.2, 1.4 (standard value), 2.0, 3.0, and 50. The standard
errors of fit for [0 0 1] tension were identical (0.67 MPa) for all tested values except those for qlat/qself =3.0 and 50 which
were larger (0.95 and 2.23 MPa, respectively). For fits to [�1 2 3] tension, the standard error of fit for qlat/qself = 1.4 was the
minimum (2.1 MPa). Therefore, the best fits of SCCE-T with an arbitrarily adjustable value of qlat/qself gave the same
‘‘best” value as used above (and as endorsed by the literature). It should be noted that the modified SCCE-T used 5
adjustable parameters as compared with the 3 for SCCE-D, thus making the comparison increasingly biased in favor of
SCCE-T.

As an extension of these tests, the various constitutive models (i.e. best-fit parameters for each choice of qlat/qself) were
then used to simulate tension tests carried out in the direction not used for fitting. The standard deviations for [�1 2 3] ten-
sile tests simulated using the modified SCCE-T’s were 20–68 MPa (160–540%), as compared with 10 MPa for SCCE-D (80%).
The standard deviations for [0 0 1] tensile tests simulated using the modified SCCE-T’s were 45–64 MPa (60–85%), as com-
pared with 38 MPa for SCCE-D (50%). Thus, even using the more flexible SCCE-T with arbitrarily adjustable qlat/qself (five
parameters) over a wide range of values did not match the accuracy of the fit or predictions obtained with the proposed
SCCE-D (three parameters).
Fig. 10. Equal area projection pole figures after 50% tension; (a) f110g pole figure for copper, and (b) f1 11g pole figure for iron.



Fig. 11. Equal area projection pole figures after 50% compression; (a) f110g pole figure for copper, and (b) f1 11g pole figure for iron.
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4. Conclusions

The following conclusions apply to comparisons of new Single Crystal Constitutive Equations based on Dislocation Den-
sity (SCCE-D) and standard Single Crystal Constitutive Equations for Texture Analysis (SCCE-T):

(1) SCCE-D reproduce flow curves for single slip and multi slip adequately in FCC and BCC single crystals. SCCE-D have
better accuracy than SCCE-T while using smaller number of adjustable parameters. The average standard deviation
predicted by SCCE-D is 14 MPa while that for the SCCE-T is 31 MPa.

(2) SCCE-T, which are usually back-fitted from polycrystal flow curves, do not adequately represent orientation - depen-
dent single crystal behavior. The discrepancy may arise from neglecting the effect of grain boundaries, grain size and
relative misorientations between grains.

(3) Polycrystal simulations using SCCE-T fit to multiple slip single crystal data predict higher flow stresses than SCCE-D,
correlated with the high flow stresses predicted by the former for single crystals oriented for limited slip system acti-
vation. This correlation implies that there may exist significant regions of limited slip activation in polycrystals, con-
trary to the usual assumption.

(4) Texture evolution has little sensitivity to the type of constitutive equations. Simulated textures for SCCE-T and SCCE-D
for FCC and BCC polycrystals are similar, while the simulated macroscopic stress–strain responses differ.
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