
User Manual

IM3D:
A 3D Parallel Monte Carlo Simulation

Code for Ion Irradiation of
Nanostructured Materials

V1.0.0

Yonggang Li (Y.G. Li)

Copyright (2014-2015) ISSP-ACS & NSE-MIT.

This software and manual is distributed under the GNU General Public License.

* * *

Research Laboratory for Computational Materials Sciences

Institute of Solid State Physics, Chinese Academy of Sciences

June 18, 2015

http://theory.issp.ac.cn
http://theory.issp.ac.cn
http://theory.issp.ac.cn

Declaration of Authorship

IM3D stands for Ion Irradiation of Nanostructured Materials - a 3D Parallel Monte

Carlo Simulation Code.

Copyright (2014-2015) Institute of Solid State Physics, Chinese Academy of Sciences &

Nuclear Science and Engineering, Massachusetts Institute of Technology. This software

is distributed under the GNU General Public License. Coded by Yonggang Li (Y.G. Li),

ygli@theory.issp.ac.cn, 2014, ISSP, ACS.

� IM3D is a 3D Monte Carlo simulation code designed to run efficiently on serial or

parallel computers. It can simulate the transport of ions and subsequent radiation

damages in arbitrary complex 3D nanostructured materials. It is an open-source

code, distributed freely under the terms of the GNU Public License (GPL).

� IM3D was sponsored by Prof. Ju Li and Prof. Zhi Zeng, and mainly devel-

oped by Dr. Yonggang Li during his visiting to MIT in 2014. The supporting

of CSG/FETM geometric algorithms form Prof. Zejun Ding as well as useful

contributions and discussions from Dr. Machal Short and Yang Yang are very

appreciate.

� If you have any questions, please contact to Dr. Yonggang Li, who can be emailed

at ygli@theory.issp.ac.cn. The IM3D Website at ISSP and MIT has more infor-

mation about the code and its uses.

ii

ygli@theory.issp.ac.cn
http://li.mit.edu
http://
http://
http://http://micro.ustc.edu.cn/DingZJ/
ygli@theory.issp.ac.cn
http://
http://li.mit.edu/Archive/IM3D

Acknowledgements

This code was mainly supported by the scholarship from China Scholarship Council

and Institute of Solid State Physics, Chinese Academy of Sciences (CAS) and partly by

Massachusetts Institute of Technology (MIT). The subsequent supports come from the

National Science Foundation of China under Grant Nos. 11275229, 11475215 & NSAF

U1230202, the Special Funds for Major State Basic Research Project of China (973)

under Grant No. 2012CB933702, the Hefei Center for Physical Science and Technology

under Grant No. 2012FXZY004, and Director Grants of CASHIPS. Part of the tests

were performed at the Center for Computational Science of CASHIPS, the ScGrid of

Supercomputing Center, and the Computer Network Information Center of the Chinese

Academy of Sciences. Y.G. Li is very grateful to Prof. Xiaohong Zheng and Prof.

Yongsheng Zhang for their helpful suggestions on this code and works on website design.

iii

Contents

Declaration of Authorship ii

Acknowledgements iii

Contents iv

1 Introduction 1

1.1 What is IM3D . 1

1.2 IM3D Features . 2

1.3 IM3D Non-features . 3

1.4 Open-source Distribution . 4

1.5 Citations . 5

2 Getting Started 7

2.1 What is in the IM3D Distribution . 7

2.2 Making IM3D . 8

2.2.1 Steps to build an IM3D executable file 8

2.2.2 Command switch . 10

2.2.3 Errors that can occur when making IM3D 10

2.3 Runing IM3D . 10

2.4 Command-line Options . 10

2.5 IM3D Screen Output . 12

3 Input 17

3.1 IM3D Input Script . 17

3.2 Input Script Structure . 17

3.2.1 Configuration File: temp configfile.im3d 17

3.2.2 Materials File: temp matfile.im3d 21

3.2.3 Structure File: temp structfile.im3d 22

3.2.4 Composition File: temp compfile.im3d 22

3.2.5 Combined Input File . 26

4 Output 27

4.1 List of Output Files . 27

4.1.1 aiv.xyz.cfg . 28

4.1.2 Output: cascades . 29

4.1.3 Output: depth dist functions.dat 29

v

Contents vi

4.1.4 Output: disp.mat∗.cfg/.msh/.vtk 29

4.1.5 Output: energy.deposit.cfg/.msh/.vtk 29

4.1.6 Output: int.mat∗.cfg/.msh/.vtk . 29

4.1.7 Output: ion paths . 29

4.1.8 Output: ions.replacements.cfg/.msh/.vtk 29

4.1.9 Output: ions.total.cfg/.msh/.vtk 29

4.1.10 Output: leaving.mat∗.cfg/.msh/.vtk 29

4.1.11 Output: leaving directions.ions . 29

4.1.12 Output: leaving directions.sum . 29

4.1.13 Output: leaving directions.z∗1.m∗2.mat∗3.elem∗4 29

4.1.14 Output: radial dist functions.dat 29

4.1.15 Output: repl.mat∗.cfg/.msh/.vtk 29

4.1.16 Output: transmitted.ions . 29

4.1.17 Output: vac.mat∗.cfg/.msh/.vtk 29

4.2 Output Format . 29

4.2.1 .cfg format . 30

4.2.2 .msh format . 30

4.2.3 .vtk format . 30

4.3 Output Visualization . 30

5 Accelerating IM3D Performance 31

5.1 General Strategies . 31

5.2 Fast Database Indexing Techniques . 31

5.2.1 . 32

5.2.2 . 32

5.2.3 . 32

5.3 MPI Parallel and Multi-threading . 32

5.3.1 MPI Parallel method . 32

5.3.2 Multi-threading method . 32

5.4 Measuring Performance . 32

5.4.1 . 32

5.4.2 . 32

6 Example Problems 33

6.1 Verifications . 33

6.2 Two effects: nano-size and geometric effects 35

6.3 Applications . 39

6.3.1 Arbitrary complex targets based on CSG and FETM methods . . 39

6.3.2 Nano-yttria in ODS steels under ion-irradiation 40

6.3.3 Ion beam sputtering induced the bending of W nanowire 41

6.3.4 D retention in W with roughness surface 42

7 Additional Tools 45

7.1 Config.in file generation code . 45

7.2 Shape files generation code . 45

7.2.1 CSG . 45

7.2.2 FETM . 45

Contents vii

7.3 . 45

8 Errors and Warnings 47

8.1 . 47

8.2 . 47

8.2.1 . 47

8.2.2 . 47

8.2.3 . 47

8.3 . 47

8.3.1 . 47

8.4 . 47

8.4.1 . 47

8.4.2 . 47

8.5 . 47

8.6 . 47

A Physical models 49

B 3D structural models 53

Bibliography 55

Chapter 1

Introduction

This section provides an overview of what IM3D can and can’t do, describe what it

means for IM3D to be an open-source code.

1.1 What is IM3D

IM3D is an open-source parallel 3D Monte Carlo (MC) code for rapidly simulating the

transportation of ions and the production of defects in nanostructured materials. It is

an accurate, efficient and universal 3D version of MC model developed based on the

standard SRIM databases[1], the fast database indexing technique[2] and MPI parallel

algorithm as well as the 3D structural algorithms of Constructive Solid Geometry (CSG)

/ Finite Element Triangulated Mesh (FETM) methods[3–8]. It can model arbitrary-

complex 3D targets made of different geometric elements each of which with different

materials. Both the 3D distribution of ions and also all kinetic phenomena associ-

ated with the ion’s energy loss, i.e., amorphization, damage, sputtering, ionization and

phonon production, can be calculated by IM3D with following all target atom cascades

in detail. Thus, IM3D code provides a general and robust theoretical approach to analy-

sis the effects in primary damage processes and the corresponding 3D space-distributions

of primary defects in nanostructured materials under ion beam irradiation.

The development of IM3D is mainly includes three aspects, i.e. the accurate physi-

cal models, the universal 3D structural models and the efficient calculation algorithms.

The physical parameters used in the code, such as, the electronic stopping power and

energy straggling parameters, are generated from SRMModule.exe provided by SRIM

package[1]. The 3D nanostructured samples can be generated by graphical softwares

beforehand and traced by the sophisticated 3D structural algorithms based on the CS-

G/FETM methods[3–8]. In order to further increasing the efficiency of the code, we

1

Chapter 1. Introduction 2

introduced the fast database indexing technique proposed in Corteo[2] to sampling the

scattering and azimuthal angles as well as a linear speed-up MPI parallel algorithm or

a multi-threading parallel algorithm. Detailed description of the physical basement can

be found in our papers or in Appendix A.

IM3D can run efficiently on different platforms, including not only single- or multi-

processors desktop or laptop machines but also parallel computers. Simultaneous multi-

threading technique has be included in IM3D code to run on a multi-processors system.

It can also run on any parallel machine that compiles plain C and supports the MPI

message-passing library.

IM3D is a freely-available open-source code except for the geometric modules (copyrights

belong to Prof. Zejun Ding), distributed under the terms of the GNU Public License,

which means you can use or modify the code however you wish but commercial purposes.

In order to part rights reserved, the routines related to CSG/FETM models are compiled

to static libraries in IM3D package. In addition, a part of the modules in IM3D refer to

the open-source codes, Iradina[9] and Corteo[2].

1.2 IM3D Features

This section highlights IM3D features:

• open-source distribution with highly portable C;

• ion with atomic number of 1 − 92 and energy of 10 eV − 2 GeV/amu, as well

as different ion beam shape distribution, i.e., random, centered, defined position,

random square around predefined position, Gaussian beam and etc.

• arbitrary complex targets constructed by the 3D geometric algorithms of CS-

G/FETM methods[3–8], with complex materials including single elements (1−92),

alloys and compounds;

• generate input shapes in the form of different formats (e.g. opengl, ply2 and etc.)

with different standard finite element softwares, e.g. Gmsh[10], Cubit and etc.;

• 1D (bulk and multi-layers) or 3D systems with or without semi-infinite substrate;

• runs from an input script or four separate input files (i.e., temp compfile.im3d,

temp configfile.im3d, temp matfile.im3d and temp structfile.im3d);

• runs on a single processor or in parallel with distributed-memory message-passing

parallelism (MPI);

http://micro.ustc.edu.cn/Members/zjding.htm
http://www.nano.uni-jena.de/Forschung/Physik+mit+Ionenstrahlen/iradina-p-103.html
http://www.lps.umontreal.ca/~schiette/index.php?n=Recherche.Corteo
http://geuz.org/gmsh/
https://cubit.sandia.gov

Chapter 1. Introduction 3

• electronic energy loss and straggling are based on the standard SRIM databases[1],

and Bragg’s rule[43] is used to estimate the stopping power of a compound by the

linear combination of the stopping powers of its individual elements;;

• uses fast database indexing technique (see Corteo[2]) or the MAGIC approximation

formula [1] for sampling in terms of accuracy and efficiency;

• uses the analytical modified Kinchin-Pease (KP) model[11, 12] or the computa-

tionally full cascade (FC) simulation for defect generation processes;

• uses a screened repulsive Coulomb potential described by a dimensionless screening

function, such as the Thomas-Feimi potential[35], the Lenz-Jensen potential[36],

the Moliere potential[37], the Bohr potential[38] and the universal Ziggler-Biersack-

Littmark (ZBL) potential[1] to describe the interaction potential between two

atoms;

• output primary damage information including 1D (depth) and 3D distributions

of electronic and nuclear energy depositions, back-scattering/implanted ions, dpa,

interstitials, vacancies and sputtering atoms, etc.

• the output distribution files are in the format of .cfg, .msh or .vtk, which can be

viewed by various pre- and post-processing tools such as AtomEye[13], Gmsh[10],

ParaView, Cubit and etc.

1.3 IM3D Non-features

IM3D is designed to efficiently simulate the tracing of ions in static arbitrary complex 3D

systems. Some features that IM3D does not yet (maybe in the future version) support

are list below:

• real-time tracing plot;

• restart;

• 64-bit system compatibility;

• dynamic version.

The serial version of the code can output xyz-coordinates of ions/atoms, which can give

the plot of the tracing trajectories after the simulation. In the code, we introduced

the fast database indexing technique (see Corteo[2]) which is mainly based on a 32-bit

system. Thus, -m32 or -arch i386 should be used in the makefile when compiling. We

http://www.srim.org
http://www.lps.umontreal.ca/~schiette/index.php?n=Recherche.Corteo
http://li.mit.edu/Archive/Graphics/A/
http://geuz.org/gmsh/
http://www.paraview.org/
https://cubit.sandia.gov/
http://www.lps.umontreal.ca/~schiette/index.php?n=Recherche.Corteo

Chapter 1. Introduction 4

will also introduced a 64-bit version in the future. IM3D is a static version of the system

without change the geometry shape of the system during irradiation.

Otherwise, many of the tools needed to pre- and post-process the data for 3D geometry

shapes are not included in the IM3D kernel. Specifically, IM3D itself does not:

• run thru a GUI (would be included in the future version);

• build 3D geometry structures;

• perform sophisticated analyses;

• visualize simulation results;

• plot output data.

A few tool for constructing the input 3D geometry structures are provided as part of the

IM3D package, as described in section X. Although users can be write their own tools

for these tasks, but we recommend to use our tool to generate the CSG format geometry

structures and the open-source software Gmsh to generate the FETM format geometry

structures. For high-quality visualization we recommend the AtomEye[13], Gmsh[10] or

ParaView softwares.

1.4 Open-source Distribution

IM3D comes with no warranty of any kind. It is a copyrighted code that is distributed

free-of-charge, under the terms of the GNU Public License (GPL). This is often referred

to as open-source distribution - see www.gnu.org or www.opensource.org for more de-

tails. The legal text of the GPL is in the LICENSE file that is included in the IM3D

distribution.

Here is a summary of what the GPL means for IM3D users:

(1) Anyone is free to use, modify, or extend IM3D in any way they choose, without

including for commercial purposes.

(2) If you distribute a modified version of IM3D, it must remain open-source, meaning

you distribute it under the terms of the GPL. You should clearly annotate such a code

as a derivative version of IM3D.

(3) If you release any code that includes IM3D source code, then it must also be open-

sourced, meaning you distribute it under the terms of the GPL.

http://geuz.org/gmsh/
http://li.mit.edu/Archive/Graphics/A/
http://geuz.org/gmsh/
http://www.paraview.org/
www.gnu.org
www.opensource.org

Chapter 1. Introduction 5

(4) If you give IM3D files to someone else, the GPL LICENSE file and source file headers

(including the copyright and GPL notices) should remain part of the code.

In the spirit of an open-source code, these are various ways you can contribute to making

IM3D better. Any questions please send email to Yonggang Li (Y.G. Li) .

1.5 Citations

Please cite our paper if you use subroutines in this package. Thanks.

Y.G. Li, Y. Yang, M. Short, Z.J. Ding, Z. Zeng and J. Li, Fast simulation of primary

damages in arbitrarily complexed nanostructured materials under ion irradiation, to be

published;

Y.G. Li, Y. Yang, M. Short, Z.J. Ding, Z. Zeng and J. Li, IM3D: A 3D Parallel Monte

Carlo Simulation Code for Ion Irradiation of Nanostructured Materials, to be published.

ygli@theory.issp.ac.cn

Chapter 2

Getting Started

This section describes how to build and run IM3D.

2.1 What is in the IM3D Distribution

When you download IM3D you will need to unzip and untar the downloaded file with

the following commands, after placing the file in an appropriate directory.

gunzip im3d*.tar.gz

tar xvf im3d*.tar

This will create an IM3D directory containing two files and several sub-directories:

• README Text file, general information;

• LICENSE The GNU General Public License (GPL);

• bin Executable files;

• data SRIM databases, input indexing tables, material properties, etc.;

• doc User manual;

• examples Tests and examples;

• lib Static libraries used for IM3D code, geometric modules.

• src Source codes;

• tools Useful tools for generating input script, shapes, databases and etc.

7

Chapter 2. Getting Started 8

2.2 Making IM3D

2.2.1 Steps to build an IM3D executable file

Systems: Windows, Linux or Mac.

Compiler: Microsoft Visual Studio - c / mingw32, gcc and etc.

Libraries & packages: Standard C library and MPICH / OpenMP package.

The src directory contains the plain C source and header files for IM3D. It also contains

a makefile file for linux/Mac systems:

This makefile can be used to compile im3d.

On Linux/UNIX or Mac systems, gcc is recommend for compilation.

On Windows system, mingw32 is recommend for compilation.

#CC = gcc # serial, linux or Mac

#CC = mingw32-gcc # serial, win

CC = mpicc # mpi, linux or Mac

#CFLAGS = -O2 -Wall -ansi -pedantic

#CFLAGS = -O2 -Wall -pedantic

#CFLAGS = -O1 -Wall

CFLAGS = -O1 -Wall -m32 # for 64-bit systems, -m32 or -arch i386 must be included

LDFLAGS = -lm -m32 # for 64-bit systems, -m32 or -arch i386 must be included

#LIBFLAG = -L. -lstruct s # include static library, serial

LIBFLAG = -L. -lstruct m # include static library, mpi

Notes on warning level:

Using -Wall and -pedantic will return many warnings, because of non-allowed

comment styles in the codes. I recommend using just -Wall.

Notes on the compiler optimization options -OX:

It is not recommended to use -O2 or -O3. On Linux systems no problems using

these options have been observed so far; however, on windows systems porgram

crashes and hang-ups did occur when using -O2 or -O3.

In windows, the inverse sqr tables will not work with -O2.

If unsure, compile all with -O1 only.

im3d im3d.o mpimod.o const.o init.o material.o target.o matrix.o index.o magic.o

fileio.o cfgwriter.o mshwriter.o bulk.o utils.o random.o

Chapter 2. Getting Started 9

$(CC) $(LDFLAGS) -o iran3d im3d.o mpimod.o const.o init.o material.o target.o ma-

trix.o index.o magic.o fileio.o cfgwriter.o mshwriter.o bulk.o utils.o random.o $(LIBFLAG)

im3d.o: im3d.h im3d.c

mpimod.o: mpimod.h mpimod.c

const.o: const.h const.c

init.o: init.h init.c

material.o: material.h material.c

target.o: target.h target.c

matrix.o: matrix.h matrix.c

index.o: index.h index.c

magic.o: magic.h magic.c

fileio.o: fileio.h fileio.c

cfgwriter.o: cfgwriter.h cfgwriter.c

mshwriter.o: mshwriter.h mshwriter.c

bulk.o: bulk.h bulk.c

utils.o: utils.h utils.c

random.o: random.h random.c

.c.o :

$(CC) -c $(CFLAGS) $<

clean:

rm -f iran3d *.o

clear:

rm *.o

Then, you can just type ”make” to compile the code:

make

Finally, an executable file ”im3d” should be generated when the build is complete.

Chapter 2. Getting Started 10

2.2.2 Command switch

The geometry modules are not open-source but can be called in the terms of static

libraries, that is

struct s.a, struct m.a.

where s and m denote as serial and parallel version of the libraries, respectively. Thus,

please switch ’LIBFLAG = -L. -lstruct s’ to ’LIBFLAG = -L. -lstruct m’, when use the

MPI parallel version.

2.2.3 Errors that can occur when making IM3D

Link errors: all of the libraries used in makefile should be 32-bit version, including gcc

and mpich libraries, etc.

2.3 Runing IM3D

IM3D can be run from a command-line options in a serial computer or a MPI parallel

super computer.

serial-single-thread:

./im3d -command

serial-multi-threads:

./multithread.sh

MPI parallel:

e.g., mpirun -n $cpu ./im3d -command

2.4 Command-line Options

IM3D can be run from a command line, so that you can check the output. If no

parameters are provided, IM3D assumes that there is a configuration file named Config.in

in the current directory and loads the configuration from this file. However, you can

provide various command line arguments (they are all optional):

-h Prints the help (basically like this table).

Chapter 2. Getting Started 11

-l Display the license file.

-c FILENAME Instructs IM3D to use FILENAME as the configuration file in-

stead of the default Config.in.

-p NUMBER Specify how much info to print to console. -2 means very little, 2

means a lot, with various possibilities in between.

-n NUMBER Default is 0. Specifies how many ions are simulated (overrides the

setting speci- fied in the config file).

-E NUMBER Sets the energy of the ions. This option overrides the setting from

the config file.

-w Wait for return key before exiting (useful if started from another program

and you still want to see output).

-m -d Do not simulate anything, only estimate memory usage (roughly). Print

details for memory usage (only useful when -m option also supplied).

-g STRING Generate and update status file while running. See details below.

The program mostly does not check whether the input parameters make any sense. In

case some parameters are missing or completely out of range, the program will most

likely crash or create strange results.

The -g option is useful when letting IM3D do background work for other programs. It

instructs IM3D to output its current status to a file, which can be monitored by other

programs (for example by a user interface). If it is set, every 200 ions IM3D writes

exactly four lines to the file ir state.dat. The first line contains the word IM3D and the

version of IM3D. The second line contains the string submitted on the command line

after the -g option. The third line contains a status word. The fourth line contains the

number of ions that have been simulated. The status words and their meanings are:

init0 IM3D has started.

init1 The config files have been read.

init2 Everything is initialized and ready.

sim Simulation is running.

simend Simulation has finished.

end Simulation results have been stored and IM3D will terminate immediately.

Chapter 2. Getting Started 12

2.5 IM3D Screen Output

As IM3D reads an input script, it prints information to the screen about significant

actions it tanks to setup a simulation. When the simulation is ready to begin, IM3D

performs various initializations and prints the feed-back information. It also prints the

details of the initial geometry structure of the system. During the run itself, completed

status is printed periodically, every constant ions numbers. When the run concludes,

IM3D appends statistics about the CPU time approximately. An example set of the

screen output is shown here:

**

IM3D: Ion IRadiation of Nanostructured materials

– a 3D parallel Monte Carlo simulation code

IM3D Version 1.0.0, Apr. 29th, 2014

–

by Yonggang Li (Y.G. Li), 2014, ygli@theory.issp.ac.cn & ygli@mit.edu;

Institute of Solid Status of Physics, Chinese Academy of Sciences;

& Nuclear Science and Engineering, Massachusetts Institute of Technology.

Refers to:

H.M. Li, H.Y. Wang, Y.G. Li & Z.J. Ding*’s CSG/FETM geometry methods;

& C. Borschel’s OSS ’iradina’ and F. Schiettekatte’s OSS ’corteo’.

This program comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it under

certain conditions, see LICENCE for details.

**

Seed in node 2 is: 39419295 93145296

Seed in node 1 is: 39419294 93145295

Seed in node 3 is: 39419296 93145297

Seed in node 0 is: 39419293 93145294

Configuration read from temp configfile.im3d.

Corteo scattering matrix loaded.

Lists of random numbers generated.

Chu’s straggling data read.

Invsere Erf list read.

Invsere Erf list randomized.

Chapter 2. Getting Started 13

Prepare scattering matrices for ion on target collisions... finished

Prepare scattering matrices for recoil on target collisions...

i: 0; my shape: 1; is full: 1

i: 1; my shape: 2; is full: 1

i: 2; my shape: 3; is full: 1

i: 3; my shape: 4; is full: 1

i: 4; my shape: 5; is full: 1

i: 5; my shape: 6; is full: 1

i: 6; my shape: 7; is full: 1

i: 7; my shape: 8; is full: 1

i: 8; my shape: 9; is full: 1

z0 max csg: 101 (nm), must larger than the max depth of goemetry structure!

i: 0; my shape: 1; is full: 1

i: 1; my shape: 2; is full: 1

i: 2; my shape: 3; is full: 1

i: 3; my shape: 4; is full: 1

i: 4; my shape: 5; is full: 1

i: 5; my shape: 6; is full: 1

i: 6; my shape: 7; is full: 1

i: 7; my shape: 8; is full: 1

i: 8; my shape: 9; is full: 1

z0 max csg: 101 (nm), must larger than the max depth of goemetry structure!

finished

Materials read from temp matfile.im3d.

Initializing target.

Target structure definition file: temp structfile.im3d

Target size is:

x: 60 cells, 10 nm per cell, 600 nm in total.

y: 60 cells, 10 nm per cell, 600 nm in total.

z: 20 cells, 5 nm per cell, 100 nm in total.

Total: 72000 cells in 3.6e+07 nm3̂.

———————————————-

i: 0; my shape: 1; is full: 1

Solid Sphere:

Radius(nm): 50.000

Center(nm): 100.000 100.000 50.000

i: 1; my shape: 2; is full: 1

Solid Tetrahedrona:

Chapter 2. Getting Started 14

Vertex(nm): 300.000 110.000 0.100

300.000 50.000 100.000

250.000 140.000 100.000

350.000 140.000 100.000

i: 2; my shape: 3; is full: 1

Solid Cuboid:

Vertex(nm):

450.000 50.000 0.000

Side Length(nm):

100.000 100.000 100.000

Orientation:

1.000 0.000 0.000

0.000 1.000 0.000

0.000 0.000 1.000

i: 3; my shape: 4; is full: 1

Solid Ellipsoid:

Semi-axes(nm):

75.000 50.000 40.000

Shift(nm): 100.000 300.000 50.000

i: 4; my shape: 5; is full: 1

Solid Taper:

Vertex Angle(D): 30.000

Height(nm): 80.000

Shift(nm): 300.000 300.000 0.100

i: 5; my shape: 6; is full: 1

Solid Column:

Radius(nm): 50.000

Height(nm): 100.000

Shift(nm): 500.000 300.000 0.000

i: 6; my shape: 7; is full: 1

Solid Polyhedron:

6

4

50.000 425.000 100.010

50.000 575.000 100.010

59.963 575.000 0.000

59.963 425.000 0.000

4

59.963 425.000 0.000

Chapter 2. Getting Started 15

59.963 575.000 0.000

144.963 575.000 0.000

144.963 425.000 0.000

4

144.963 425.000 0.000

144.963 575.000 0.000

154.926 575.000 100.010

154.926 425.000 100.010

4

50.000 425.000 100.010

50.000 575.000 100.010

154.926 575.000 100.010

154.926 425.000 100.010

4

50.000 425.000 100.010

59.963 425.000 0.000

144.963 425.000 0.000

154.926 425.000 100.010

4

50.000 575.000 100.010

59.963 575.000 0.000

144.963 575.000 0.000

154.926 575.000 100.010

i: 7; my shape: 8; is full: 1

Solid Paraboloid:

Radius(nm): 50.000

Height(nm): 100.000

Shift(nm): 300.000 500.000 0.000

i: 8; my shape: 9; is full: 1

Solid Hyperboloid:

Distance(nm): 20.000

Radius(nm): 50.000

Height(nm): 80.000

Shift(nm): 500.000 500.000 0.000

z0 max csg: 101 (nm), must larger than the max depth of goemetry structure!

———————————————-

This is the CSG geometry version of im3d.

Target composition read from temp compfile.im3d.

Chapter 2. Getting Started 16

Target structure read from temp structfile.im3d.

Normalization factor: 1

Starting simulation of irradiation...

i: 0; my shape: 1; is full: 1

i: 1; my shape: 2; is full: 1

i: 2; my shape: 3; is full: 1

i: 3; my shape: 4; is full: 1

i: 4; my shape: 5; is full: 1

i: 5; my shape: 6; is full: 1

i: 6; my shape: 7; is full: 1

i: 7; my shape: 8; is full: 1

i: 8; my shape: 9; is full: 1

z0 max csg: 101 (nm), must larger than the max depth of goemetry structure!

Completed: 0%

Completed: 0.8%

Completed: 1.6%

...

...

...

Completed: 97.6%

Completed: 98.4%

Completed: 99.2%

Storing final results: ...

done.

Run time: 71.000000 seconds.

Chapter 3

Input

3.1 IM3D Input Script

IM3D input script is in the iradina format, which reads the input from four input files:

the first file is a general configuration file describing how the program is supposed to

run (contains mostly simulation parameters etc.). The second file describes the material

properties of all materials found in the target. The third file defines the structure of

the simulation volume. The fourth file holds the description of the 3D target (i.e. the

shapes of CSG or FETM nanosized object).

The first three files look similar to other configuration file types (and are mostly human-

readable): empty lines or lines starting with a #–sign are ignored. All other lines

can either denote the beginning of a new section by [section name] or can contain a

parameter definition: parname=value(s). Note that omitting any parameter might result

in undefined behavior or crashes of the program. Upper and lower case letters cannot

be exchanged! Recommendation: Use existing example files and adapt them according

to your needs.

Alternatively, it is possible to put all the information from the four input files into one

combined input file (Config.in), see details in section 3.1.5.

3.2 Input Script Structure

3.2.1 Configuration File: temp configfile.im3d

The contents of the configuration file will be explained line-by-line. Detailed explana-

tions can be found in gen config tool (./tool/gen configs).

17

Chapter 3. Input 18

1: # Configuration file for im3d

2: [IonBeam]

3: max no ions=50000

the number of protons of the ion, range of (1, 108), generally 105 is enough and

recommended;

4: ion Z= 14

the mass in atomic mass units, range of (1, 92);

5: ion M=28.0

the atomic weight of ion;

6: ion E0=50000

the primary energy of the ion in unit of eV, range of (10eV, 2GeV);

7: ion vx=0

8: ion vy=0

9: ion vz=1

the incident direction (vx, vy, vz) of the ion; range of (0, 1);

10: ion distribution=0

the distribution type of the ion: 0-random, 1-centered, 2-defined position, 3-

random square around predefined position, 4-Gaussian beam, sigma = bean spread;

11: enter x=20

12: enter y=20

13: enter z=-10

the enter position (x, y, z) of ions when random beam is note selected, z must be

higher than the target;

14: beam spread=1.5

the spread of the beam in xy-space for Gaussian beam;

15: [Simulation]

16: OutputFileBaseName=./output/

output path, ./output/ is selected in default;

Chapter 3. Input 19

17: output format=1

output file format: 0-iradina, 1-cfg, 2-msh, 3-vtk;

18: normalize output=0

normalize output results or not;

19: display interval=100

the interval of display, range of (1,max no ions);

20: storage interval=1000

the storage of display, range of (1,max no ions);

21: store transmitted ions=0

store transmitted ions or not;

22: store exiting recoils=0

store existing recoils or not;

23: store exiting limit=100

the maximum number of exiting recoils to be stored;

24: store energy deposit=1

array with deposited energy are created and stored or not;

25: store ion paths=0

store the exact ion paths or not, =1 only for the serial version;

26: store path limit = 100;

the maximum number of stored paths, range of (1, 1000) is recommended, =-1

when store ion paths=0;

27: transport type=1

transport type, =0 full and accurate projectile transport, =1 fast projectile trans-

port;

28: multiple collisions=1

the maximum number of multiple collisions, 0 means just 1;

29: flight length type=0

the flight length type: 0-¿Random Poisson dist., 1-¿Constant;

Chapter 3. Input 20

30: flight length constant=0.3

if flight length type=1, set its flight length constant;

31: scattering calculation=0

the scattering calculation type: 0-¿SRIM-Corteo database, 1-¿MAGIC approxi-

mation;

32: tracing recoil or not=1

tracing the exact recoils cascades or not, 0-KP, 1-FC;

33: store recoil cascades=0

store the exact recoils cascades or not;

34: detailed sputtering=1

detailed calculation of sputtering or not;

35: single ion sputter yields=0

if detailed sputtering=1, store sputter yields for single ions or not;

36: do not store damage=0

store damages or not;

37: min energy=5

the minimum energy below which all projectiles are stopped, range of (0, ion E0);

38: seed1=39419293

39: seed2=93145294

random seeds, 8-digit integers.

40: [Target]

41: geometry type=1

the geometry type: 0-¿bulk, 1-¿csg, 2-¿fetm;

42: no substrate=1

with substrate or not;

43: gen shape or not=1

if geometry type == 2, generate fetm shape from ply2 file by IM3D or pre-

generated fetm shape by triangle.f90 code;

Chapter 3. Input 21

44: straggling model=3

the straggling model: 0-¿No straggling, 1-¿Bohr, 2-¿Chu, 3-¿Chu+Yang;

45: MaterialsFileName=Materials.in

filename that defines the materials in the target, in default;

46: TargetstructureFileName=Structure.in

filename that define the structure of the target, in default.

3.2.2 Materials File: temp matfile.im3d

1: [GaAs]

name;

2: element count=2

the number of elements in the material;

3: density=4.43e22

the density of the material;

4: elements Z=31,33

the atomic numbers of the elements in the material;

5: elements M=69.72,74.92

the atomic weights of the elements in the material;

6: elements conc=0.5,0.5

the atomic contents of the elements in the material;

7: elements dispEnergy=20.0,25.0

the displacement energies of the elements in the material;

8: elements latt energy=3.0,3.0

the bulk lattice energies of the elements in the material;

9: elements surf energy=2.0,1.2

the surface lattice energies of the elements in the material;

10: ion surf energy=2.0

the surface lattice energies of the ion in the material.

Chapter 3. Input 22

3.2.3 Structure File: temp structfile.im3d

1: # Structure definition file for im3d

2: [Target]

3: cell count x=60

4: cell count y=60

5: cell count z=20

the numbers of cells along (x, y, z)-axis, respectively;

6: cell size x=10

7: cell size y=10

8: cell size z=5

the intervals of cells along (x, y, z)-axis, respectively;

9: sub surf z=101

the z-position of the substrate surface;

10: CompositionFileType=0

only used for iradina file type: 0-¿one column, 1-¿four column;

11: CompositionFileName=testwire.conc.in

filename that defines the composition in the target, in default.

3.2.4 Composition File: temp compfile.im3d

IM3D has two different types of composition files related to CSG and FETM methods,

respectively.

For CSG method, explanations can be found in in gen config tool (./tool/gen configs)

in detail. In the composition file it includes:

1 # Sphere

1

100.000 100.000 50.000 50.000

0

0

2 # Tetrahedron

Chapter 3. Input 23

1

300.000 110.000 0.100

300.000 50.000 100.000

250.000 140.000 100.000

350.000 140.000 100.000

0

0

3 # Cuboid

1

450.000 50.000 0.000

100.000 100.000 100.000

1.000 0.000 0.000

0.000 1.000 0.000

0.000 0.000 1.000

4 # Ellipsoid

1

75.000 50.000 40.000

-1

100.000 300.000 50.000

0

0

0

5 # Taper

1

30.000 80.000

-1

300.000 300.000 0.100

0

0

0

6 # Column

1

50.000 100.000

-1

500.000 300.000 0.000

0

0

0

7 # Polyhedron

Chapter 3. Input 24

1

6

4

50.000 425.000 100.010

50.000 575.000 100.010

59.963 575.000 0.000

59.963 425.000 0.000

4

59.963 425.000 0.000

59.963 575.000 0.000

144.963 575.000 0.000

144.963 425.000 0.000

4

144.963 425.000 0.000

144.963 575.000 0.000

154.926 575.000 100.010

154.926 425.000 100.010

4

50.000 425.000 100.010

50.000 575.000 100.010

154.926 575.000 100.010

154.926 425.000 100.010

4

50.000 425.000 100.010

59.963 425.000 0.000

144.963 425.000 0.000

154.926 425.000 100.010

4

50.000 575.000 100.010

59.963 575.000 0.000

144.963 575.000 0.000

154.926 575.000 100.010

8 # Paraboloid

1

50.000 100.000

-1

300.000 500.000 0.000

0

0

Chapter 3. Input 25

0

9 # Hyperboloid

1

20.000 50.000 80.000

-1

500.000 500.000 0.000

0

0

0

0

0.0

For FETM method, in the composition file it includes:

50.0 50.0 122.0 # box start x0, box start y0, box start z0;

11 11 11 # box count x, box count y, box count z ;

10.1 10.1 10.1 # box size x, box size y, box size z ;

space subdivision for FETM targets;

2 # file format, 1-file1.dat generated by opengl, 2-file1.ply2 generated

by Gmsh;

1 # the number of materials or file1s;

1 12 # material type, number of data

100.0 100.0 100.0 # the scaling of the target, scaling x, scaling y, scaling z;

0.0 0.0 0.0 # the transformation of the target, trans x, trans y, trans z.

And in another input file (file1.ply2), shapes are described like (take a cube as example):

8

12

0 0 0

1 0 0

0 1 0

1 1 0

0 0 1

1 0 1

0 1 1

1 1 1

3 0 1 3

3 0 2 3

Chapter 3. Input 26

3 0 4 6

3 0 2 6

3 0 1 5

3 0 4 5

3 2 6 3

3 6 7 3

3 1 3 5

3 3 5 7

3 5 6 7

3 4 5 6

3.2.5 Combined Input File

You can also put all the information from the four input files into one combined input

file, i.e., Config.in. Before running, Config.in will automatically spits into four tem-

porary input files: temp configfile.im3d, temp matfile.im3d, temp structfile.im3d and

temp compfile.im3d.

Chapter 4

Output

All of output files can be found in the path of

./output/.

4.1 List of Output Files

In the output path, there would be a list of output files as defined in input script, i.e.,

• aiv.xyz.cfg

• cascades

• depth dist functions.dat

• disp.mat∗.cfg, disp.mat∗.msh or disp.mat∗.vtk

• energy.deposit.cfg, energy.deposit.msh or energy.deposit.vtk

• int.mat∗.cfg, int.mat∗.msh or int.mat∗.vtk

• ion paths

• ions.replacements.cfg, ions.replacements.msh or ions.replacements.vtk

• ions.total.cfg, ions.total.msh or ions.total.vtk

• leaving.mat∗.cfg, leaving.mat∗.msh or leaving.mat∗.vtk

• leaving directions.ions

• leaving directions.sum

27

Chapter 1. Output 28

• leaving directions.z∗1.m∗2.mat∗3.elem∗4

• radial dist functions.dat

• repl.mat∗.cfg, repl.mat∗.msh or repl.mat∗.vtk

• transmitted.ions

• vac.mat∗.cfg, vac.mat∗.msh or vac.mat∗.vtk

4.1.1 aiv.xyz.cfg

aiv.xyz.cfg is an output file of the detailed position of ions and defects generated in

materials, which includes 7 columns, i.e., x, y, z, defect type, defect belong to which

ion, material and element. It is in the format of .cfg at present and can be viewed by

AtomEye software directly. An example of this output file is list below:

Number of particles = 801809

A = 10 Angstrom (basic length-scale)

H0(1,1) = 1000 A

H0(1,2) = 0.0 A

H0(1,3) = 0.0 A

H0(2,1) = 0.0 A

H0(2,2) = 1000 A

H0(2,3) = 0.0 A

H0(3,1) = 0.0 A

H0(3,2) = 0.0 A

H0(3,3) = 1000 A

.NO VELOCITY.

entry count = 7

auxiliary[0] = type (A-I-V)

auxiliary[1] = tab (A-ion)

auxiliary[0] = mater

auxiliary[1] = element

4

aiv pos

0.500743 0.500435 0.001079 2 0 1 0

0.500792 0.500568 0.001067 1 0 1 1

0.500740 0.500452 0.001087 2 0 1 1

0.500473 0.501270 0.001831 1 0 1 0

0.500484 0.500152 0.001079 2 0 1 0

Chapter 1. Output 29

0.500476 0.499380 0.001042 1 0 1 1

...

4.1.2 Output: cascades

4.1.3 Output: depth dist functions.dat

4.1.4 Output: disp.mat∗.cfg/.msh/.vtk

4.1.5 Output: energy.deposit.cfg/.msh/.vtk

4.1.6 Output: int.mat∗.cfg/.msh/.vtk

4.1.7 Output: ion paths

4.1.8 Output: ions.replacements.cfg/.msh/.vtk

4.1.9 Output: ions.total.cfg/.msh/.vtk

4.1.10 Output: leaving.mat∗.cfg/.msh/.vtk

4.1.11 Output: leaving directions.ions

4.1.12 Output: leaving directions.sum

4.1.13 Output: leaving directions.z∗1.m∗2.mat∗3.elem∗4

4.1.14 Output: radial dist functions.dat

4.1.15 Output: repl.mat∗.cfg/.msh/.vtk

4.1.16 Output: transmitted.ions

4.1.17 Output: vac.mat∗.cfg/.msh/.vtk

4.2 Output Format

Three types of output formats are given in IM3D code till now, including .cfg, .msh

and .vtk.

Chapter 1. Output 30

4.2.1 .cfg format

4.2.2 .msh format

4.2.3 .vtk format

4.3 Output Visualization

Different kinds of softwares can be feasibly used to visualize the 3D distributions of

primary defects in output files, such as, AtomEye, Gmsh and ParaView, etc. AtomEye

software is a easy tool to quickly visualize the .cfg format files. While for much higher

qualities, Gmsh or ParaView is commented to be used with the output files in the formats

of .msh and .vtk, respectively.

http://li.mit.edu/Archive/Graphics/A/
http://geuz.org/gmsh/
http://www.paraview.org/

Chapter 5

Accelerating IM3D Performance

5.1 General Strategies

In order to further increasing the efficiency of the code, we introduce the fast database

indexing technique proposed by Schiettekatte in Corteo code[2] to sampling the scatter-

ing and azimuthal angles and the stopping powers as well as two numerical acceleration

algorithms to implement parallel computing.

5.2 Fast Database Indexing Techniques

For the calculation of the classical binary atomic scattering angle, IM3D code thus

introduce the fast routines from Corteo which are based on both the fast indexing

technique and the MAGIC approximation[1] alternatively in terms of accuracy, efficiency

and memory usage. For the calculation of the stopping power, the same algorithm

of computing the classical binary atomic scattering angle can also be used by firstly

generating the tables of stopping power values and directly finding a desired value form

these tables in use. For the case of the number of elements included in a target is not

too big, the memory burden is no more than several MB. The detailed treatment of the

fast indexing techniques can be found in Ref.[2, 9].

31

Chapter 5. Accelerating IM3D Performance 32

5.2.1

5.2.2

5.2.3

5.3 MPI Parallel and Multi-threading

Furthermore, in order to further enhance the computational efficiency, the MPI parallel

and multi-threading methods have been integrated into IM3D code. The code can be

easily parallelized by dividing the number of incident ions and offer an almost linear

speed-up ratio with the number of processors. While the multi-threading technique

can be implemented by just using a shell in-script, which is much feasible for the code

running on a multi-core platform.

5.3.1 MPI Parallel method

5.3.2 Multi-threading method

5.4 Measuring Performance

Based on the above acceleration techniques, a typical simulation of 105 ions with energy

of keV to MeV consumes only seconds to minutes in a modern serial computer even

for complex 3D structures, and would be more faster when using the parallel or multi-

threading version in a super computer. Generally, IM3D code is faster than TRIM code

by at least two to three orders of magnitude, depending on the simulation parameters

and the acceleration techniques.

5.4.1

5.4.2

Chapter 6

Example Problems

The objective of IM3D code is to accurately and quickly calculate the 3D space-distributions

of primary radiation damages in arbitrary-complex geometric targets containing differ-

ent shapes and components, including electronic and nuclear energy depositions, back-

scatted/implanted ions, dpa, interstitials, vacancies and sputtering atoms, etc. In the

following, some verifications and examples are given to demonstrate the validity and

capability of IM3D code.

6.1 Verifications

To verify the accuracy of IM3D code, three examples including the ion/damage depth-

distributions in bulk/multi-layer targets are performed and compared with that of TRIM

code and experiments. Furthermore, some confinements in using TRIM-like codes are

discussed and clarified.

As shown in Fig.6.1, the depth-distributions of ion deposition are calculated for Si bulk

under Ar ion beam irradiation with different irradiation energies. A typical Gaussian-

type profile of ion depth-distributions are obtained, which is in good agreement with

that of TRIM code for all three ion energies, even for the absolute intensity values.

The vacancy depth-distributions for Ni bulk under He ion beam irradiation with different

incident energies are given in Fig.6.2. Again, good agreements between IM3D and TRIM

codes are obtained for all three ion energies. The intensity ratios between the predictions

of the FC and KP methods is around 2 as estimated by TRIM code[14]. By comparing

to the standard reference values estimated by MD and NRT model, Stoller et al. pointed

out that there could be a fundamental problem in the SRIM model used to calculate the

number of vacancies created[14]. Borschel et al. also found an obvious discrepancy from

33

Chapter 6. Example Problems 34

Figure 6.1: Comparison of IM3D results with TRIM predictions for Ar ion depth-
distributions in Si bulk, under Ar ion implantation with different energies of (a) 10 keV ,
(b) 100 keV and (c) 1000 keV and normal incidence at the center point of the target.

Iradina code to TRIM code for the damage production within collision cascades[9]. Since

TRIM is not an open-source software, the certain fine details of its defect generation

algorithms are not clearly described in both SRIM’s manual and published papers[1].

Generally, this discrepancy should be due to the difference of the replacement fractions

in the total displacement events which are determined only by a sharp cut-off threshold

energy[9]. This threshold energy is usually set as the displacement energy (Ed) as

given in SRIM’s manual and elsewhere[1, 9]. While the replacement process should

occur only when the energy of the trajectory atom after replacement is lower than the

binding energy (Eb) in bulk. Otherwise, the trajectory atom after replacement will leave

the lattice site and migrate to other position, which generate a pair of interstitial and

vacancy. Thus, by using the binding energy Eb instead of the displacement energy Ed as

the threshold of replacements, we directly reproduced the exact depth profiles with the

same absolute values and also the same vacancy intensity ratio between the FC and KP

methods. In addition, dynamic annealing process should occur at finite temperatures

and the larger number of primary point defects at 0 K predicted by the FC method

would finally decay to MD, KP or experimental values.

People found that the range of defect depth-distributions calculated by SRIM package

are usually shallower than that of experiments more or less, which generally attributed

to an overestimation of the electronic stopping powers used in SRIM package (especially

for low-energy heavy ions)[15–17]. A reduced target density is simply employed to

compensate for the overestimation of electronic stopping power and thus to reduce the

discrepancy[15]. Through setting the target density lower, good agreements are obtained

comparing to TRIM code and experimental results for 305 nm ZrO2 film on Si bulk

under 2.0 MeV Au ion irradiation, as shown in Fig.6.3. However, artificially changing

of target densities is just a phenomenological treatment with no sound physical basis.

Other influences should also be considered to understand this range discrepancy. When

ion fluence is high enough, the defect depth-distributions would be physically changed by

Chapter 6. Example Problems 35

Figure 6.2: Comparison of IM3D results with TRIM predictions for vacancy depth-
distributions predicted by FC and KP methods in Ni bulk, under He ion irradiation
with different energies of (a) 0.5 MeV , (b) 1.0 MeV and (c) 5.0 MeV and normal

incidence at the certer point of the target.

the evolution of the target density due to ion irradiation. While when ion fluence is not

too high, the change of the target density in experiments can be neglected. Moreover,

the profiles can further broaden into depth to approach to experiments when taking

into account of the diffusion and reaction effects as discussed in our previous paper[18].

Therefore, it is not only the change of target densities (or the electronic stopping powers)

but most of all the diffusion and reaction effects cause the discrepancy, because the

temperature in practice is finite other than T = 0 K set in TRIM-like codes. The

diffusion and reaction effects become prominent especially for the case of ions with much

high diffusivity in the target[18]. These effects are non-equilibrium dynamic processes

taking account of temperature and time, which should be described by the meso-scale

simulation methods such as the kinetic Monte Carlo (KMC) and cluster dynamics (CD)

models.

6.2 Two effects: nano-size and geometric effects

As the ion range or dimension of the collision cascades becomes comparable to the size

of the nanoobject itself, the high surface-volume ratio of nanostructured materials will

induce two new effects, i.e., the so-called nano-size effect and geometric effect.

Due to the surface reconstruction of nanostructure materials, the thermodynamic prop-

erties change with the size reduction, which cause the nano-size effect. In Fig.6.4(a),

the amount of defects along with irradiation energies calculated by IM3D code has the

similar trend to that of the analytical model and MD simulation (with the maximum

amount produced at energies around 3 keV), while is smaller than that of MD simu-

lations. This discrepancy should come from the nano-size effects like the difference of

Chapter 6. Example Problems 36

Figure 6.3: Comparison of IM3D results with TRIM predictions and SIMS
measurement[15] for Au ion depth-distribution in ZrO2/Si sample, under Au ion irra-
diation with the energy of 2.0 MeV and normal incidence at the center point of the
sample. IM3D and TRIM predictions under the assumption of the reduced density are
also given, where 15% reduced density for ZrO2 (4.6 g/cm3) and 27%reduced density

for Si (1.7 g/cm3) are used.

stopping powers and the decrease of energy thresholds (i.e., the displacement and bind-

ing energies) between nanostrucutres and bulk, etc. While these energy thresholds are

usually lower with the size reduction of nanostructures and follow a universal relation

as predicted for the cohesive energy of nanoparticles as in Ref.[19]. It would underesti-

mate the total number of defects for both 3 and 4 − nm nanowires if the bulk energy

thresholds are used for determining the capability of defect generation. This viewpoint

can just be proved by using the half values of bulk energy thresholds to decrease the dis-

crepancy between IM3D and MD simulations for the 3−nm nanowire. The interstitials,

vacancies and sputtering atoms are directly relate to the energy thresholds (especially

the surface/lattice binding energies), which are influenced by the nano-size effect mostly.

The discrepancy between IM3D and MD simulations thus becomes more obvious when

irradiation energy is larger (see Fig.6.4(b)).

In IM3D code, we consider the bulk parameters are valid at least when the target size

is larger than ∼ 10 nm, because in this case the thermodynamic properties close to

constants and the nano-size effect is vanishing[20]. For the target size smaller than

∼ 10 nm, IM3D code can also be employed to estimate the primary radiation damages

at the first approximation by using a set of modified parameters considered the nano-size

effects, while MD method would prefer to be used to give a more accurate estimation

because of the acceptable calculation consuming. Furthermore, Fig.6.4 (b) shows that

both the nano-size and geometric effects determine the number of defects, that is, the

amount of different types of defects for the flat case is higher than that of edge due

Chapter 6. Example Problems 37

to the geometric effect. The difference between the flat and edge cases is smaller than

that of MD results[21], because no channeling effect is included in IM3D code for an

amorphous target.

Figure 6.4: (a) Comparison of the number of vacancies in GaN nanowire along with
Ar ion energies predicted by IM3D code, the analytical model based on TRIM code
and MD simulations. The curves for the analytical model are artificially scaled to have
the same area as the ones obtained from MD simulations, for the absolute amount of
damage cannot be estimated reliably from the results based on SRIM calculations[21].
IM3D-1 and IM3D-2 are corresponding to the bulk energy thresholds and half values
of the bulk thresholds used in the simulations, respectively. (b) The respect and total
numbers for three different types of defects (vacancies, interstitials and sputtered atoms)
along with Ar ion energies, for the 3 and 4 nm-diameter GaN nanowire under Ar ion

irradiation at the edge and facet of GaN nanowire.

The geometric effect will influence the trajectory of an ion when it transport through the

interface between two different material zones, such as trajectory emission, re-entering,

sputtering and shading, etc. In order to illustrate the geometric effect contrast to the

bulk counterpart, we simulate the vacancy depth-distributions in Au column target

under two types of ion beams (i.e. center and random incidence), as shown in Fig.6.5.

The ranges of vacancy depth-distributions and the total amount of vacancies are both

increase with the increasing of column diameters, and finally approach to the bulk values

after the critical diameters (around 200 nm and 1000 nm for center and random ion

incidence, respectively).

Assumes that the radial distribution of damages (e.g. vacancies) I (r) produced by an

ion in a half-infinite bulk target follows a exponential decay (as shown by the inserted

figure in Fig.6.5(a)),

I (r) = I0e
−r/t, r ∈ [0,∞) , (6.1)

where, I0 is the intensity of damages at r = 0 and t is the effective attenuation length of

damages in radial direction (25 nm for center ion incidence). The amount of damages

Chapter 6. Example Problems 38

in a nanowire for the center ion beam incidence can be obtained by integrating Eq.(6.1)

over the volume of the antisymmetric column (see Fig.6.5) that,

Nd =

∫ R

0

∫ 2π

0
I (r) drdθ =

2πI0
t

(
1− e−R/t

)
, (6.2)

where R is the radius of the column.

Similarly, we can give the analytical function for the random ion beam incidence, by

additionally considering the effective attenuation range t (32 nm for random ion inci-

dence) of the spread ion beam. For R ≤ t, we assumed that the amount of damages also

follows Eq.(6.2) approximately but with t = 32 nm instead. While for R > t, only ions

bombarding in the effective attenuation range t from the colume side with the area ratio

of
(
2t
R −

t2

R2

)
, can cause a half loss of defects with the ratio of 0.5 ·

(
1− 1

e

)
as estimated

approximately from Eq.(6.2) with R = t. Otherwise, no loss of the defects when ions

bombarding in the central zone (0, R− t) of the column. Thus, the amount of damages

follows that,

Nd =
2πI0
t

[
1− 0.5 ·

(
2t

R
− t2

R2

)(
1− 1

e

)]
, R > t. (6.3)

It can be found as shown in Fig.6.5 that these two simple analytical estimations can fit

the calculated vacancy-diameter relation much well, which directly illustrates that the

geometric effect is the main factor to the distributions of primary radiation damages in

nanostructured materials.

Figure 6.5: The depth-distributions and the total number of vacancies for Au
nanowaire with different diameters under 45 keV Ne ion irradiation with the (a) center
and (b) random normal-incidence beams. Eqs.(6.2) and (6.3) are plotted to fit the
relations of the total number of vacancies with different diameters. The inserted fig-
ures in (a) and (b) show the vacancy radial-distribution in Au bulk and the vacancy

space-distribution in Au nanowire with the diameter of 120 nm, respectively.

Chapter 6. Example Problems 39

Column is a typical model of a class of nanostructured materials, such as nanowire,

nanoporous and “fuzz”. Bringa et al. performed a serial of experimental studies on

the anti-irradiation behaviors of nanoporous materials and proposed an anti-irradiation

window by simply considering of the effective vacancy diffusivity and lower critical size

due to melting. However, they did not consider the contribution from the change of

primary radiation damages by the geometric effect and just assumed that the primary

radiation damages is a constant value. As shown here, the geometric effect can introduce

a dramatical reduction of the primary radiation damages, which should be taken into

account in the estimation of the anti-irradiation window. Furthermore, by considering

the primary damage distributions as well as the diffusion and reaction effects at T > 0 K,

CD model would be performed to give the more accurate anti-irradiation windows of

nanostructure materials in the future.

6.3 Applications

6.3.1 Arbitrary complex targets based on CSG and FETM methods

To our knowledge, IM3D is the most universal and robust code for simulating of the

primary radiation damages in arbitrary complex targets with different shapes and com-

ponents till now. Based on CSG geometric model, nine basic shapes (in Fig.6.6(a)) and

their assemblies (in Fig.6.6(b)) can be constructed at present to model many regular tar-

gets with different materials. The geometric effect makes the distinctions of the defect

space-distributions among different shapes.

(a)

100 nm

10 keV He ions, Si

1000

800

600

400

200

0

z
(n

m
)

 He ion

dpa

Fe

Cu

(b)

700

600

500

400

300

200

100

0

z
(n

m
)

He ions, 100 keV
 Total
 50 keV, x 1
 100 keV, x 3.2
 150 keV, x 4
 200 keV, x 8

(c)

NiP

He ion

130 nm

Figure 6.6: (a) Dpa space-distributions of nine basic shapes based on CSG geometric
method and composed of Si under 10 keV He ion irradiation with the random normal-
incidence beam. (b) Dpa space-distribution of for a 100 nm-diameter Cu/Fe nano-
bicrystal constructed by CSG geometric method under 200 keV He ion irradiation
with the random normal-incidence beam. The insert scatter line is the corresponding
He ion depth-distribution. (c) The respect and total He ion depth-distributions for
different energies He ions (left) and the dpa (right) space-distribution for 100 keV He
ions with the random normal-incidence beam irradiated on a 130 nm NiP metallic glass

nanostructure constructed by FETM geometric method.

Chapter 6. Example Problems 40

By introducing the geometric effect, more reliable information can be obtained when

estimate the defect (such as ion and dpa) distributions. For bulk/multi-layer systems,

people usually employ TRIM code to give the first approximation of ion/dpa distribu-

tions. However, for complex nanostructures as mentioned in Refs.[22, 23], errors would

be introduced when using TRIM code. As shown in Fig.6.6(b), more practical dpa space-

distribution is obtained for a Cu/Fe nano-bicrystal based on CSG geometric model. For

NiP metallic glass nanostructures (in Fig.6.6(c)), more accurate ratio of ion fluence can

be estimated to generate a uniform distribution damage based on FETM geometric

model, with 1 : 3.2 : 4 : 8 instead of 3.5 : 4.0 : 2.8 : 5.5 in Ref.[22]. Thus, the geometric

effect can dramatically change the behaviors of ion irradiation and can not be neglected.

6.3.2 Nano-yttria in ODS steels under ion-irradiation

Recently, ODS steels (with a great mount of yttria (Y2O3) nanopartiles embedded in a

steel matrix) have been termed as a new class of high anti-irradiation and high strength

nanostructured nuclear materials[24–29]. However, the high radiation resistant mech-

anisms and the role of the embedded nanoparticles are still unclear and sometimes

controversial. Moreover, the impact of primary damage processes on their high radia-

tion resistant properties should also be discussed in detail. Here, we assumes a perfect

iron matrix in which Y2O3 nanoparticles are embedded as a simplified model of an ODS

steel and simulate the space-distributions of the primary radiation damages with the

displacement energies of 40 eV [1] for Fe and 57 eV for Y and O[29].

Based on IM3D code, the ion trajectories and 3D space-distributions in a target of Fe

matrix with a void and two Y2O3 nanoparticles of different sizes embedded can be given

as shown in Fig.6.7. Spheres with different materials/vacuum can change ion trajectories

(Fig.6.7(a)) by influencing the energy losses and the production rate of defects, and

finally induce the different damage distributions (in Fig.6.7(b)). Comparing to bulk

regions, ions in void transport straightly without energy loss and penetrate into depths

to generate more damages in the deep (i.e., the enhancement effect, similar to the MD

results??). Similarly, ions can also loss less energy and generate less damages in Y2O3

nanoparticles. Thus, Y2O3 nanoparticles are play the same role as voids to suppress the

production of primary radiation damages but without losing the strength of the steel.

The anti-irradiation of Y2O3 nanoparticles is mainly due to the lower defect generation

rate with their much lower atomic density (1.10934 × 1022 atoms cm−3) comparing to

that of the steel matrix (8.388 × 1022 atoms cm−3), the higher displacement energies

of Y and O (57 eV) to that of Fe (40 eV), as well as the attraction of defects to

the nanoparticle interface during annealing. The enhancement effect of dpa intensity

behind the void and the bigger-size Y2O3 nanoparticle comes from the overlapping of

Chapter 6. Example Problems 41

Y2O3

Void Y2O3

Fe

(a)

dpa

(b)

2.688e+04

1

1 2.688e4

Figure 6.7: The (a) ion trajectories and (b) dpa distribution cross-section for a target
of Fe matrix with a void (30 nm) and two Y2O3 nanoparticles (30 nm and 10 nm) of
different sizes embedded under 150 keV Fe ion irradiation with the random normal-

incidence beam.

the dpa generated by the penetrating ion though the void / nano-particle and the ion

directly transporting in iron matrix nearby, as shown in Fig.6.7(a). This enhancement

effect would induce a little more serious primary damages to Fe bulk matrix, which

introduce a negative effect on the radiation resistant. While the enhancement effect can

be reduced/removed by decreasing the diameter of Y2O3 nanoparticles from 30 nm to

10 nm as shown in Fig.6.7(b), which has also been proved by the high resolution TEM

measurements[29]. The high sink strength of the interface between Y2O3 nanoparticles

and Fe matrix would also neutralize the enhancement effect and finally reduce the total

damages in ODS steel after annealing.

6.3.3 Ion beam sputtering induced the bending of W nanowire

Under ion beam irradiation with high fluence, nanowires have been observed to bend

towards and finally align with the ion beam[30]. The primary radiation damages should

play an important role on this effect, which can also be studied by IM3D code feasibly.

By generating a target with 3D surface mesh with FETM geometric method beforehand

(in Fig.6.8(a)) and inputting it into IM3D code, the 3D distribution of defects can be

given such as vacancies for a bended W nanowire under the irradiation of Ga ion with

the incident direction of 40 degrees and the energy of 150 keV , as shown in Fig.6.8(b).

More primary vacancies generated on the side towards to the ion beam, making the

density on this side lower than the other side and thus bend the column line. During

Chapter 6. Example Problems 42

the ion irradiation of W nanowire at finite temperatures, most of interstitials with a low

migration energy (0.013 eV [31]) would anneal with vacancies immediately, diffuse to

the other side or deposit directly. While a little part of vacancies without annealing by

interstitials are nearly immobile and stay constant with a much higher migration energy

(1.66 eV [32]). Here, in order to consider the final remaining damages in W nanowire,

we use the difference value of vacancies minus interstitials by assuming annihilation of

defects only occur in each cell (10 × 10 × 10 nm3). An inhomogeneous distribution of

the remaining defects is given in Fig.6.8(c), where excess vacancies remain on the side

towards to the ion beam and excess interstitials remain at the opposite side. Thus,

a bending momentum (under inner stress due to an inhomogeneous expansion of the

nanowire) towards the ion beam is induced to compensate the density difference until

the the direction of the column line along the direction of ion beam, as observed in the

experiment[30]. Moreover, the shading/shadowing effect (shading of the ions on their

incident path by a particle leads to a decrease of damages behind the particle) can also be

seen in Fig.6.8(b) with dark area in the substrate appear behind the nanowire. During

the plasma-surface interaction (PSI) process in PFMs (as shown below), these two typical

effects (i.e., the bending and shading effects) should also occur at the reconstructed

surface, causing the formation of complex “fuzz” nanostructure finally.

(b)
Ga ions

W

(a) (c)
2402

-111.5

2400

-110

NV - NI

100 nm

Figure 6.8: The (a) 3D surface mesh with FETM geometric method, (b) vacancy
space-distribution and (c) remaining excess vacancies for a bended W nanowire under
randomly distributed Ga ion sputtering with the incident direction of 40 degrees and

the energy of 150 keV .

6.3.4 D retention in W with roughness surface

Plasma-surface interaction (PSI) is one of the most important issue in nuclear fusion

instruments. Under low energy (in the range of 10−100 eV), high flux (up to the order of

1024 m−2s−1) D/T/He plasma loads in ITER[33], the near surface morphology of PFMs

will be dramatically changed and reconstructed to roughness or even more complex

nanostructures like “fuzz”. These roughness nanostrucutes would further increase the

retention of D/T/He. While T retention is also another key problem need to be widely

studied. Thus, the calculation of the primary retention of H isotopes in W with roughness

Chapter 6. Example Problems 43

structures is much helpful for the understanding of the mechanisms of surface damage

and T retention in PFMs.

In Fig.6.9, we performed the W bulk with different rough-surface under D ion irradia-

tion. A simple geometric model based on FETM method are used here to simulate the

roughness structures[4]. The rough-surface is constructed in a finite element triangulated

mesh by using a Gaussian function to describe the distribution of the amplitude (3σ) of

the random roughness peaks as well as a uniform square mesh with a lattice constant

(a = 50 nm) to describe the density of the roughness peaks. The depth-distributions of

D in W are given for different rough amplitudes (3σ) from 9 to 1000 nm (in Fig.6.9(b)).

We found that the range of D ions in W increase with the increasing of rough amplitude.

The distributions relate to Gaussian distribution directly, which can be approximated

by the convolution of the effective interaction range and the geometric distribution of

rough-surface, as shown in Fig.6.9(b). Also, the geometric and shading effects dominate

the behavior of D retention in W bulk with roughness surface.

The relation of D retention rate with the rough amplitude is also given in Fig.6.9(c).

With the increasing of the rough amplitude, D retention rate decreases at first and then

increase after a critical point at about 3σ = 50 nm. It should be due to the competition of

the enhancements of both the backscattering at glancing incidence and the shading effect

by rough peaks. In order to describe the exact relation of the retention rate with the

geometric and shading effects, a simple model is introduced to fit this relation. For the

amplitude and distance of the roughness peaks are set as 3σ and a, the effective incident

angle of ions related to rough-surface is α
.
= arccos

(
a√

(3σ)2+(a)2

)
. The backscattering

coefficient η (α) is the function of this effective incident angle α, which can be calculated

by IM3D code directly. Thus, for the zero-order approximation, the primary retention

rate of ions is equal to,

R0 (α)
.
= 1− η (α) , all 3σ. (6.4)

Here, we assumed that it is actually true when 3σ ≤ z0, where z0 = 50 nm is used.

While for 3σ > z0, a fraction of backscattered ions would be shaded and redeposited

by the roughness peaks, the shading probability can be estimated by the geometric

effect as Ps =
∫ α
0 sin (θ) dθ = 1 − cosα. Thus, by assuming that all of the shaded ion

are redeposited by the roughness peaks for the first-order approximation, the primary

retention rate of ions can be described by,

R1 (α)
.
= (1− η (α)) + η (α) (1− cosα) = 1− η (α) cosα, 3σ > z0. (6.5)

If considering there is still some probability (R1 is approximately used here) for the es-

caping of the shaded ions by roughness peaks, a more accurate estimation of the primary

Chapter 6. Example Problems 44

retention rate of ions in rough-surface can be given by a second-order approximation base

on the predictor-corrector method,

R2 (α)
.
= (1− η (α)) +R1 (α) η (α) (1− cosα)

= 1− η (α) cosα− η2 (α) cosα+ η2 (α) cos2α, 3σ > z0. (6.6)

(a)

Figure 6.9: (a) The D ion space-distribution for W roughness surface with the rough-
ness amplitude of 3σ = 60 nm and the roughness constant of a = 50 nm. (b) The
D ion depth-distributions and the fitting profiles by Gaussian functions for W rough-
ness surface with different roughness amplitudes (3σ) and the roughness constant of
a = 50 nm. (c) The D retention ratio and the fitting Eqs.(6.4) and (6.6) along with the
roughness amplitudes for W roughness surface with the roughness constant of 50 nm.
Here, all W roughness surfaces are under the irradiation of 100 eV D ion beam with

the random normal-incidence.

A good agreement can be given based on the rough estimations by Eq.(6.4) for 3σ ≤ z0
and Eq.(6.6) for 3σ > z0 (as shown in Fig.6.9(c)), which demonstrates that the geometric

and shading effects are the main contributions to the enhancement of the primary D

retention in W. At finite temperature or especially high temperatures (typically 400 −
800 ◦C in ITER[33]) in fusion instruments, interstitial D atoms will diffusion quickly,

most of which would desorb from surface. While, if the influence of the diffusion effect

is fixed, the primary retention rate would be the only key factor to the D retention,

especially when the surface of PFMs becomes roughness. Furthermore, the retention of

D/T/He in “fuzz” structures should also follow the same trend at a first glance.

Chapter 7

Additional Tools

7.1 Config.in file generation code

gen config in

7.2 Shape files generation code

gen shape

7.2.1 CSG

7.2.2 FETM

7.3

45

Chapter 8

Errors and Warnings

8.1

8.2

8.2.1

8.2.2

8.2.3

8.3

8.3.1

8.4

8.4.1

8.4.2

8.5

8.6

47

Appendix A

Physical models

In IM3D code, the simulation of ion transportation in matter proceeds is similar to

the well-established TRIM-like codes, which basically introduces the random phase ap-

proximation (RPA), the binary collision approximation (BCA) and the central potential

approximation (CPA)[1, 2, 34]. The code simulates numerical random trajectory his-

tories of ions to present statistically meaningful calculation results. Each trajectory

corresponds to a particle (ion or target atom) with a specified starting position, a given

direction and an incident energy. The particle is tracked as a random sequence of straight

free-flight-paths that end with a binary nuclear collision event where the particle changes

its direction of movement and/or reduces energy as a result of nuclear (elastic collision

process) and electronic (inelastic collision process) energy losses. The energy and direc-

tion of the particle from incident direction are thus updated from the conservation of

energy and momentum. Where, the probability of energy losses depends on the target

atom density, as well as the nuclear and electronic stopping powers which can be as-

sumed to be independent. Meanwhile, point defects could be produced in elastic collision

events. Finally, the trajectory is terminated till the energy of the particle drops below

a specified value Emin or the particle leaves the target. A program chart of the ions

tracing and defects generation in a target is given in Fig.A.1 and the detailed physical

background can also be found elsewhere[1].

For the elastic collision process, the classical binary atomic scattering angle θCM in

the center-of-mass (CM) coordinate system can be evaluate accurately from the famous

“scattering integral” as,

θCM = π − 2

∫ ∞
r0

p · dr

r2
√

1− V (r)
Ec
−
(p
r

)2 (A.1)

49

Appendix A. Physical models 50

Input Part I

Part II

Part III

Data list

N = 0

N = N + 1

N > Nm?

Initialization

Output

Data
summation

Y

N

Calculate s & Eloss

Calculate next
position

Left
sample?

Store ions left
sample

Y

Select target atom,
p, (θ, φ) & Erecoil

Collision？

Recoil？

N

Y
Recoil ion cascade

Displace？

Y

Store ion/defects
information E < Emin？

Y

Bulk
displace？

Calculate
recoil velocity

Calculate new direction

N

Y

N

N

Y
Interaction

loop
N

Nuclear energy
deposition

Bulk recoil
cascade loop

Surface
sputtering

loop

N

Store nuclear
energy deposition

Damages？

Y

Y

Store electronic
energy deposition

Y

KP

FC

Figure A.1: IM3D program chart of ions tracing and defects generation in a sample.

where, p is the impact parameter, r0 is the closet distance (r) between two atoms dur-

ing the collision, V (r) is the screened inter-atomic potential as listed below and Ec is

the kinetic energy of the incident atom in the center-of-mass frame. This integral can

not be calculated analytically for inter-atomic screening potentials and hence a time-

consuming numerical integration must be used instead[1]. An analytical approximation

formula (such as the MAGIC approximation[1]) or a lookup table method (such as the

fast indexing technique[2]) can be used in terms of accuracy and efficiency, as described

in Section 2.3. The interaction potential V (r) between two atoms is a screened repulsive

Coulomb potential described by a dimensionless screening function, such as the Thomas-

Feimi potential[35], the Lenz-Jensen potential[36], the Moliere potential[37], the Bohr

potential[38] and the universal Ziggler-Biersack-Littmark (ZBL) potential[1]. In addi-

tion, the recoil energy of a target atom due to elastic nuclear collisions can be evaluated

by the BCA between two charged particles involved in one scattering process.

For the inelastic collision process, the ion energy reduce uniformly along the free-flight-

paths though the electronic energy losses accounting for the energy straggling. In IM3D

Appendix A. Physical models 51

code, the physical parameters such as electronic energy stopping powers are generated

from SRModule.exe provided by SRIM package[39], in the form of pre-calculated tables

as implemented in Corteo[2]. Either Bohr[40], Chu[41] or Wang[42] formula can be

selected to considering the energy straggling. Furthermore, IM3D code also employ

a linear addition of stopping powers (known as Bragg’s rule[43]) for determining the

stopping power in alloys, compounds and mixtures.

The generation of point defects (i.e. interstitials and vacancies) can be modeled by

the analytical modified Kinchin-Pease (KP) model[11, 12] or the computationally full

cascade (FC) simulation. Assume a trajectory atom with atomic number Z1 and energy

E collide with a target atom with atomic number Z2. After the collision event, the

energy of the trajectory atom change to E1 and the target atom obtains energy E2,

and thus different damage generation processes would also occur: (1) if E2 > Ed (Ed is

the displacement energy of the target atom), a displacement occurs so that the target

atom has enough energy to leave the site; (2) if both E1 > Ed and E2 > Ed, a vacancy

occurs; (3) if E2 < Ed, the target atom without enough energy will vibrate back to its

site releasing energy E2 as phonons; (4) if E1 < Eb (Eb is the lattice/surface binding

energy of the target atom), E2 > Ed and Z1 = Z2, a replacement collision occurs with

energy E1 releasing as phonons; (5) if (E1 < Emin or Eb, E2 > Ed and Z1 6= Z2) or

(E1 < Emin or Eb and E2 < Ed), the trajectory atom becomes an interstitial atom.

Appendix B

3D structural models

The arbitrary complex 3D nanostructured targets can be generated by graphical soft-

wares beforehand and traced by two types of sophisticated 3D structural algorithms in

IM3D code, that is, CSG and FETM methods[6, 8]. Then the different types of targets

are set in the corresponding coordinate systems as shown in Fig.B.1, respectively. The

ion beams with different atomic numbers and incident directions follow different types

of space-distributions (i.e., specified point, center point, uniform or Gaussian random

distributions and so on). The targets are considered as composing of different geometric

elements each of which with different amorphous materials (i.e., elements, alloys and

compounds).

(0, 0, 0)

(xt0, yt0, zt0)

z = zsub

Substrate

x
y

z

Ions
z = zin (0, 0, 0)

(xb0, yb0, zb0)

(xb1, yb1, zb1)

(xt0, yt0, zt0)

z = zsub

Substrate

x
y

z

Ions
z = zin

Figure B.1: CSG and FETM geometric models and the corresponding coordinate
systems.

On the one hand, CSG method[3, 5] is simply introduced in IM3D code which uses simple

geometries to build a complex structure with Boolean operations: union, difference and

intersection, etc. By CSG modeling, a complex geometric structure can be constructed

with some basic and simple 3D bodies as elements that can be analytically described

53

Appendix B. 3D structural models 54

with a few parameters. The basic elements, such as sphere, tetrahedron, cuboid, el-

lipsoid, taper, column, polyhedron, paraboloid, hyperboloid and so on, can be easily

implemented into subroutines to allow efficient calculation of intersecting points of an

ion trajectory with a geometric surface. Detailed construction process can be found in

Refs.[3, 5] . The limits of this method are mainly from two sides: firstly, it is obvious

that, with the limited number of parameters, one cannot in practice build an arbitrary-

complex geometric structures. Fortunately, most of the simple geometric nanostructures

can be modeled by the present algorithm. Secondly, for the step of ion/atom trajecto-

ries, one has to compute the intersection points with every possible basic shape. A large

number of such judging procedures in a MC simulation would cause a heavy computing

cost. An efficient parallel algorithm is needed for the simulation of very complex targets

constructing with this geometric model.

On the other hand, FETM method[4, 7] in computer graphics is also employed in IM3D

code by using a finite element triangle mesh to construct a sample surface, and fur-

thermore, by using the space subdivision method to accelerate the calculation. In prin-

ciple, it allows an easy construction of an arbitrary-complex geometric structure with

smooth or roughness surface. A closed 3D geometric structure can be constructed by

just joining a series of mesh points that outline the 3D geometric structure, which can

be generated easily by different algorithms with different graphical softwares (such as

Gmsh software[10]) or even user’s own definition. The accepted formats of FETM shape

files are opengl and ply2 at present. The reason to use a triangulated mesh is due to

its advantage on easier judging of intersection points of a velocity vector with a local

triangular plane when considering an ion incidence into a sample surface or emission

from a surface. This method is more realistic and unified for simulating much complex

targets while on the premise of spending less consuming time.

In IM3D code, the trajectories are traced step by step in a complex 3D target. The

free-flight-paths of an ion between two successive collision events follow the Poisson dis-

tribution with a mean free-flight-path of l = n(−1/3) (where n is the atomic density of the

target) or a constant value specified by user. Afterwards, a ray-tracing technique[3, 5] for

an inhomogeneous specimen with a complex geometric structure and the space subdivi-

sion method are introduced to accelerate the calculations[4, 7]. Furthermore, when ions

transport in a specimen, three physical quantities, i.e. the free-flight-path, the direction

deflection, and the kinetic energy change after refraction at surface/interface, must be

treated appropriately, especially at the boundaries of complex geometric structures[4].

Bibliography

[1] J. F. Ziegler, M. D. Ziegler, and J. P. Biersack. Nucl. Inst. Meth. Phys. Res. B,

268:1818–1823; SRIM website, http://www.srim.org, 2010.

[2] F. Schiettekatte. Nucl. Inst. Meth. Phys. Res. B, 266:1880–1885, 2008.

[3] H. M. Li and Z. J. Ding. Scanning, 27:254–267, 2011.

[4] Y. G. Li, S. F. Mao, H. M. Li, S. M. Xiao, and Z. J. Ding. J. Appl. Phys., 104:

064901, 2008.

[5] Y. G. Li, Z. J. Ding, and Z. M. Zhang. J. Appl. Phys., 106:024316, 2009.

[6] Y. G. Li, S. F. Mao, and Z. J. Ding. Applications of Monte Carlo Method in Science

and Engineering: Chapter 11. Monte Carlo Simulation of SEM and SAM Images.

Eds. S. Mark and S. Mordechai, InTech-Open Access Publisher, 2011.

[7] P. Zhang, H. Y. Wang, Y. G. Li, S. F. Mao, and Z. J. Ding. Scanning, 33:1–6, 2011.

[8] Y. G. Li, P. Zhang, and Z. J. Ding. Scanning, 35:127–139, 2013.

[9] C. Borschel and C. Ronning. Nucl. Inst. Meth. Phys. Res. B, 269:2133–2138, 2011.

[10] C. Geuzaine and J.-F. Remacle. Inter. J. Nume. Meth. Eng., 79:1309–1331;

http://geuz.org/gmsh/., 2009.

[11] G. H. Kinchin and R. S. Pease. Rep. Prog. Phys., 18:1–51, 1955.

[12] M. J. Norgett, M. T. Robinson, and I. M. Torrens. Nucl. Eng. Des., 33:50–54, 1975.

[13] J. Li. Modelling Simul. Mater. Sci. Eng., 11:173–177;

http://li.mit.edu/Archive/Graphics/A/., 2003.

[14] R. E. Stoller, M. B. Toloczko, G. S. Was, A. G. Certain, S. Dwaraknath, and F. A.

Garner. Nucl. Inst. Meth. Phys. Res. B, 310:75–80, 2013.

[15] Y. Q. Chang, Y. W. Zhang, Z. H. Zhu, P. D. Edmondson, and W. J. Weber. Nucl.

Inst. Meth. Phys. Res. B, 286:173–179, 2012.

55

Bibliography 56

[16] Y. W. Zhang, I. T. Bae, K. Sun, C. M. Wang, M. Ishimaru, Z. H Zhu, W. L. Jiang,

and W. J. Weber. J. Appl. Phy., 105:104901, 2009.

[17] H. Paul. AIP Conf. Proc., 1525:309–313, 2013.

[18] N. Li, M. Nastasi, and A. Misra. Inter. J. Plastic., 32-33:1–16, 2012.

[19] S. C. Vanithakumari and K. K. Nanda. Phys. Lett. A, 372:6930–6934, 2008.

[20] G. Ouyang, X. L. Li, X. Tan, and G. W. Yang. Nanotech., 19:045709, 2008.

[21] W. Ren, A. Kuronen, and K. Nordlund. Phys. Rev. B, 86:104114, 2012.

[22] R. Liontas, X. W. Gu, E. G. Fu, Y. Q. Wang, N. Li, N. Mara, and J. R. Greer.

Nano Lett, 14:5176–5183, 2014.

[23] P. Landau, Q. Guo, K. Hattar, and J. R. Greer. Adv. Funct. Mater., 23:1281–1288,

2014.

[24] J. Chen, P. Jung, J. Henry, Y. de Carlan, T. Sauvage, F. Duval, M. F. Barthe, and

W. Hoffelner. J. Nucl. Mater., 437:432–437, 2013.

[25] D. Brimbal, S. Miro, V. de Castro, S. Poissonnet, P. Trocellier, Y. Serruys, and

L. Beck. J. Nucl. Mater., 447:179–182, 2014.

[26] L. Fave, M. A. Pouchon, M. Dobeli, M. Schulte-Borchers, and A. Kimura. J. Nucl.

Mater., 445:235–240, 2014.

[27] Z. J. Huang, A. Harris, S. A. Maloy, and P. Hosemann. J. Nucl. Mater., 451:

162–167, 2014.

[28] T. Lazauskas, S. D. Kenny, R. Smith, G. Nagra, M. Dholakia, and M. C. Valsaku-

mar. J. Nucl. Mater., 437:317–325, 2013.

[29] M-L. Lescoat, J. Ribis, A. Gentils, O. Kaitasov, Y. de Carlan, and A. Legris. J.

Nucl. Mater., 428:176–182, 2012.

[30] A. Cui, J. C. Fenton, W.X. Li, Tiehan H. Shen, Z. Liu, Q. Luo, and C.Z. Gu. Appl.

Phys. Lett., 102:213112, 2013.

[31] P. M. Derlet, D. Nguyen-Manh, and S. L. Dudarev. Phys. Rev. B, 76:054107, 2007.

[32] C. S. Becquart and C. Domain. Nucl. Instr. Methods Phys. Res. B, 255:23–26, 2007.

[33] B. D. Wirth, K. D. Hammond, S. I. Krasheninnikov, and D. Maroudas. J. Nucl.

Mater., in press, 2014.

[34] J. P. Biersack and L. G. Haggmark. Nucl. Inst. Meth., 174:257–269, 1980.

Bibliography 57

[35] A. Sommerfeld. Z. Phys., 78:283–309, 1948.

[36] W. Lenz. Z. F. Physik, 77:713–722, 1932.

[37] G. Moliere. Z. Naturforschung, 2a:133–145, 1947.

[38] N. Bohr. Mat. Fys. Medd. Dan. Vid. Selsk., 18:142–143, 1948.

[39] J. F. Ziegler. Nucl. Inst. Meth. Phys. Res. B, 219-220:1027–1036, 2004.

[40] N. Bohr and K. Dan. Vid. Selsk. Mat.-Fys. Medd., 18:8, 1948.

[41] W. K. Chu. Phys. Rev. A, 13:2057, 1976.

[42] Q. Yang, D. J. O’Connor, and Z. Wang. Nucl. Inst. Meth. Phys. Res. B, 62:149,

1991.

[43] W. H. Bragg and R. Kleeman. Phil. Mag., 10:318, 1905.

	Declaration of Authorship
	Acknowledgements
	Contents
	1 Introduction
	1.1 What is IM3D
	1.2 IM3D Features
	1.3 IM3D Non-features
	1.4 Open-source Distribution
	1.5 Citations

	2 Getting Started
	2.1 What is in the IM3D Distribution
	2.2 Making IM3D
	2.2.1 Steps to build an IM3D executable file
	2.2.2 Command switch
	2.2.3 Errors that can occur when making IM3D

	2.3 Runing IM3D
	2.4 Command-line Options
	2.5 IM3D Screen Output

	3 Input
	3.1 IM3D Input Script
	3.2 Input Script Structure
	3.2.1 Configuration File: temp_configfile.im3d
	3.2.2 Materials File: temp_matfile.im3d
	3.2.3 Structure File: temp_structfile.im3d
	3.2.4 Composition File: temp_compfile.im3d
	3.2.5 Combined Input File

	4 Output
	4.1 List of Output Files
	4.1.1 aiv.xyz.cfg
	4.1.2 Output: cascades
	4.1.3 Output: depth_dist_functions.dat
	4.1.4 Output: disp.mat*.cfg/.msh/.vtk
	4.1.5 Output: energy.deposit.cfg/.msh/.vtk
	4.1.6 Output: int.mat*.cfg/.msh/.vtk
	4.1.7 Output: ion_paths
	4.1.8 Output: ions.replacements.cfg/.msh/.vtk
	4.1.9 Output: ions.total.cfg/.msh/.vtk
	4.1.10 Output: leaving.mat*.cfg/.msh/.vtk
	4.1.11 Output: leaving_directions.ions
	4.1.12 Output: leaving_directions.sum
	4.1.13 Output: leaving_directions.z*1.m*2.mat*3.elem*4
	4.1.14 Output: radial_dist_functions.dat
	4.1.15 Output: repl.mat*.cfg/.msh/.vtk
	4.1.16 Output: transmitted.ions
	4.1.17 Output: vac.mat*.cfg/.msh/.vtk

	4.2 Output Format
	4.2.1 .cfg format
	4.2.2 .msh format
	4.2.3 .vtk format

	4.3 Output Visualization

	5 Accelerating IM3D Performance
	5.1 General Strategies
	5.2 Fast Database Indexing Techniques
	5.2.1
	5.2.2
	5.2.3

	5.3 MPI Parallel and Multi-threading
	5.3.1 MPI Parallel method
	5.3.2 Multi-threading method

	5.4 Measuring Performance
	5.4.1
	5.4.2

	6 Example Problems
	6.1 Verifications
	6.2 Two effects: nano-size and geometric effects
	6.3 Applications
	6.3.1 Arbitrary complex targets based on CSG and FETM methods
	6.3.2 Nano-yttria in ODS steels under ion-irradiation
	6.3.3 Ion beam sputtering induced the bending of W nanowire
	6.3.4 D retention in W with roughness surface

	7 Additional Tools
	7.1 Config.in file generation code
	7.2 Shape files generation code
	7.2.1 CSG
	7.2.2 FETM

	7.3

	8 Errors and Warnings
	8.1
	8.2
	8.2.1
	8.2.2
	8.2.3

	8.3
	8.3.1

	8.4
	8.4.1
	8.4.2

	8.5
	8.6

	A Physical models
	B 3D structural models
	Bibliography

